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Abstract— This work studies the problem of searching
for homogeneous polynomial Lyapunov functions for stable
switched linear systems. Specifically, we show an equivalence
between polynomial Lyapunov functions for systems of this
class and quadratic Lyapunov functions for a related hierarchy
of Lyapunov differential equations. This creates an intuitive
procedure for checking the stability properties of switched
linear systems, and a computationally competitive algorithm is
presented for generating high-order homogeneous polynomial
Lyapunov functions in this manner. Additionally, we provide a
comparison between polynomial Lyapunov functions generated
with our proposed approach and Lyapunov functions generated
with a more traditional sum-of-squares based approach.

I. INTRODUCTION

The structure of switched dynamical system models has
been widely explored and exploited in order to the analyze
stability and performance of real-world systems [1], [2]. In
turn, such results have inspired the use of switched systems
as a modeling tool for many challenging analysis problems.
For example, hybrid dynamical systems can be represented
as switched systems, as can some stochastic systems [3],
[4]. Certain nonlinearities such as saturation and mechanical
backlash can be modeled using switched linear systems [1],
[5]–[7], as can random noise [8]. Switched linear systems
can be used as an over-approximating abstraction for more
general nonlinearities [5], [9] and, for this reason, switched
linear system models appear widely in robustness analysis
literature [6], [10].

Stability-type proofs for switched dynamical systems often
require the construction of polynomial Lyapunov functions.
The simplest class of polynomial Lyapunov function is the
class of quadratic Lyapunov functions and, as such, the
search for quadratic Lyapunov functions has computational
advantages in comparison to other methods of stability
analysis. Numerous works, including [7], [11] explore the
guarantees attainable when solely searching for quadratic
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Lyapunov functions, however, recent progress in sum-of-
squares based techniques have shown that higher-order poly-
nomial Lyapunov functions can be calculated as well with
more accurate stability guarantees [12], [13]. In general,
sum-of-squares based techniques require little machinery to
implement; these methods cast the search for a polynomial
Lyapunov function as a convex feasibility problem, and
many efficient solvers exist to solve such problems [12].
Additionally, for systems which are known to be stable, the
computation of high-order polynomial Lyapunov functions
has the ability to help characterize invariant regions of the
state space with complex geometries; this is not possible
when computing quadratic Lyapunov functions.

This work provides an algorithm, posed as a convex fea-
sibility problem, for constructing homogeneous polynomial
Lyapunov functions for switched linear systems. Importantly,
the structure of our algorithm differs significantly from
traditional sum-of-squares formulations, as we encode the
search for polynomial Lyapunov functions as a search for
quadratic Lyapunov functions for a related hierarchy of
Lyapunov differential equations. This creates an intuitive
procedure for checking the stability properties of switched
linear systems and enables new applications as well [8].
Moreover, we show that every homogeneous sum-of-squares
polynomial Lyapunov function for a given initial system can
be transformed to a quadratic polynomial Lyapunov function
for a system in the related hierarchy; this procedure can also
be conducted in the reverse order, allowing one to generate
sum-of-squares polynomial Lyapunov functions for an initial
system through the identification of a quadratic polynomial
Lyapunov function for a related system.

This paper is organized in the following way. We introduce
the time-varying Lyapunov differential equation in Section
II, which we define in reference to an initial switched
linear system. Using the time-varying Lyapunov differential
equation as an initial case, we then form a hierarchy of
Lyapunov differential equations in Section III, and quadratic
Lyapunov functions for differential equations in this hierar-
chy are shown to correspond to homogeneous polynomial
Lyapunov functions for the initial switched system. Section
IV explores the relation between quadratic Lyapunov func-
tions for the aforementioned hierarchy of Lyapunov differen-
tial equations and homogeneous sum-of-squares polynomial
Lyapunov functions for the initial switched linear system.
Finally, we provide an algorithm for computing high-order
homogeneous polynomial Lyapunov functions for switched
linear systems in Section V; this algorithm is presented in
conjunction with a numerical example.



II. STABILITY AND SWITCHED LINEAR SYSTEMS

Consider the linear time-variant system

ẋ = A(t)x, (1)

where x(t) ∈ Rn denotes the system state, and A(t) ∈
Rn×n evolves nondeterministically inside a finite set of
switched linear modes A(t) ∈ {A1, · · · , AN}. We assume
that each switched mode ẋ = Aix, with i ∈ {1, · · · , N}, is
asymptotically stable.

In this work, we study common polynomial Lyapunov
functions for systems of the form (1). A common Lyapunov
function is a mapping V : Rn → R such that for all x ∈ Rn,
with x 6= 0, and for i ∈ {1, · · · , N} we have

V (x) > 0 and V̇ (x) = 〈∇V,Aix〉 < 0, (2)

and it is well known that the system (1) is stable if and
only if there exists a V satisfying (2). Moreover, the authors
of [14] show that (1) is stable if and only if there exists a
homogeneous polynomial Lyapunov function satisfying (2).
We capture this assertion in Remark 1.

Remark 1. [15, Theorem 4.5] If the switched linear system
(1) is asymptotically stable under arbitrary switching, then
there exists a polynomial Lyapunov function V (x), satisfying
(2), which is homogeneous in the entries of x. �

In the special instance that there exists a V (x), satisfying
(2), which is quadratic in the entries of x, we say that the
system (1) is quadratically stable [7]. Such a Lyapunov
function will take the form V (x) = xTPx where P ∈ Rn×n

is a symmetric positive definite matrix and

AT
i P + PAi < 0 (3)

for all i ∈ {1, · · · , N}.
Quadratic polynomial Lyapunov functions are the simplest

substantiation of homogeneous polynomial Lyapunov func-
tions, and thus, the search for a quadratic Lyapunov function
for (1) has computational advantages in comparison to other
strategies for stability analysis; the search can be reduced to
solving a convex feasibility problem involving linear matrix
inequalities, and many efficient solvers exist to solve such
problems [6], [16]. Recent progress in polynomial optimiza-
tion systems via sum-of-squares relaxations, however, has
shown that more general polynomial Lyapunov functions
could be computed as well with added benefits, such as
improved system stability margins.

Importantly, if the system (1) is linear time-invariant, i.e.
N = 1, then (1) is asymptotically stable if and only if there
exists a P satisfying (3). This is not true, however, in the case
of multiple switched modes; stable switched linear systems
exist for which there is no quadratic Lyapunov function
certifying the stability of each mode [11, Section 3]. For
this reason, we must resort to more complex tools to prove
stability in the general setting of (1).

We next present the time-variant switched Lyapunov dif-
ferential equation:

Ẋ = A(t)X +XA(t)T , (4)

where X(t) ∈ Rn×n and A(t) retains its definition from (1).
Importantly, stability guarantees on the Lyapunov system (4)
propagate down to stability guarantees on the initial system.

Proposition 1. The switched Lyapunov differential equation
(4) is stable if and only if the system (1) is stable. �

III. ESTABLISHING A HIERARCHY OF LYAPUNOV
DIFFERENTIAL EQUATIONS

In this section we build on (4) to create a hierarchy of
Lyapunov differential equations for the system (1). As was
the case in Proposition 1, each system in the hierarchy is
shown to have equivalent stability properties.

A. Notation

Let A ⊗ B ∈ Rnp×mq denote the Kronecker product of
A ∈ Rn×m and B ∈ Rp×q . Let ⊗kx ∈ Rnk

denote the kth

Kronecker power of x ∈ Rn, which is defined recursively by

⊗1x = x ∈ Rn,

⊗kx = x⊗ (⊗k−1x) ∈ Rnk

, k ≥ 2.

Let W+ ∈ Rm×n denote the Moore-Penrose inverse of W ∈
Rn×m, and let In ∈ Rn×n denote the n×n identity matrix.

B. Identifying Meta-Lyapunov Functions

We first rewrite (4) as

~̇X = A(t) ~X (5)

by taking ~X to be the vectorization of X , i.e. ~X =
vec(X) ∈ Rn2

. In this case, A(t) ∈ Rn2×n2

evolves
nondeterministically in the set A(t) ∈ {A1, · · · ,AN} where,
for i ∈ {1, · · · , N}, we define Ai := In ⊗Ai +Ai ⊗ In.

We refer to (5), which is also linear time-variant, as the
meta-system relative to system (1). Applying concepts of
quadratic stability to meta-systems, the system (5) is stable
if there exists a positive definite P ∈ Rn2×n2

such that

AT
i P + PAi < 0, (6)

for all i ∈ {1, · · · , N}. These constraints correspond to the
existence of a Lyapunov function V( ~X) = ~XTP ~X for (5),
which is quadratic in the entries of ~X . In what follows, we
refer to V( ~X) as a meta-Lyapunov function for the system
(1).

Theorem 1. If the system (1) is quadratically stable, then
the system (5) is also quadratically stable.

It is of course possible to repeat the process again and
certify stability at a deeper level; for instance, one may form
the Lyapunov differential equation corresponding to (5),

ξ̇ = (I ⊗A(t) +A(t)⊗ I)ξ, (7)

ξ ∈ Rn4

and then show that the system (5) is quadratically
stable if (7) is quadratically stable. Pursuing the process
further, it is possible to construct a “hierarchy” of Lyapunov
differential equations whose state space dimensions are n2

c

,
where c is an integer greater than or equal to 1. In the follow-
ing section, we complete this hierarchy to include Lyapunov
differential equations whose state space dimensions are n2c.



C. A Linear Hierarchy of Polynomial Lyapunov Functions

We next develop a hierarchy of dynamical systems whose
state space dimensions grow as integer exponents of n,
the dimension of the state space of (1). This hierarchy
complements the hierarchy of systems discussed above.

Theorem 2. System (1) is stable if there exists c ∈ N≥1 and
Pc ∈ Rnc×nc

positive definite such that

AT
c,iPc + PcAc,i < 0 (8)

for all i ∈ {1, · · · , N}, where

Ac,i :=

c−1∑

j=0

Inj ⊗Ai ⊗ Inc−1−j . (9)

Proof. Taking ~X = ⊗cx(t) ∈ Rnc

, we find

~̇X = Ac(t) ~X (10)

where Ac is given by (8), and the stability of (10) implies
that of (1). Therefore the system (1) is stable if there exists
a positive definite Pc ∈ Rnc×nc

such that (8) holds.

Theorem 2 shows that the existence of a Pc ∈ Rnc×nc

satisfying (8) for some integer c ≥ 1 certifies the stability of
(1); such a Pc identifies

Vc(x) = (⊗c x(t)T )Pc(⊗c x(t)) (11)

as a polynomial Lyapunov function for (1), which is homo-
geneous in the entries of x and of order 2c. Importantly, the
degree of Vc(x) grows linearly with c.

D. Reducing the Dimensionality of the Meta-System

The benefits of searching for meta-Lyapunov functions
for (1) using the methods presented thus far are namely
structural; (8)-(9) provide an intuitive procedure for generat-
ing high-order homogeneous polynomial Lyapunov function
for (1) and moreover, this procedure does not require any
heavy machinery to implement. In contrast, there are few
computational advantages to this approach, at present. This
is due in part to internal redundancy built into the Lyapunov
constraints given by (8). We demonstrate this assertion
through the following example.

Example 1. Consider the system (1) evolving in R2. In this
case, x = [x1, x2]

T ∈ R2, and ~X ∈ R4 is given by

~X = x⊗ x =
[
x21 x1x2 x1x2 x22

]T
.

When beginning at an initial condition ~X(0) = x(0)⊗ x(0)
and evolving along trajectories of the meta-system

~̇X = (I2 ⊗A(t) +A(t)⊗ I2) ~X, (12)

we find that the second and third entries of ~X remain equal
to one another, regardless of the switching policy. This is due
to the construction of (I2⊗A(t)+A(t)⊗ I2). The methods
presented thus far address the problem of searching for a
meta-Lyapunov function V( ~X) = ~XTP ~X for the system

(12), however, we now see that that the constraints on P ,
given by (8), contain internal redundancy.

Now, consider a vector containing the second-order mono-
mials of x, this time with no redundancy. Specifically,
consider y(x) = [x21, x1x2, x

2
2] ∈ R3, and note that ~X =

Wy(x) where

W =




1 0 0
0 1 0
0 1 0
0 0 1


 .

From (10), we have that ẏ = W+Ac(t)Wy and, thus,
one can now formulate the search for a fourth-order ho-
mogeneous polynomial Lyapunov function for (1), as the
search for a quadratic Lyapunov function V (y) = yTPy
that certifies the stability of y. �

As shown in the previous example, the constraints given by
(8) are redundant; that is, a quadratic Lyapunov function that
certifies the stability of ~X , as in (10), will individually certify
the stability of each of the meta-system’s states, whereas,
a reduced order meta-Lyapunov function that stabilizes a
subset of meta-system’s states may be sufficient.

For this reason, we present a new formulation of the
constraints (8)-(9) that contains no redundancy. We begin
with the following definition.

Definition 1 (Ac-Invariant Subspaces). A subspace S ⊂ Rn

is Ac-invariant for (10) if for every vector v ∈ S and every
matrix Ac,i with i ∈ {1, · · · , N} we have Ac, iv ∈ S. �

Note that Ac(t) as in (10) will have an inherent invariant
subspace resulting from its construction. We next remove this
redundancy and analyze a reduced order meta-system whose
states correspond to unique monomials of the initial switched
system (1). While the initial meta-Lyapunov conditions (8)
are defined by n2c constraints per switched mode, our new
formulation only requires M(n, c)2 such constraints, where
M(n, c) denotes the number of monomials of order c ∈ N≥1

in the entries of x ∈ Rn and is given by

M(n, c) =

(
c+ n− 1

n− 1

)
.

This result is encapsulated in the following theorem.

Theorem 3. Let yc(x) ∈ RM(n, c) denote a vector containing
the monomials of x of order c, which we define in conjunction
with a matrix Wc ∈ Rn×M(n, c):

⊗cx =Wcyc(x). (13)

Additionally, let P c ∈ RM(n, c)×M(n, c) be symmetric posi-
tive definite. If

BT
c, iP c + P cBc,i < 0 (14)

for all i ∈ {1, · · · , N} where

Bc, i :=W+
c Ac, iWc, (15)

then Vc(x) = yc(x)
T P yc(x) is a homogeneous polynomial

Lyapunov function for (1) of order 2c.



The proof of this result comes from the fact that Ac(t)
has an inherent invariant subspace, resulting from its con-
struction. As trajectories of (10) are known to begin in this
subspace, we can encode the search for meta-Lyapunov func-
tions for the system (1) as a search for quadratic Lyapunov
functions for the reduced order system

ẏc = Bc(t)yc (16)

where Bc(t) ∈ {Bc,1, · · · , Bc,N} and y(x) is given by (13).
Importantly, Theorem 3 allows the system designer to

select yc(x) with whatever ordering properties they like;
that is, we do not assume an order to the monomials that
are stored in yc(x). However, each ordering will induce a
unique Wc, and thus the resulting Lyapunov conditions will
always be the same, regardless of the chosen ordering. In the
specific case where n = 2, there is an intuitive ordering to
the monomials of x; under this assumed ordering, the matrix
Wc, given by (13), can be captured in closed form.

Proposition 2. Consider the system (1) and let n = 2. In
this case we have M(n, c) = c + 1. For a positive integer
k ∈ N≥0, let 0k ∈ Rk denote a vector populated with zeros.

If yc(x) = [xc1, x
c−1
1 x2, · · · , xc2]T ∈ Rc+1 then we have

⊗cx = Wc yc(x), where for an integer k ∈ N≥1 we define
Wk recursively by

Wk =

[
Wk−1 02k−1

02k−1 Wk−1

]
k ≥ 2. (17)

for W1 = I2. �

In the case when n > 2, it is generally difficult to order
the cth order monomials of x in an intuitive way. For this
reason, we do not expand Proposition 2 to account for the
case where n > 2, nor do we suggest a canonical ordering
for the entries of yc(x). However, Wc can always be solved
for using (13) once yc(x) has been chosen.

IV. RELATION TO HOMOGENEOUS POLYNOMIAL
LYAPUNOV FUNCTIONS

Traditionally, the search for a polynomial Lyapunov func-
tions systems of the form (1) is encoded as the search for a
sum-of-squares polynomial V (x), satisfying (2).

Definition 2. A polynomial p(x) is a sum-of-squares in x
if there exist polynomials g1, · · · , gr : Rn → R such that
p(x) =

∑r
i=1 gi(x)

2. �

The search for a sum-of-squares polynomial V (x), satis-
fying (2), is known to be a convex optimization problem,
computable by solving a semidefinite program [13]. Many
efficient solvers exist to handle such problems [6], [16].

We next show that the existence of quadratic Lyapunov
functions for the hierarchy of dynamical systems (10)
guarantees the existence of a homogeneous sum-of-squares
polynomial Lyapunov functions for (1), and vice versa.
In this sense, all homogeneous sum-of-squares polynomial
Lyapunov functions can be thought of as quadratic Lyapunov
functions for a related hierarchy of differential equations.

Moreover, one can encode the search for high-order sum-of-
squares polynomial Lyapunov functions for (1) as a search
for quadratic Lyapunov functions for (10).

Theorem 4. There exists a P c ∈ RM(n, c)×M(n, c) satisfying
(14) for some positive integer c ∈ N≥1, if and only if there
exists a homogeneous sum-of-squares polynomial Lyapunov
function Vc(x) of degree 2c for the system (1).

Proof. A sum-of-squares polynomial that is homogeneous
in the entries x and of order 2c will take the form p(x) =
yc(x)

TZyc(x), where Z ∈ RM(n,c)×M(n,c) is symmetric,
and yc(x) and M(n, c) retain their definitions from Theorem
3. From Theorem 3, we have that if P c ∈ RM(n, c)×M(n, c)

satisfies (8) for some positive integer c ∈ N≥1, then we have
that Vc(x) = yc(x)

TPyc(x) is a homogeneous polynomial
Lyapunov function for (18) and, moreover, Vc(x) is a sum-
of-squares. To prove the converse, we note that if p(x) =
yc(x)

TZyc(x) is a homogeneous sum-of-squares polynomial
Lyapunov function for (18) then Z > 0 and ṗ(x) < 0 for
all x ∈ Rn. From the dynamics of yc(x), given as (16), we
have BT

c, iZ + ZBc,i < 0 for all i ∈ {1, · · · , N}. Therefore
P c = Z solves (14).

V. NUMERICAL EXAMPLE

We now provide an example case and prove the stability
of a switched linear system using a meta-Lyapunov function
based approach. An algorithm is provided for generating
homogeneous polynomial Lyapunov functions for switched
systems, which follows the procedure detailed in Theorem
3; this algorithm is specifically written for implementation
with CVX, a convex optimization toolbox made for use with
MATLAB [17]. We also provide a comparison to a similar
search for homogeneous polynomial Lyapunov functions
that was implemented using SOSTOOLS, a sum-of-squares
optimization toolbox made for use with MATLAB [18].
Experimental results are provided from MATLAB 2019b,
which was run on a 2017 Macbook Pro laptop.

A. Problem Formulation

We consider the stable linear time-variant system

ẋ = A(t)x A(t) ∈ {A1, A2} (18)

A1 =

[
−.5 .5
−.5 −.5

]
A2 =

[
−2.5 2.5
−2.5 1.5

]
.

In the following, we compute homogeneous polynomial
Lyapunov functions for (18) using Theorem 3.

Importantly, if the system (18) begins at an initial position
x0 = x(0) and Vc(x) satisfies (2), then for all t ≥ 0 we have

x(t) ∈ {x ∈ Rn |Vc(x) ≤ Vc(x0)}. (19)

For this reason, we select Vc(x) as the minimizers of a
suitable objective function, as to shrink the resulting invariant
region derived through (19). In what follows, we show that
computing higher-order meta-Lyapunov functions allows one
to characterise tighter invariant sets by (19), even when the
same objective function is used in each computation.



Algorithm 1 Computing Meta-Lyapunov Functions

input : A1, A2 ∈ R2×2 from (1). c ∈ N≥1.
output: P c ∈ R(c+1)×(c+1) satisfying (14).

1: function METALYAPUNOV(A1, A2, c)
2: Initialize: Compute Ac,1 and Ac,2 by (9)
3: Compute Wc by (17)
4: Bc,1 ←W+

c Ac,1Wc

5: Bc,2 ←W+
c Ac,2Wc

6: cvx begin sdp
7: variable P c(c+ 1, c+ 1) semidefinite
8: 0 > BT

c,1 P c + P cBc,1

9: 0 > BT
c,2 P c + P cBc,2

10: P c > In
11: %% Possibly Insert Objective Function
12: cvx end
13: if Program feasible then
14: return P c

15: end function

B. Identifying Meta-Lyapunov Functions

We search for meta-Lyapunov functions for (18) using a
semidefinite program. Specifically, when searching for a ho-
mogeneous Lyapunov function of order 2c, we first calculate
Bc,1 and Bc,2 using (9), (15) and (17), and then we search
for a P c satisfying (14). Such a matrix identifies Vc(x) =
yc(x)

T P c yc(x) as a polynomial Lyapunov function for (18),
which is homogeneous in the entries of x and of order 2c.
We implement the aforementioned procedure with Algorithm
1, which specifically relies on CVX, a convex optimization
toolbox built for use with MATLAB [17], [19]. Algorithm
1 takes as inputs the system parameters A1 and A2, and a
positive integer c, and returns a matrix P c, in the case that
one exists, which satisfies (8) at the cth level.

Note that Algorithm 1 computes a feasibility problem,
rather than an optimization problem; that is, while Algo-
rithm 1 searches for a P c that satisfies the meta-Lyapunov
constraint (14), this solution is computed without referencing
any objective function. Note however, that in the instance that
multiple feasible solutions exist, it is preferable to choose
P c such that the sublevel sets of the resulting homogeneous
Lyapunov function Vc(x) = yc(x)

T P c yc(x) are small. For
this reason, it is desirable to compute P c as the solution to
an optimisation problem, rather than a feasibility problem.

Little is known, in general about how one can relate the
parameters of a polynomial to the volume of its sublevel sets.
In our case as well, it is difficult to associate a metric of
optimality with solutions to (14). Through experimentation,
we have generally found that it is preferable to use either the
objective function

11: minimize P c(1, 1)

which minimises the coefficient on x2c1 in the resultant
Lyapunov function Vc(x), or

11: minimize P c(c+ 1, c+ 1)

which minimises the coefficient on x2c2 . These objective
functions are provided in psuedocode, such that they can
easily be inserted in Algorithm 1 at line 11.

C. Numerical Results and Comparison with SOSTOOLS

We now return to the example system (18), and com-
pute feasible meta-Lyapunov functions with Algorithm 1.
Additionally, we compute an over approximation of the
infinite time reachable set of (18) when beginning from
the initial conditions x(0) = [1, 0]T . As suggested in the
preceding, we compute these invariant sets by solving (14),
while attempting to minimize P (1, 1); see Algorithm 1, Line
11. This procedure was computed in MATLAB 2019b using
CVX.

In the case of this example, Algorithm 1 was computed for
c ∈ {1, 2, · · · , 13}, thus generating homogeneous polynomial
Lyapunov functions for all even orders between 2 and
26. These Lyapunov functions were then used to calculate
invariant regions of the state space using (19); see Figure
11. Note that as the order of the meta-Lyapunov function
increases, the derived invariant sets shrink in volume. Fur-
ther, certain higher-order the meta-Lyapunov functions were
shown to have non-convex sublevel sets. We provide the
number of solver iterations for each experiment, as well as
the computations times, in Figure 2.

We next compare Algorithm 1 to a more traditional
sum-of-squares based search for homogeneous polynomial
Lyapunov functions. Specifically, we implement SOSTOOLS
[18] with the solver SDPT3 and attempt to generate ho-
mogeneous polynomial Lyapunov functions for the system
(18) while minimizing the coefficient on x2c1 . We provide
the number of solver iterations for each experiment, as well
as the computations times in Figure 2.

In the experiment, SOSTOOLS was only able to generate
homogeneous polynomial Lyapunov functions of order 20
or below; a solver error was returned during each search for
more complex Lyapunov function. In contrast, Algorithm 1,
when implemented through CVX, was able to generate up to
26th-order polynomial Lyapunov functions while minimizing
the same objective function. We attribute this discrepancy
to the fact that many of the steps required in a traditional
sum-of-squares based search optimization are not required
by Algorithm 1. For example, Algorithm 1 does not compute
the time rate of change of the monomials in x of order 2c;
that is, Algorithm 1 begins with a closed-form representation
of ẏc(x), which is encoded in the matrices Bc,1 and Bc,2.
SOSTOOLS must compute ẏc(x) online as a sum of squares
of lower-order monomials and, for this reason, one can
expect SOSTOOLS to perform less efficiently.

Despite this, in the experiments where SOSTOOLS was
able to correctly generate homogeneous Lyapunov functions,

1The code for this experiment is publicly available though the GeorgiaT-
ech Facts Lab Github: https://github.com/gtfactslab/Abate ACC2020.
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Fig. 1: Simulated system response of (18). When starting
from x0 = [1, 0]T , the system can only reach the region
shown in light yellow, which was computed via simulation.
The dark blue, light blue, orange and red regions represent
invariant sets calculated using quadratic, 10th-order, 16th-
order and 26th-order meta-Lyapunov functions, respectively.
The invariance of these regions is shown by (19).

we found that SOSTOOLS performed faster in computation
that the meta-Lyapunov search implemented with CVX;
however, it did take SDPT3 more solver iterations to generate
the solution which minimized the objective function when
implemented through SOSTOOLS (Figure 2).

VI. CONCLUSION

This work addresses the problem of searching for homo-
geneous polynomial Lyapunov functions for stable switched
linear systems. An equivalence is shown between polyno-
mial Lyapunov functions for switched linear systems and
quadratic Lyapunov functions for a related hierarchy of Lya-
punov differential equations. A computationally competitive
algorithm is presented for generating high-order homoge-
neous polynomial Lyapunov functions in this manner.
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Fig. 1: Simulated system response of (18). When starting
from x0 = [1, 0]T , the system can only reach the region
shown in light yellow, which was computed via simulation.
The equipotentials of high-order homogeneous Lyapunov
functions are also shown. Specifically, the dark blue, light
blue, orange and red regions represent invariant sets calcu-
lated using quadratic, 10th-order, 16th-order and 26th-order
meta-Lyapunov functions, respectively. The invariance of
these regions is shown by (19).

increases, the derived invariant sets shrink in volume. Fur-
ther, certain higher-order the meta-Lyapunov functions were
shown to have non-convex sublevel sets. We provide the
number of solver iterations for each experiment, as well as
the computations times, in Figure 2.

We next compare Algorithm 1 to a more traditional
sum-of-squares based search for homogeneous polynomial
Lyapunov functions. Specifically, we implement SOSTOOLS
[18] with the solver SDPT3 and attempt to generate homo-
geneous polynomial Lyapunov functions for the system (18)
while minimizing the coefficient on x2c

1 . As was the case
previously, we provide the number of solver iterations for
each experiment, as well as the computations times (See
Figure 2).

In the experiment, SOSTOOLS was only able to generate
homogeneous polynomial Lyapunov functions of order 10
or below; a solver error was returned during each search for
more complex Lyapunov function. In contrast, Algorithm 1,
when implemented through CVX, was able to generate up to
26th-order polynomial Lyapunov functions while minimizing
the same objective function. We attribute this discrepancy
to the fact that many of the steps required in a traditional
sum-of-squares based search optimization are not required
by Algorithm 1. For example, Algorithm 1 does not compute
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increases, the derived invariant sets shrink in volume. Fur-
ther, certain higher-order the meta-Lyapunov functions were
shown to have non-convex sublevel sets. We provide the
number of solver iterations for each experiment, as well as
the computations times, in Figure 2.

We next compare Algorithm 1 to a more traditional
sum-of-squares based search for homogeneous polynomial
Lyapunov functions. Specifically, we implement SOSTOOLS
[18] with the solver SDPT3 and attempt to generate homo-
geneous polynomial Lyapunov functions for the system (18)
while minimizing the coefficient on x2c

1 . As was the case
previously, we provide the number of solver iterations for
each experiment, as well as the computations times (See
Figure 2).

In the experiment, SOSTOOLS was only able to generate
homogeneous polynomial Lyapunov functions of order 10
or below; a solver error was returned during each search for
more complex Lyapunov function. In contrast, Algorithm 1,
when implemented through CVX, was able to generate up to
26th-order polynomial Lyapunov functions while minimizing
the same objective function. We attribute this discrepancy
to the fact that many of the steps required in a traditional
sum-of-squares based search optimization are not required
by Algorithm 1. For example, Algorithm 1 does not compute

Lyapunov function Vc(x), or

11: minimize P c(c + 1, c + 1)

which minimises the coefficient on x2c
2 . These objective

functions are provided in psuedocode, such that they can
easily be inserted in Algorithm 1 at line 11.

C. Numerical Results and Comparison with SOStools

We now return to the example system (21), and compute
feasible meta-Lyapunov functions with Algorithm 1. Addi-
tionally, we compute an over approximation of the infinite
time reachable set of (21), when beginning from two possible
initial conditions
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As discussed in the preceding, we compute these invariant
sets by implementing Algorithm (1), while attempting to
minimize P (1, 1), i.e. the coefficient on x2c

1 ; see Algorithm
1, Line 11. This procedure was computed in MATLAB 2019b
using CVX, implemented with the solver SDPT3 [19].

In the case of this example, Algorithm 1 was computed for
c 2 {1, 2, · · · , 13}. As such, homogeneous polynomial Lya-
punov functions were generated for all even orders between
2 and 26; these polynomials were then used to calculate
invariant regions of the state space (see Figure 2). Note
that as the order of the meta-Lyapunov function increases,
the derived invariant sets shrink in volume. Further, certain
higher-order the meta-Lyapunov functions were shown to
have non-convex sublevel sets. We provide the number of
solver iterations for each experiment, as well as the compu-
tations times, in Figure 1.

We next compare the meta-Lyapunov function based
method for over-approximating reachable sets to the more
traditional sum-of-squares based approximation method.
Specifically, we search for high-order homogeneous poly-
nomial Lyapunov functions for the system (21) using SOS-
TOOLS, MATLAB’s sum-of-squares toolbox [20]. We simi-
larly implement SOSTOOLS with the solver SDPT3 and at-
tempt to generate homogeneous polynomial Lyapunov func-
tions for the system (21) while minimizing the coefficient
on x2c

1 . As was the case previously, we provide the number
of solver iterations for each experiment, as well as the
computations times, in Figure 1.

In the experiment, SOSTOOLS was only able to generate
homogeneous polynomial Lyapunov functions of order 10
or below; a solver error was returned during each search for
more complex Lyapunov function. In contrast, Algorithm
1, when implemented through CVX, was able to generate
up to 26th-order polynomial Lyapunov functions while
minimizing the same objective function. We attribute this
discrepancy to the fact that many of the steps required in
a traditional sum-of-squares based search optimization are
not required by Algorithm 1. For example, Algorithm 1
does not compute the time rate of change of the monomials
in x of order 2c; that is, Algorithm 1 begins with a closed

Lyapunov function Vc(x), or

11: minimize P c(c + 1, c + 1)

which minimises the coefficient on x2c
2 . These objective

functions are provided in psuedocode, such that they can
easily be inserted in Algorithm 1 at line 11.

C. Numerical Results and Comparison with SOStools

We now return to the example system (21), and compute
feasible meta-Lyapunov functions with Algorithm 1. Addi-
tionally, we compute an over approximation of the infinite
time reachable sets of two possible initial conditions
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As discussed in the preceding, we compute these invariant
sets by implementing Algorithm (1), while attempting to
minimize P (1, 1), i.e. the coefficient on x2c

1 ; see Algorithm
1, Line 11. This procedure was computed in MATLAB 2019b
using CVX, implemented with the solver SDPT3 [16].

In the case of this example, Algorithm 1 was computed for
c 2 {1, 2, · · · , 13}. As such, homogeneous polynomial Lya-
punov functions were generated for all even orders between
2 and 26; these polynomials were then used to calculate
invariant regions of the state space (see Figure 1). Note
that as the order of the meta-Lyapunov function increases,
the derived invariant sets shrink in volume. Further, certain
higher-order the meta-Lyapunov functions were shown to
have non-convex sublevel sets. We provide the number of
solver iterations for each experiment,as well as the compu-
tations times, in Table —.

We next compare the meta-Lyapunov function based
method for over-approximating reachable sets to the more
traditional sum-of-squares based approximation method.
Specifically, we search for high-order homogeneous poly-
nomial Lyapunov functions for the system (21) using SOS-
TOOLS, MATLAB’s sum-of-squares toolbox [17]. We simi-
larly implement SOSTOOLS with the solver SDPT3 and at-
tempt to generate homogeneous polynomial Lyapunov func-
tions for the system (21) while minimizing the coefficient on
x2c

1 .
In the experiment, SOSTOOLS was only able to generate

homogeneous polynomial Lyapunov functions of order 10
or below; a solver error was returned during each search for
more complex Lyapunov function. In contrast, Algorithm
1, when implemented through CVX, was able to generate
up to 26th-order polynomial Lyapunov functions while
minimizing the same objective function. We attribute this
discrepancy to the fact that many of the steps required in a
traditional sum-of-squares based search optimization are not
required by Algorithm 1. For example, Algorithm 1 does
not compute the time rate of change of the monomials in x
of order 2c; that is, Algorithm 1 begins with a closed from
representation of ẏc(x), which is encoded in the matrices
Bc,1 and Bc,2. In contrast, SOS tools must compute ẏc(x)
online as a sum of squares of lower-order monomials. For

these reason, one can expect SOStools to preform less
efficiently.

c MetaLyapunov SOSTOOLS

Iterations Time (s) Iterations Times (s)
1 9 1.510 11 0.396
2 10 1.580 14 0.416
5 20 1.680 25 0.562
6 21 1.730 33 N/A
10 36 2.400 33 N/A
12 40 2.480 31 N/A
13 54 3.300 31 N/A
14 36 N/A 31 N/A

VI. CONCLUSION

This work addresses the problem of searching for homo-
geneous polynomial Lyapunov functions for stable switched
linear systems. An equivalence is shown between polyno-
mial Lyapunov functions for switched linear systems and
quadratic Lyapunov functions for a related hierarchy of Lya-
punov differential equations. A computationally competitive
algorithm is presented for generating high-order homoge-
neous polynomial Lyapunov functions in this manner.
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from representation of ẏc(x), which is encoded in the
matrices Bc,1 and Bc,2. SOS tools must compute ẏc(x)
online as a sum of squares of lower-order monomials and,
for this reason, one can expect SOSTOOLS to preform less
efficiently.

2c MetaLyapunov SOSTOOLS

Iterations Time (s) Iterations Times (s)
2 9 1.510 11 0.396
4 10 1.580 14 0.416
10 20 1.680 25 0.562
12 21 1.730 33 N/A
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24 40 2.480 31 N/A
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VI. CONCLUSION

This work addresses the problem of searching for homo-
geneous polynomial Lyapunov functions for stable switched
linear systems. An equivalence is shown between polyno-
mial Lyapunov functions for switched linear systems and
quadratic Lyapunov functions for a related hierarchy of Lya-
punov differential equations. A computationally competitive
algorithm is presented for generating high-order homoge-
neous polynomial Lyapunov functions in this manner.
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Fig. 2: Comparing Algorithm 1 to a search for homogeneous
Lyapunov functions using SOSTOOLS. Algorithm 1 is used
to compute homogeneous Lyapunov functions of orders 2, 4,
10, 12, 20, 24, and 26 for the system (18). SOSTOOLS, how-
ever, is only able to correctly generate Lyapunov functions
of order 10 and below. The computation time and number
of solver iterations are provided for each experiment. The
symbol N/A is used when the solver is unable to find a
homogeneous Lyapunov function of a certain order; in this
case, the number of solver iterations which were preformed
before failure is also provided.

the time rate of change of the monomials in x of order 2c;
that is, Algorithm 1 begins with a closed from representation
of ẏc(x), which is encoded in the matrices Bc,1 and Bc,2.
SOSTOOLS must compute ẏc(x) online as a sum of squares
of lower-order monomials and, for this reason, one can
expect SOSTOOLS to preform less efficiently.

Despite this, in the experiments where SOSTOOLS was
able to correctly generate homogeneous Lyapunov functions,
we found that SOSTOOLS preformed faster in computation
that the meta-Lyapunov search implemented with CVX;
however, it did take SDPT3 more solver iterations to generate
the solution which minimized the objective function when
implemented through SOSTOOLS (Figure 2).
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mial Lyapunov functions for switched linear systems and
quadratic Lyapunov functions for a related hierarchy of Lya-
punov differential equations. A computationally competitive
algorithm is presented for generating high-order homoge-
neous polynomial Lyapunov functions in this manner.
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to compute homogeneous Lyapunov functions of orders 2,
10, 20, 24, and 26 for the system (18). SOSTOOLS, however,
is only able to correctly generate Lyapunov functions of order
20 and below. The computation time and number of solver
iterations are provided for each experiment. The symbol N/A
is used when the solver fails; in this case, we provide the
number of solver iterations performed prior to failure.
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