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Abstract— Transportation infrastructure is entering a stage
of mixed use whereby vehicles are capable of varying levels
of autonomy, and investigating the potential benefits of this
mixed infrastructure is a critical step to fully realizing the
mobility benefits of autonomy. In this paper, we consider a
mixed traffic profile where a fraction of vehicles are smart
and able to form platoons, and the remaining are regular and
manually driven. We develop two models for road capacity
under mixed autonomy that are based on the fundamental
behavior of autonomous technologies such as adaptive cruise
control. Moreover, we formulate an optimal routing problem
of mixed traffic for the first capacity model with two parallel
roads. We first study the case that a planner aims to minimize
the social cost of the system, and has control over both
regular and smart traffic flows. We prove that this optimization
problem is convex for the chosen road delay function, and fully
characterize its optimal solution. We further study the case that
only smart vehicles can be controlled and the regular vehicles
choose their route selfishly according to the best response to the
routing choice of smart vehicles. Finally, we provide extensive
numerical studies that corroborate our analytical results.

I. INTRODUCTION
In the coming years and decades, vehicles equipped with

autonomous capabilities will become increasingly prevalent,
providing new opportunities to improve mobility and traffic
flow. For example, cooperative platooning has the potential to
smooth traffic flow and increase highway capacity [1], [2],
and platoons of connected vehicles can more than double
throughput in urban roads [3].

However, fully autonomous vehicles will not become
ubiquitous overnight and vehicles with varying levels of
autonomy will coexist with manually driven vehicles into
the foreseeable future. Indeed, semiautonomous technology
such as adaptive cruise control (ACC) and automated lane-
keeping are already available on many passenger vehicles.
Such features are currently designed and marketed for the
convenience of the driver, but their growing availability and
popularity demands new research into how these emerging
technologies affect network-level mobility, especially as ve-
hicles equipped with this technology will continue to interact
with conventional, nonautonomous vehicles.

On freeways, when all vehicles are equipped with the
requisite automation features, significant improvement can
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be achieved [4], [5], [6]. Simulation studies suggest that low
penetration rates of semiautonomous vehicles do not lead to
considerable improvement while higher levels of penetration
can lead to significant increases in traffic throughput [7], [8],
[9], [10], [11], [12].

At signalized intersections, much of the literature has
focused on using autonomy to schedule vehicle crossings
at an intersection with the goal of achieving signal-less
intersection control; see, e.g., [13], [14], [15], [16], [17],
[18] and references therein. In that case, all vehicles must
be equipped with autonomous control and communication
capabilities and thus implementation of such strategies likely
remains years or decades away. The recent paper [19] appears
to be the first to study the impact of mixed autonomy at
signalized intersections using various car-following models
in a microsimulation environment.

In this paper, we propose a model for road capacity derived
from the principle that vehicles with autonomous capabilities
are able to maintain shorter headways to preceding vehicles.
The road capacity is then a function of the fraction of
vehicles with autonomous capabilities. Next, we consider the
case when vehicle routes can be altered in order to adjust
the fraction of vehicles with autonomous capabilities on each
road. We solve this problem in the case of two parallel roads
when a social planner aims at minimizing the social cost of
the system, and has control over both vehicle types. We then
study the case when vehicles with autonomous capabilities
can be prescribed a particular route for societal gain, while
the remaining vehicles behave selfishly. While this problem
proves to be far more challenging, we present computation
and simulation results which suggests that it is convex.

We assume the network will achieve a Wardrop or user
equilibrium [20], [21], [22], [23] whereby drivers choose
routes that they perceive as being the shortest under the
prevailing traffic conditions. As user equilibria typically do
not minimize the social cost, Koutsoupias and Papadimitriou
proposed to analyze the inefficiency of equilibria from a
worst-case perspective, and introduced the notion of “price of
anarchy” [24], [25], which is the ratio of the worst social cost
of a Wardrop equilibrium to the cost of an optimal solution.
In [26], the authors showed that the price of anarchy is
bounded for a certain class of cost functions. Similar results
were obtained for more general network models in [27],
[28], [29], [30]. In this paper, we establish initial results that
extend some of these ideas to the mixed autonomy setting
with autonomy-dependent capacities and costs.

The rest of the paper is organized as follows. We present
two capacity models for roads with mixed autonomy in



Section II, followed by a full description of social planner
and selfish routing optimization problems in Section III. We
discuss numerical results in Section V and conclude the paper
in Section VI.

II. MODELING MIXED AUTONOMY

The Highway Capacity Manual defines the capacity of
a road as the maximum possible flow rate on the road in
vehicles per hour [31]. Capacity is primarily limited by the
average headway that vehicles maintain while traveling on
the road, and the HCM recommends a nominal saturation
flow rate of 1900 vehicles per hour (vph) per lane to capture
typical behavior of drivers, which corresponds to a headway
of 3600/1900 = 1.89 seconds (s).

With the emergence of semiautonomous driving technol-
ogy such as cooperative adaptive cruise control (CACC), it is
projected that the headway can be reduced to approximately
0.8 s, which corresponds to a road capacity of 4500 vph
[32]. However, to achieve this nearly 2.5-fold increase in
capacity requires every vehicle to maintain shorter headways.
What happens when only a fraction of vehicles are equipped
with the required technology to achieve reduced headway?
In this section, we consider two possible models for reduced
headways and increased capacity in this mixed autonomy
setting. We say a vehicle is smart if it is equipped with
semiautonomous driving capabilities that enable reduced
headways, and regular otherwise.

A. Capacity Model 1

We first consider a scenario in which each smart vehicle is
able to maintain reduced headway with any preceding vehi-
cle, regardless of whether that vehicle is also equipped with
driver assistance technology. This scenario is plausible when
smart vehicles are able to accurately localize any surrounding
vehicle without communication. At the moment, it is unclear
whether a sufficiently sophisticated sensor suite for this task
will be omnipresent on autonomous vehicles. Indeed, the
sensors likely required to achieve this feat, such as lidar,
are currently prohibitively expensive for mass adoption. On
the other hand, companies such as Tesla have focused on
enabling autonomous technology by relying primarily on
cameras [33].

Suppose that m is the capacity of the road when fully
utilized by regular vehicles, and M is the capacity when
fully utilized by smart vehicles, where M > m. Let α be
the average fraction of smart vehicles on the road. We call
α the autonomy level of the road. Define C(α) to be the
capacity of the road under autonomy level α. We propose
the following approximation:

C(α) = (αM−1 + (1− α)m−1)−1. (1)

Here is a justification for (1). First, assume that every smart
vehicle follows the preceding vehicle (whether it is smart or
regular) with time gap of t2 = M−1. Second, assume that
each regular vehicle follows the preceding vehicle with time
gap of t1 = m−1 where t1 > t2. Finally, since a fraction α
of vehicles are smart, the effective headway of the road with

autonomy level α is αt2+(1−α)t1, which implies (1). Note
that this approximation is valid regardless of how the smart
vehicles are distributed among the regular vehicles, so long
as the autonomy level is α.

In Figure 1, we plot road capacity as a function of the
fraction of smart vehicles α, assuming that the capacity when
there are no smart vehicles (α = 0) is 1900 vph and when
there are only smart vehicles (α = 1) is 4500 vph.
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Fig. 1: Road capacity as a function of the autonomy level α, i.e., the ratio of
smart vehicles on the road. In Model 1 (dark/blue), it is assumed that smart
vehicles are able to maintain shorter headways with any preceding vehicle.
In Model 2 (light/orange), it is assumed that smart vehicles are only able
to maintain a shorter headway if the preceding vehicle is also smart, with
results in decreased capacity.

B. Capacity Model 2

We now consider an alternative model in which a smart
vehicle is only able to maintain a short headway if the
preceding vehicle is also smart. As above, suppose that m
(respectively, M ) is the capacity of the road when fully
utilized by regular (respectively, smart) vehicles, and again
let α be the average fraction of smart vehicles on the road.

Unlike the previous model, the capacity of the road now
depends on the distribution of smart vehicles among regular
vehicles. For example, consider a single-lane road with n
vehicles, and suppose n/2 are regular and n/2 are smart.
In the extreme case that the smart and regular vehicles
are perfectly interleaved such that every smart vehicle is
preceded by a regular one, then the capacity is m and no
gain is achieved. In the other extreme case that a platoon
of n/2 smart vehicles precedes n/2 regular vehicles, the
throughput of the road becomes the same as (1). Therefore,
a proper definition of the capacity of the road depends on
the stochastic process of the vehicles traversing the road.

Here, we propose to model vehicle type as a Bernoulli
process, i.e., each vehicle is smart with probability α and
regular with probability 1 − α independently. In this case,
the capacity of the road is approximated as

C(α) = (α2M−1 + (1− α2)m−1)−1. (2)

To derive (2), note that the time gap between two vehicles is
t2 = M−1 if they are both smart and t1 = m−1 otherwise.
Thus, one needs to count the fraction of pairs of smart
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λs, arrival rate
of smart vehicles

λr , arrival rate
of regular vehicles

Path 1

λsrs smart vehicles
λrrr regular vehicles

Path 2

λs(1− rs) smart vehicles
λr(1− rr) regular vehicles

Fig. 2: Diagram of the routing problem, with regular and smart cars arriving
at node A and taking path 1 or path 2 to node B. Section III develops delay
models for each road and a social cost function for this configuration.

vehicles, which is α2. This implies that the average headway
is α2t2 + (1−α2)t1. Figure 1 also plots the capacity model
(2).

III. ROUTING PROBLEM FORMULATION

In this section we develop a congestion model and social
cost function for mixed traffic on two parallel roads and
describe the optimization problem in which a social planner
controls all vehicles. We present Theorem 1 that establishes
the convexity of this optimization problem and the location of
its minimum, which follow from a geometric interpretation
of the cost function. We finish this section by formulating the
problem in which regular cars choose their routes selfishly.

A. Model Description, Capacity Model 1

In this subsection we present our model for the social
cost of traffic in the network using capacity model 1 (1).
The fundamental diagram of traffic and the M/M/1 queuing
model motivate the delay model, which describes a negative
linear relationship between service speed and arrival rate.

In our model, we consider arrival rates of λr regular
vehicles and λs smart vehicles per hour that will travel over
path 1 or path 2 as illustrated in Fig. 2. The portion of regular
and smart vehicles to travel on road 1 are denoted by rr and
rs, respectively, for the region of consideration rr, rs ∈ [0, 1].
This corresponds to a regular (respectively smart) flow of
λrrr (λsrs) vehicles per hour on road 1 and λrrr (λsrs)
vehicles per hour on road 2.

The autonomy level, the unitless measures of the fraction
of vehicles on a road that are smart, of the roads are

α1(rr, rs) =
λsrs

λrrr + λsrs
;

α2(rr, rs) =
λsrs

λrrr + λsrs
=

λs(1− rs)
λr(1− rr) + λs(1− rs)

.

The capacity of each road is a function of the autonomy
level of the road, with parameters M and m (described
in Section II-A). The flow capacity terms below, with unit
vehicles per hour, represent the maximum arriving mixed
flow that can be served by the road. Using a and c to
denote the regular capacity of roads 1 and 2 respectively
and b and d to denote the smart capacity of roads 1 and 2,
the mixed road capacities are C1(α1) = ab

α1a+(1−α1)b
and

C2(α2) = cd
α2c+(1−α2)d

.

Considering a negative linear relationship between service
speed and arrival rate, we express the delay function (with
unit hours per vehicle) associated with each road as

D1(rr, rs, C1) =
1

C1 − (λrrr + λsrs)
;

D2(rr, rs, C2) =
k

C2 − (λrrr + λsrs)

(3)

where k is a scalar denoting the length difference between the
two roads, with unit kilometers per kilometers. This assumes
that the congestion on each road is uniform on its length.

The cost function represents the social cost, or aggregate
delay, associated with the congestion:

L(rs, rr) = (λrrr + λsrs)D1 + (λrrr + λsrs)D2

=
bλrrr + aλsrs

ab− bλrrr − aλsrs
+

k(dλrrr + cλsrs)

cd− dλrrr − cλsrs
.

(4)

The cost function is unitless, and denotes the total amount
of delay experienced by the vehicles in the system in 1 hour.

B. Social Planner Optimization

In this subsection we present an optimization problem
where a social planner aims at minimizing the system’s cost
function. In social planner optimization we assume control
over the flows of both types of traffic, i.e. rr and rs. Then,
the optimization problem is as follows:

(rOPTs , rOPTr ) = argmin
rs,rr

L(rs, rr)

s.t. rs, rr ∈ [0, 1], ab > bλrrr + aλsrs,

cd > dλrrr + cλsrs .

(5)

The delay functions D1 and D2, which grow to infinity as
the flows approach road capacity, bound the feasibility region
of rr and rs. This feasibility region is dictated by the latter
two constraints in (5) and is shown in the unshaded portion
of Fig. 3. The upper and lower lines represent the constraints
imposed by the capacities of road 1 and 2, respectively. If
the constraint line for road 2 is entirely above the line for
road 1 in the region of consideration, rr, rs ∈ [0, 1], then no
flow configuration can result in a finite user delay time.

In addition to showing the feasibility region, Fig. 3 sets
up a geometric interpretation of the cost function that makes
explicit the dependence of the cost function on the distance
from the point considered to the lines bounding the feasibility
region. The distance between (r̂s, r̂r) and the lines describing
the constraint imposed by roads 1 and 2 is denoted by h1
and h3, respectively. The constants h2 and h4 depend on the
distance of the constraint lines from the origin and the point
(1, 1)1. The cost then becomes

L(rs, rr) = Lg(h1, h3) =
h2 − h1
h1

+ k
h4 − h3
h3

. (6)

1The locations of the intersections of the feasibility lines with the axes in
Fig. 3 are still valid outside the region of consideration, and the definitions
of h1, h2, h3, and h4 are independent of the specific example shown in
the figure. Therefore the equality between (4) and (6) is valid whether or
not the feasibility lines are within the region of consideration.
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Fig. 3: Geometric representation of the cost function. The unshaded portion
is the set of feasible traffic configurations. The cost associated with routing
(r̂s,r̂r) is a function of the distance of the point to the feasibility lines.
This structure implies convexity and limits social optimal solutions to the
extremity of the region of consideration (rr, rs ∈ [0, 1]).

To show the equality between (4) and (6), we investigate
the area of four triangles in Fig. 3:
(1) A1 = h1b1

2 , the area of the triangle formed by the points
(0, aλr

), ( b
λs
, 0), and (r̂s, r̂r),

(2) A2 = h2b1
2 , the area of the triangle formed by the points

(0, aλr
), ( b

λs
, 0), and (0, 0),

(3) A3 = h3b2
2 , the area of the triangle formed by the points

(0, −cd+dλr+cλs

dλr
), (−cd+dλr+cλs

cλs
, 0), and (r̂s, r̂r), and

(4) A4 = h4b2
2 , the area of the triangle formed by the points

(0, −cd+dλr+cλs

dλr
), (−cd+dλr+cλs

cλs
, 0), and (1, 1).

Above, b1 and b2 are the lengths of the feasibility lines for
roads 1 and 2, respectively, in the region of consideration. We
then see that L(rs, rr) = A2−A1

A1
+ kA4−A3

A3
= Lg(h1, h3).

Finding the optimal routing then becomes

(hOPT1 , hOPT3 ) = argmin
h1,h3

L(h1, h3)

s.t. region of consideration,
feasibility constraints.

(7)

With this in mind, we present the following theorem:
Theorem 1: Assuming the intersection of the feasibility

region and the region of consideration is nonempty, (5) is
convex and the minimum of the cost function occurs at an
extremity (i.e. rs = 0, rr = 0, rs = 1, or rr = 1) of the
region of consideration, rs, rr ∈ [0, 1].

Proof: Consider Lg(h1, h3) as the sum of two func-
tions, h2

h1
−1+kh4

h3
−k = f(h1)+g(h3). Here f(h1) and g(h3)

are convex in h1 and h3, for all h2, h4, and k > 0. Since
the sum of two convex functions is convex, Lg is convex.

The second part uses a geometric argument motivated by
monotonicity in the cost function. Consider two cases:
1) a

b 6=
c
d : Assume the optimal routing point within the

feasibility region, with cost LOPT = Lg(h
OPT
1 , hOPT3 ),

is in the interior of the region of consideration. Since a
b 6=

c
d , there exists a point for which h1 = hOPT1 and h3 >
hOPT3 . For a constant h1, the cost function is inversely
proportional to h3 so the cost monotonically decreases as

h1 is fixed and h3 increases, and L(h3, h
OPT
1 ) < LOPT .

This contradicts the premise that LOPT achieves the
minimum cost in the interior of the feasible region of
consideration.

2) a
b = c

d : Assume the optimal routing point is in the
interior of the feasibility region, with cost LOPT =
Lg(h

OPT
1 , hOPT3 ). Since the feasibility lines are parallel,

the minimum is not unique and there exists a line for
which h1 = hOPT1 and h3 = hOPT3 where every point
on that line is a minimizer of the cost function. That
line intersects with the rs-axis and rr-axis, so there is an
extreme point of the feasibility region with the same cost.

This theorem will be used in Section IV to develop a
closed-form solution for the social planner optimization.

C. Selfish Routing for Regular Vehicles

In the previous subsection we considered the case in which
a social planner chooses routes for both regular and smart
vehicles. Here we consider the more realistic case in which
regular vehicles choose their own routes to minimize their
individual delays.

When the operators of the regular vehicles choose their
routes we assume that they will do so selfishly, thereby
choosing the road with the minimum latency. With rs as
a control variable, we model rr = Rr(rs) as being chosen
such that no regular vehicle could switch roads to experience
a lower delay. If there are regular vehicles present on both
roads, the delay on the roads must be equal. In this non-
atomic model, where each operator controls an infinitesi-
mally small unit of flow, if one of the roads had lower
delay then a driver from the other road would switch to it.
This would continue until the roads had equal latency or
there are no regular vehicle drivers on the road with longer
delay. Thus, both roads having equal delay is a Wardrop
Equilibrium.

A Wardrop Equilibrium also exists if all regular vehicles
are on one road (rr = 0 or rr = 1) and the other road, which
has only autonomous vehicles, has a longer delay.

The first case in which roads have equal delay satisfies
D1(rr, rs, C1) = D2(rr, rs, C2). In the general case we
denote the best-response mapping of regular vehicles to
smart vehicle routing as Rr(rs), where Rr : [0, 1]→ [0, 1].
Given a rs, finding rr such that D1 = D2 involves finding
the solution of a third order polynomial.

We are concerned with the cost at the worst-case Wardrop
equilibrium, which we denote by

L(rs,Rr(rs)) = max
r̃r∈REQ(rs)

{L(rs, r̃r)},

where REQ(rs) denotes the set of Nash Equilibria for
control variable rs, and has cardinality at most 3.



Noting that Rr(rs) = 1−Rr(rs), the objective is to find

r∗s = argmin
rs

L(rs,Rr(rs))

= argmin
rs

(
bλrRr(rs) + aλsrs

ab− bλrRr(rs)− aλsrs

+
k(dλrRr(rs) + cλsrs)

cd− dλrRr(rs)− cλsrs
)

(8)

To summarize, we aim to find the best control strategy
for smart vehicles such that the social cost is minimized
when regular vehicles choose their routes selfishly. While we
have not fully characterized the solution of this optimization
problem analytically, we later provide numerical simulations
that suggest convexity of the optimization problem.

IV. SOLUTION DESCRIPTION

In this section we develop solutions to the two optimiza-
tion problems posed in Section III. We describe a closed-
form solution for the social planner case and a numerical
gradient descent algorithm for the selfish routing case.

A. Social Planner

As shown in Theorem 1, the solution to the social planner
will lie on an extremity of the region of consideration.
Using this we have developed a simple closed form solution
for finding the optimal feasible social planner routing. To
describe the solution, first we examine the four possible
regions for the social optimal solution:

(i) The rr axis, which has minimum at rs = 0, rr =√
a(−cd+dλr+cλs+

√
ackd)

(
√
a+
√
ck)dλr

(ii) The rs axis, which has minimum at rs =√
b(−cd+dλr+cλs+

√
bdkc)

(
√
b+
√
dk)cλs

, rr = 0

(iii) The rr axis, which has minimum at rs = 1, rr =√
a(−bc+bλr−

√
ackλs+

√
ackb)

(
√
a+
√
ck)bλr

(iv) The rs axis, which has minimum at rs =√
b(−ad−

√
bdkλr+aλs+

√
bdka)

(
√
b+
√
dk)aλs

, rr = 1

To find the global optimum, first we ensure that the
intersection of the feasibility region and the region of con-
sideration is nonempty. Then we do the following:

1) If the feasibility region opens left, meaning a
b >

c
d :

a) Check the rr axis, as in (i). If rr ∈ [0, 1], then this
is the optimal solution. If rr < 0, proceed to 1b. If
rr > 1, proceed to 1c.

b) Check the rs axis, as in (ii). If rs ∈ [0, 1], then this is
the optimal routing configuration. Otherwise, if rs <
0, choose (rOPTs , rOPTr ) = (0, 0).

c) Check the r̄s axis, as in (iv). If rs ∈ [0, 1], then
this is the optimal routing configuration. Otherwise,
if rs < 0, choose (rOPTs , rOPTr ) = (0, 1), and if
rs > 1, choose (rOPTs , rOPTr ) = (1, 1).

2) If the feasibility region opens right or the lines are
parallel, meaning a

b ≤
c
d :

a) Check the r̄r axis, as in (iii). If rr ∈ [0, 1], then this
is the optimal solution. If rr < 0, proceed to 2b. If
rr > 1, proceed to 2c.
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Fig. 4: Ex. 1: (a) Social optimal solution (magenta asterisk) and the
selfish routing optimal solution (magenta triangle). (b) Aggregate delay as
a function of rs, where rr is chosen selfishly. We observe convexity in this
function, though we have not proven it analytically in the general case.

b) Check the rs axis, as in (ii). If rs ∈ [0, 1], then this is
the optimal routing configuration. Otherwise, if rs <
0, choose (rOPTs , rOPTr ) = (0, 0), and if rs > 1,
choose (rOPTs , rOPTr ) = (1, 0).

c) Check the r̄s axis, as in (iv). If rs ∈ [0, 1], then
this is the optimal routing configuration. Otherwise,
if rs > 1, choose (rOPTs , rOPTr ) = (1, 1).

B. Selfish Routing

The function rr = Rr(rs) is the root of a third-order
polynomial and does not lend itself to a closed-form solution.
Instead we use a numerical gradient algorithm to find the
minimum of L(rs,Rr(rs)), shown in Fig. 4 (b). Though we
have not proven convexity, numerical results show convexity
for the region where the delays on each road are equal as
well as the region where the delays on the roads are not
equal. Because of this we use a gradient algorithm in each
region to find the minima and then compare the two.

V. NUMERICAL RESULTS AND DISCUSSION

In this section we present three example scenarios with
their optimal routings and costs (Table I). For all these
examples, k = 1. In each, we compare the following three
quantities, with L1 ≤ L3 ≤ L2:

(i) the social optimum cost, L1 = L(rOPTs , rOPTr ),
(ii) the cost when rs is chosen as the social planner

optimal solution and rr is chosen selfishly, L2 =
L(rOPTs ,Rr(rOPTs )), and,

(iii) the cost when rs is chosen to optimize cost when rr is
chosen selfishly, L3 = L(r∗s ,Rr(r∗s)).

In the first example there are two roads with similar
capacity, each with about three times the smart capacity as
regular capacity. In Fig. 4 (a) we see that the social optimal
solution appears on the rr axis and the optimal Wardrop
solution appears in the interior of the feasibility region.

The three examples represent different regimes: in each
successive example the relative benefit of choosing r∗s instead
of rOPTs decreases until, in the third example, r∗s = rOPTs

and L2 = L3.



TABLE I: Results

Ex. 1 Ex. 2 Ex. 3
a 10 10 50
b 30 30 60
c 12 25 60
d 32 32 160
λr 3 8 30
λs 3 15 100

rOPT
s 1.0 0.78 0
rOPT
r 0.14 0 0.97
L1 0.439 1.385 3.22

rOPT
s 1.0 0.78 0

Rr(rOPT
s ) 0.72 0.05 0.66
L2 0.537 1.441 4.44
r∗s 0.47 0.87 0

Rr(r∗s ) 0.37 0 0.66
L3 0.449 1.402 4.44

Table I: Results for three routing scenarios. Three quantities are compared:
(i) the optimal cost, L1, when both regular and smart cars are routed by a
social planner, (ii) the cost, L2, when regular cars selfishly route and smart
cars are routed as in (i), and (iii) the optimal cost, L3, when smart cars are
routed by a social planner and regular cars choose selfishly.

VI. CONCLUSIONS

In this paper we have presented two models for road
capacity under mixed autonomy and described a specific case
with two parallel roads. We modeled cases in which a planner
has control over both regular and smart traffic flows and the
case that regular vehicles route selfishly in response to the
routing choices of the smart vehicles. We have developed a
geometric interpretation of the cost function under capacity
model 1 to prove convexity and provided a closed-form
solution for the social planner case. We provide numerical
results that indicate convexity in the selfish-routing case and
exemplify performance in different scenarios.
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