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ABSTRACT
This paper studies the problem of controlling finite nondeterministic transition sys-
tems to satisfy constraints given as linear temporal logic properties. A controller
architecture is proposed that maps finite fragments of the state trajectory history
to control inputs. This approach avoids the standard controller construction that
employs an onboard automaton which is fragile to memory loss or errors. In con-
trast, the proposed architecture requires storing only a finite sequence of previous
system states in memory and is therefore resilient to memory loss. In particular, the
system will operate unaltered after such a memory-loss event once the system rec-
ollects this finite sequence of system states. A generalized algorithm is outlined for
controller synthesis in this manner. Additionally, we demonstrate the construction
and implementation of such a memory-loss resilient controller through an exper-
imental demonstration on a differential-drive robot that experiences memory-loss
events.
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1. Introduction

When systems are required to satisfy complex temporal objectives (e.g., specifications
given in temporal logic), memoryless controllers are insufficient to ensure correct sys-
tem behavior. A traditional approach for control subject to temporal logic constraints
is to store relevant information about the system history in an appropriately con-
structed memory unit; runtime actions are then chosen as a function of the combined
memory and system state [1–3]. This structure is employed, for instance, by controllers
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that rely on online automata [4–6]. Such controllers are convenient because they com-
pactly represent relevant system history information into a finite number of memory
states. However, they suffer from a need to maintain persistent knowledge over the
entire operational life-cycle of the system; if at some time, the current automaton state
is lost or altered, assurance cannot be provided going forward. For this reason, it is
necessary to design controllers that operate without persistently stored information.
Moreover, it is necessary to rectify the disconnect between controller designs that re-
quire persistent and precise knowledge of the system history with controller designs
that allow for (if not rely on) regular software resets.

In instances where software aging degrades system performance, regular software
restarts can be employed to add system robustness [7–10]. This method, referred to in
literature as software rejuvenation, increases system resiliency by regularly reinstalling
mission objectives from a trusted mission planner [11]. For controlled dynamical sys-
tems, methods exist for enforcing set invariance [12] and tracking control objectives
[13] in the presence of such memory losses. Methods in this paradigm do not exist,
however, for enforcing more complex logical and temporal system objectives.

This paper explores the problem of designing controllers to enforce linear temporal
logic (LTL) specifications with no persistently stored information, i.e. no onboard
automaton. That way, if at some time the system loses memory, it can restore correct
action in a small amount of time. We create such a memory-loss resilient controller
through an offline computation in the product-space between the system statespace
and the statespace of an automaton corresponding to the operating specification; this
allows the system designer to classify the minimum amount of information that is
necessary at runtime to assure the system. Synthesis in the product space is standard
in formal methods literature [1,2]; it is important to note, however, that while our
proposed methodology uses an automaton for synthesis, the automaton itself is not
implemented in the resulting controller architecture.

This paper is structured as follows: In Section 3 we contrast two potential controllers
designed to enforce LTL specifications; The problem statement of the work is presented
in Section 3 and then discussed in Section 4; We solve the problem statement in
Section 5, and a generalized procedure is presented for generating controllers with no
persistently stored information; The findings of this work are demonstrated in a case
study, presented in Section 6.

2. Preliminaries

We model systems as finite-state nondeterministic transition systems, as formalized in
Definition 2.1.

Definition 2.1. A system is a tuple T = (X , U , f, Σ, L), where

• X is a finite set of states,
• U is a finite set of control inputs,
• f : X × U → 2X is a nondeterministic transition relation,
• Σ is a set of labels, and
• L : X → Σ is a labeling map.

Such a system could, for instance, be a finite-state abstraction for a set of continuous-
time differential equations, or a hybrid dynamical system; see [1,14] for further details.
For the remainder of this paper, we use the notation L(x1, · · · , xn) to denote the
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string of labels L(x1, · · · , xn) := L(x1) · · ·L(xn), and we use the symbols Σ∗ and Σω

to denote the sets of finite and infinite words over Σ, respectively.
We specify mission objectives in linear temporal logic (LTL). LTL combines Boolean

logical connectives such as disjunction, conjunction, and implication with temporal op-
erators that permit, for example, specifying that a system criterion eventually holds
along a system’s execution, is always true along a system execution or is true until
some other condition becomes true. In this way, LTL enables concisely and precisely
specifying a wide range of operating behaviors. For a comprehensive discussion on
the semantics of LTL, we refer the reader to [15, Chapter 5]. Additionally, we re-
fer the reader to [1, Chapter 9] for a discussion on controller synthesis against LTL
specifications.

Formally LTL specifications are interpreted over infinite system executions. To that
end, we introduce the semantics of LTL3 (Definition 2.2) in order to assess the finite
system runs against LTL properties [16].

Definition 2.2 (LTL3 Semantics). Let w ∈ Σ∗ denote a finite word. The truth value of
an LTL3 formula ϕ with respect to w, denoted [w |= ϕ], is an element of B3 = {>,⊥, ? }
defined as follows:

[w |= ϕ] =


> if ∀σ ∈ Σω : wσ |= ϕ

⊥ if ∀σ ∈ Σω : wσ 6|= ϕ

? otherwise.

Equivalently, the truth value of ϕ with respect to w is true “>” if w is a good prefix
for ϕ, false “⊥” if w is a bad prefix for ϕ, and inconclusive “?” otherwise.

Finally, we introduce the automata-based monitoring procedure for LTL3.

Definition 2.3 (Monitors in LTL3). For a given property ϕ a monitor automaton
Mϕ is a finite state machine that reads finite words w ∈ Σ∗ and outputs [w |= ϕ].

For the remainder of this work, we use the tuple representation Mϕ =
(Σ, Q, q0, δ, λ) to denote the monitor automaton formed corresponding to ϕ, where

• Σ is a set of inputs,
• Q is a finite set of automaton states,
• q0 ∈ Q is an initial state,
• δ : Q× Σ→ Q is a transition relation, and
• λ : Q→ B3 is a output function.

Additionally, for q ∈ Q and σ1, · · · , σn ∈ Σ we use the notation δ(q, σ1 · · ·σn) to
denote the state that q transitions to after receiving the string of labels σ1 · · ·σn,
defined recursively by δ(q, σ1 · · ·σn) := δ(δ(q, σ1 · · ·σn−1), σn).

Given an LTL property ϕ there may be many possible constructions of Mϕ. How-
ever, the authors of [16] show that each LTL property induces a unique minimal
monitor automaton, that is, a monitor automatonMϕ with the fewest possible states.
Additionally, the authors of [16] provide an algorithm for constructing this minimal
monitor automaton directly from ϕ. For this reason, we assume hereafter that Mϕ is
always provided in its minimal form.
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(a) Controller that assures T against ϕ. The system history at time k is stored in an
automaton Aϕ that receives the current system label L(xk) and the automaton state
qk ∈ Q. The control input uk is chosen by the mapping µ : X ×Q→ 2U .
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(b) Controller that assures T against ϕ. At time k, the n most recent system states
(xk−n+1, · · · , xk) ∈ Xn are stored in the history register Hn. The control input uk is
chosen by the mapping µ : Xn → 2U .

Figure 1.: Two controller designs which assure the system T = (X , U , f, Σ, L) against
the LTL specification ϕ.

3. Invertible Automata and Memory

Suppose a system designer would like to synthesize a controller that enforces the LTL
property ϕ over a run of T . Intuitively, this controller will need access to information
about the system history to assess the system’s progress toward the satisfaction of ϕ
and choose control inputs at runtime. We consider two possible controller architectures
to assure the system T against ϕ. A block diagram visualization of each architecture
is provided in Figure 1.

First, consider a controller that keeps track of the relevant information of the system
history by running an onboard automaton Aϕ (Figure 1a). For a detailed discussion
on the generation and implementation of such controllers, we refer the reader to [1],
where the control synthesis problem is solved using a game-theoretic approach. In this
instance, the control input at time k is chosen by an input map µ : X ×Q→ 2U that
receives the current system state xk ∈ X and the current automaton position qk ∈ Q,
where Q denotes the set of states of Aϕ. This architecture is attractive because of
its simplicity; knowledge of the current automaton state qk is sufficient to assess the
system’s progress toward the satisfaction of ϕ. However, this design suffers from the
fact that the automaton block must maintain an uncorrupted feedback loop for the
entire operational lifetime of the system; if at some time, the controller loses track of
its current position in Aϕ, then all assurances going forward are lost.

As an alternative, consider a controller that chooses inputs by analyzing a finite
fragment of the system’s immediate history xk+1−n · · ·xk (Figure 1b). We use the
term history register to denote the internal component that stores such path frag-
ments and the symbol Hn to denote a history register capable of storing n system
states. Here, the control input at time k is chosen by an input map µ : X n → 2U
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Figure 2.: Monitor automatonMϕ1 for the LTL specification ϕ1 = �(A→©2B) eval-
uated over the alphabet Σ = {A, B, C}. States q0, · · · , q3 have output inconclusive,
“ ? ”, and state q⊥ has output false, “ ⊥ ”.
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Fig. 2: Monitor automaton M'1 for the LTL specifica-
tion '1 = ⇤(A ! �2B) evaluated over the alphabet
⌃ = {A, B, C}. States q0, · · · , q3 have output inconclusive,
“ ? ”, and state q? has output false, “ ? ”.

fact that the automaton block must maintain an uncorrupted
feedback loop for the entire operational lifetime of the CPS;
if, at some time, the controller loses track of its current
position in A', then the controller will never again be able
to provide assurance.

As an alternative, consider a controller which chooses in-
puts by analyzing a finite fragment of the system’s immediate
history xk+1�n · · · xk (Figure 1b). We use the term history
register to denote the internal component which stores such
path fragments and the symbol Hn to denote a history
register capable of storing n system states. Here, the control
input at time k is chosen by an input map µ : X n ! 2U ,
which receives the n most recent system states from Hn.
A simple memoryless state feedback controller uk = µ(xk)
can be thought of as a trivial substantiation of this proposed
controller architecture, though we also allow for more gen-
eral feedback control laws uk = µ(xk�n+1, · · · , xk). The
addition of the history register to the controller architecture
adds system resiliency by removing the need to maintain
persistent information over the entire CPS life-cycle; if,
at some time, the history register Hn loses track of the
system history, then the system need only wait n time steps
before the controller has the requisite information to continue
choosing safe inputs.

Below we show that for certain LTL properties, knowl-
edge such a finite history fragment is sufficient to correctly
identify the system’s progress toward the satisfaction of '.
This is the case, for instance, when the monitor automaton
which corresponds to ' is invertible i.e. when there exists
an k such that knowledge of k previous system states is
always sufficient to identify the final state of the system
run over M'. We formally define monitor inversion in
Definition 4, and we demonstrate that finite history fragment
is sufficient to correctly identify the system’s progress toward
the satisfaction of ' through Example 1.

Definition 4 (Invertible Monitor Automaton). We say that
M' = (⌃, Q, q0, �, �) is k-step invertible if for all se-
quences of labels w 2 ⌃k, there exists a most 1 state q 6= q?
such that (⌃⇤)w ends in state q.

Example 1. Consider the LTL property
'1 = ⇤(A ! �2B) evaluated over the alphabet ⌃ =
{A, B, C}. We provide the corresponding monitor automa-
ton M'1 in Figure 2. Note that knowledge of the two previ-
ous system states is sufficient to identify the current monitor
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Fig. 3: Monitor automaton M'2 = (⌃, Q, q0, �, �) for the
LTL safety property '2 = ⇤(�A)_ (A UB) evaluated over
the alphabet ⌃ = {A, B, C}. States q0, q1, and q2 have
output inconclusive, “ ? ”. States q? and q> have outputs
false, “ ? ”, and true, “>”, respectively.

state, as each combination of labels in ⌃2 corresponds to
one and only one possible monitor position, provided that
the previous system trace is known to be safe (See Table 1).

L(xk�1) L(xk) If [L(x0 · · · xk) |= '1] 6=?
then qk equals

(B _ C) (B _ C) q0

(B _ C) A q1

A A q2

A (B _ C) q3

TABLE I: Knowledge of the two previous system labels is
always sufficient to correctly identify the system position
inside M'1 . This is exemplified by the fact that each
potential two-state system history, i.e. combination of labels
in ⌃2, corresponds to a unique current monitor position,
provided that the previous system trace is known to be safe.

It follows, therefore that a history register based controller
which stores two system states will be able to achieve the
same assurances as a controller which runs M'1 onboard.
This design, however, has added resiliency, and is able to
provide assurance in the presence of memory losses.

It follows from Example 1 that an LTL property ' can be
assured on an infinite time horizon using a history register
based controller in the instance that there exists an invertible
automaton A', which tracks the system progress toward the
satisfaction of '. Note, however, that not all automata are
invertible. We demonstrate this assertion in Example 2.

Example 2. Consider the LTL property
'2 = ⇤(�A) _ (A UB) evaluated over the alphabet
⌃ = {A, B, C}. We provide the corresponding monitor
automaton M'2 in Figure 3. Note that knowledge of a finite
history fragment xk�n+1 · · · xk will not always be sufficient
to identify the systems progress toward satisfying '2. This
is exemplified by the fact that if L(xk�n+1 · · · xk) = (A)n,
then it will not be possible to determine whether the system
run over the monitor ends in state q1, q2 or q>; this is
true regardless of the number of states which are stored.
It follows, therefore that M'2 is not invertible.

Moreover, while in some cases it is easy to prove the absence
of an invertible automaton given ' (it is trivial, for instance,

Figure 3.: Knowledge of the two previous system labels is always sufficient to correctly
identify the system position inside Mϕ1 . This is exemplified by the fact that each
potential two-state system history, i.e. combination of labels in Σ2, corresponds to a
unique current monitor position, provided that the previous system trace is known to
be safe.

that receives the n most recent system states from Hn. A simple memoryless state
feedback controller uk = µ(xk) can be thought of as a trivial instantiation of this
proposed controller architecture, where n = 1, though we also allow for more general
feedback control laws uk = µ(xk−n+1, · · · , xk). The addition of the history register to
the controller architecture adds system resiliency by removing the need to maintain
persistent information over the entire system life-cycle; if, at some time, the history
register Hn loses track of the system history, then the system need only wait n − 1
time steps before the controller has the requisite information to continue choosing safe
inputs.

Below we show that for certain LTL properties, knowledge of a finite history frag-
ment is sufficient to correctly identify the system’s progress toward the satisfaction of
ϕ. This is the case, in particular, when the monitor automaton that corresponds to ϕ is
invertible, i.e., when there exists an n ∈ N≥1 such that knowledge of n previous system
states is sufficient to identify the final state of the system run over Mϕ. We formally
define monitor inversion in Definition 3.1 and we provide a sample construction of an
invertible monitor automaton in Example 1.

Definition 3.1 (Invertible Monitor Automaton). A monitor automaton Mϕ =
(Σ, Q, q0, δ, λ) is n-step invertible if, for all w ∈ Σn and all v1, v2 ∈ Σ∗, δ(q0, v1w) =
δ(q0, v2w) whenever δ(q0, v1w) 6= q⊥ and δ(q0, v2w) 6= q⊥.

Example 1. Consider the LTL property ϕ1 = �(A → ©2B) evaluated over the
alphabet Σ = {A, B, C}. We provide the corresponding monitor automaton Mϕ1 in
Figure 2. As enumerated in Figure 3, knowledge of the two previous system states
is sufficient to identify the current monitor state, as each combination of labels in Σ2
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Figure 4.: Monitor automaton Mϕ2 = (Σ, Q, q0, δ, λ) for the LTL property ϕ2 =
�(©A) ∨ (AUB) evaluated over the alphabet Σ = {A, B, C}. States q0, q1, and q2
have output inconclusive, “ ? ”. States q⊥ and q> have outputs false, “ ⊥ ”, and true,
“>”, respectively.

corresponds to one and only one possible monitor position, provided that the previous
system trace is known to be safe. Therefore, Mϕ1 is n-step invertible for any n ≥ 2.
Further, it is not difficult to see that Mϕ1 is not 1-step invertible, as knowledge of
L(xk), the current system label, does not by itself uniquely determine the current
monitor state. It follows, therefore that a history register based controller that stores
two system states will be able to achieve the same assurances as a controller that
runs Mϕ1 onboard. This design, however, has added resiliency and is able to provide
assurance in the presence of memory loss.

Example 1 demonstrates that a history register style controller can provide assur-
ance against ϕ by inverting the monitor automaton Mϕ online and then synthesizing
a safe control policy in the product space X ×Q. Note, however, that not all automata
are invertible. We demonstrate this assertion in Example 2.

Example 2. Consider the LTL property ϕ2 = �(©A) ∨ (AUB) evaluated over the
alphabet Σ = {A, B, C}. We provide the corresponding monitor automaton Mϕ2

in Figure 4. Knowledge of a finite history fragment xk−n+1 · · ·xk will not always be
sufficient to identify the system’s progress toward satisfying ϕ2. This is exemplified
by the fact that if L(xk−n+1 · · ·xk) = (A)n, then it will not be possible to determine
whether the system run over the monitor ends in state q1, q2 or q>; this is true
regardless of the number of states that are stored. It follows, therefore that Mϕ2 is
not invertible.

For this reason, it is favorable to abandon controller architectures that rely on
onboard automata, and instead design controllers that map directly from the system
state-space to a set of safe control inputs, with no intermediate automaton inversion.
Synthesizing such a controller is equivalent to developing a mapping µ : X n → 2U

and a safe region of the label-space Sb ⊆ X n that is forward-invariant under µ. We
formalize the search for such a mapping as the main problem statement of this work:

Problem Statement. Consider a system T = (X , U , f, Σ, L) and an LTL property
ϕ. Given n ∈ N≥1, generate a feedback control policy µ : X n → 2U and a region
Sb ⊆ X n such that

(1) Sb is forward-invariant under µ, i.e. if (x1, · · · , xn) ∈ Sb and u ∈ µ(x1, · · · , xn),
then (x2, · · · , xn+1) ∈ Sb, for all xn+1 ∈ f(xn, u), and

(2) Sb is safe, i.e. if [L(x0 · · ·xk) |= ϕ] 6= ⊥, (xk+1−n, · · · , xk) ∈ Sb and u ∈
µ(xk+1−n, · · · , xk), then [L(x0 · · ·xk+1) |= ϕ] 6=⊥, for all xk+1 ∈ f(xk, u).
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For the remainder of the work, we call µn : X n → 2U an n-step feedback control
policy if there exists an Sb

n ⊆ X n such that the pair (µn, S
b
n) solves the problem

statement.

4. History Register Based Controllers for Safety

Note that employing an n-step feedback control policy µn does not guarantee that
the resultant infinite system trajectory satisfies ϕ; rather, employing µn guarantees
that at any given time k ≥ n the current finite system trajectory [L(x0, · · · , xk) |=
ϕ] 6= ⊥. In this sense, one can view µn as a least-restrictive backup control policy that
retains nondeterminism [17]. For certain classes of specifications, however, choosing
control inputs according to µn guarantees infinite-time system satisfaction of ϕ; in
this instance, µn can be employed stand alone. This observation is formalized in the
next remark.

Remark 1. If ϕ is an LTL safety property and (µn, S
b
n) solves the problem state-

ment, then the infinite system trace resulting when µn is applied satisfies ϕ, i.e.
L(x0, x1, · · ·) |= ϕ. This is due to the fact that the satisfaction of a safety prop-
erty ϕ, can be shown by proving the system trace does not contain a bad prefix for ϕ
[16].

Additionally, note that the assurance capabilities of an n-step feedback control
policy increase as n increases. This is due to the fact that the ambiguity as to the
system’s progress toward the satisfaction of ϕ is reduced as the number of saved
system states increases. In the instance that the monitor automatonMϕ is invertible,
however, there exists an intrinsic maximum number of states that will need to be
remembered by a controller before there is no ambiguity as to the system’s progress.
We encapsulate this result in Theorem 4.1.

Theorem 4.1. Let ϕ be an LTL property such that the monitor automaton Mϕ is
n-step invertible. Let the pair (µm, S

b
m) solve the problem statement where µm is an

m-state feedback control policy m > n. Then there exists an n-step feedback control
policy µn with a corresponding region Sb

n, such that if (xk−m+1, · · · , xk) ∈ Sb
m then

• (xk−n+1, · · · , xk) ∈ Sb
n, and

• µm(xk−m+1, · · · , xk) = µn(xk−n+1, · · · , xk).

Theorem 4.1 follows immediately from the preceding discussion, and we sketch the
proof for this result as follows: if the system remembers n previous states, then the
monitor automaton Mϕ can be inverted, to give µn access to the current state of the
system execution overMϕ. Storing additional system history states does not give the
controller access to more information about the system’s progress.

As shown in Theorem 4.1, the guarantees of a history-register based controller
derive from the invertibility of the monitor automatonMϕ. Intuitively, a non-invertible
monitor automaton will contain two or more symmetrically labeled cycles, so that the
system’s progress toward the satisfaction of ϕ cannot be determined by any history
fragment of finite length (see Example 2). As such, one can show that Mϕ is n-step
invertible by calculating all transition-cycles of length n and then checking that no two
cycles are symmetric under cyclic permutation. This procedure can be accomplished
using the standard graph search algorithms; transition-cycles, for instance, can be
identified using a recursive depth first search to produce a modular decomposition of
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all possible cycles of states inMϕ. Such a search will produce a finite set of minimum
length sub-cycles, from which all of possible cycles can be characterised.

Importantly, one must only calculate transition-cycles up to length |Q| before invert-
ibility can be determined. Therefore, the procedure for determining monitor invert-
ibility has an inherent finite stopping time, and this time scales with the complexity
of the specification. We formalise this result though the following proposition.

Proposition 4.2. If the monitor automatonMϕ = (Σ, Q, q0, δ, λ) is invertible, then
there exists an n ≤ |Q| such that Mϕ is n-step invertible.

Proof. For an LTL property ϕ, assume the monitor automaton Mϕ is invertible.
Choose σ ∈ Σ. As a consequence of the fact that Mϕ is invertible, there cannot be a
2-state cycle in Mϕ with edges labeled σ, i.e. there cannot be two states q1, q2 ∈ Q
such that δ(q1, σ) = q2 and δ(q2, σ) = q1. This assertion extends to cycles of any
length and, thus, there must exist a unique qσ ∈ Q (possibly with qσ = q⊥) such that
the following two conditions hold:

(1) δ(qσ, σ) = qσ, and
(2) for all q ∈ Q and y ≥ |Q| we have δ(q, σy) ∈ {qσ, q⊥}.

Moving recursively, it can be shown that for every w ∈ Σ∗ such that |w| ≥ |Q| there
exists a unique qw ∈ Q (possibly with qw = q⊥) such that

(1) δ(qw, w) = qw, and
(2) for all q ∈ Q we have δ(q, w) ∈ {qw, q⊥}.

Therefore ifMϕ is invertible, thenMϕ is n-step invertible. This completes the proof.

5. Computing an n-step feedback control policy

Consider a system T = (X , U , f,Σ, L). Given n ≥ 1 and LTL specification ϕ, we aim
to develop an n-step feedback control policy µ : X n → U that assures T against ϕ in
some region Sb ⊆ X n. Here, n could be chosen to either ensure the n-step invertibility
of Mϕ, if Mϕ is invertible, or to meet some other specification on the system design;
in the latter case, the safe zone Sb may be smaller, however the system will recover
faster in the event of memory loss. We solve the problem statement by applying the
following steps:

(1) We first form a product system Pn = T ⊗nMϕ which encodes the linked pro-
gression of the system and monitor automaton.

(2) We then define an equivalence relation ∼ that equates two product states if these
states are both safe and observationally equivalent in a history register. We use
the symbol Pn/∼ to denote the quotient of Pn under observational equivalence,
which we formalize later in the work.

(3) Finally, we compute the largest forward-invariant region of the quotient transi-
tion system Sb ⊂ Pn/∼, and a corresponding safe control policy µ : Sb → 2U .

It is important to note that while our proposed methodology uses a monitor automaton
to construct an n-step feedback control policy, the monitor is not used at runtime.
Rather, control inputs are chosen online by the preformed policy µ.

In order to synthesize a controller capable assuring T against an LTL property ϕ, it
is necessary to perform analyses in the product space of the system and the objective.
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Definition 5.1. The nth controlled monitor product automaton Pn = T ⊗nMϕ of
a system T = {X , U , f, Σ, L} and a monitor automaton Mϕ = {Σ, Q, q0, δ, λ} is
defined to be Pn = (X , U , f , O, o), where

• X ⊆ X n ×Q is a set of states, where

X =
{

(xp+1, · · · xp+n, q) ∈ X n ×Q | ∃x0, · · · , xp ∈ X , ∃u0, · · · , up+n−1 ∈ U
such that q = δ(q0, L(x0, · · · , xp+n)) and

xi+1 ∈ f(xi, ui) for all 0 ≤ i ≤ p+ n− 1
}

• U is a set of inputs,

• f : X × U → 2X is the transition map, where (x2, · · · , xn+1, q
′) ∈

f(x1, · · · , xn, q, u) if and only if xn+1 ∈ f(xn, u) and q′ = δ(q, L(xn+1)),
• O = X n ∪ {x⊥} is a set of observations, and
• o : X → O is the observation map, where

o(x1, · · · , xn, q) =

{
x⊥ λ(q) =⊥
(x1, · · · , xn) otherwise.

Each state of the product automaton Pn = T ⊗nMϕ denotes a possible system
history fragment paired with a possible monitor state; similarly, a run over the prod-
uct automaton encodes a system trajectory and its corresponding monitor run. We
therefore compute X by first forming X ×Q and then removing the states that do not
appear in valid system-monitor trajectories.

Note that the observation o(s) of a product state s ∈ X is equal to x⊥ if and only if
the system trace up until this point is a bad prefix for the mission objective. Therefore
system safety is only achievable in the instance that the system trace over the product
automata s0, s1, s2, · · · ∈ X ω does not contain a state with output false, i.e. o(si) 6= x⊥
for all i. For this reason, we allow the controller to choose control inputs based on the
assumption that the system has acted safely up until the current time, i.e. at time k,
the controller assumes o(sk) 6= x⊥, where sk denotes the unknown current system state
in the product automaton. Under this assumption, the observation o(sk) is equal to the
total amount of information available to the controller, when the system and monitor
is in state sk ∈ X . Moreover, we can design controllers to assure the original system
by developing policies that assure the product system given only the observation of
the current state. We formalize this assertion as Proposition 5.2.

Proposition 5.2. For µ : X n → 2U and Sb ⊆ X n define

S
b

:= {s ∈ X | o(s) ∈ Sb}

and

N(s) :=
⋃

u∈µ(o(s))

f(s, u)

so that S
b ⊂ X is the set of product states whose observations are contained inside Sb

9



and N : X → 2X is a function that takes a product state s ∈ X and returns the set

of product states reachable from s when the input is chosen by µ. If N(s) ⊆ Sb
for all

s ∈ Sb
then the pair (µ, Sb) solves the problem statement.

Proof. Assume N(s) ⊆ Sb
for all s ∈ Sb

. Then x⊥ 6∈ Sb
and S

b
is forward invariant

on Pn when control actions are chosen using µ. Further, Sb is forward invariant on T
when control actions are chosen using µ, and all system runs constrained to Sb are
not bad prefixes for ϕ. Therefore (µ, Sb) solves the problem statement.

Next we equate the product states that are indistinguishable under observation. We
refer to this procedure as taking the quotient of Pn under observational equivalence,
as formalize in Definitions 5.3 and 5.4.

Definition 5.3. Let Pn = (X , U , f , O, o) be a product system. Two states s1, s2 ∈ X
are observationally equivalent (written s1 ∼ s2) if and only if o(s1) = o(s2).

Definition 5.4. Given a system T = (X , U , f, Σ, L) and a LTL property ϕ, let
Pn = (X , U , f , O, o) be the product Pn = T ⊗nMϕ. The automaton quotient is
defined to be Pn/∼= (X∼, x⊥, U , f∼), where

• X∼ = X n ∪ {x⊥} is a set of states.
• x⊥ is a bad state,
• U is a set of control inputs, and
• f∼ : X∼ × U → 2X∼ is a nondeterministic transition relation, (x2, · · · , xn+1) ∈
f∼(x1, · · · , xn, u), if and only if there exists s1, s2 ∈ X such that s2 ∈ f(s1, u),
(x1, · · · , xn) = o(s1), and (x2, · · · , xn+1) = o(s2).

Recall that given a product state s ∈ X , the observation o(s) encodes the informa-
tion that will be available to the controller in the instance that the system run over the
product automaton ends in state s. As x⊥ ∈ O encodes the set of product states that
are unsafe, system safety is ensured by choosing control inputs such that the system
never enters x⊥ ∈ X∼ in the quotient automaton. To that end, we strictly define the
region from which assurance can be guaranteed; this region is referred to as a winning
component of Pn/∼.

Definition 5.5. Let Pn/∼= (X∼, x⊥, U , f∼) be the quotient of Pn = T ⊗nMϕ un-
der product observational equivalence. A winning component Sb ⊂ X∼ is any set
of quotient states such that for each history fragment (x1, · · · , xn) ∈ Sb there ex-
ists an infinite sequence of inputs such that the system run over Pn/∼ starting from
(x1, · · · , xn) never enters x⊥. A winning policy is any mapping µ : X∼ → 2U such that
if (x1, · · · , xn) ∈ Sb, then f∼(x1, · · · , xn, u) ⊆ Sb, for all u ∈ µ(x1, · · · , xn).

Numerous methods exist for identifying controlled invariant regions in automata
[18,19]. Here, we include one such algorithm, specific to our application (Algorithm
1); Win(Pn/∼) takes an arbitrary quotient system Pn/∼ and returns a maximal set of
winning states Sb ⊂ X∼. The corresponding wining policy µ can then be calculated
according to µ(x) = {u ∈ U | x ∈ Sb ⇒ f∼(x, u) ⊆ Sb}.

These tools are sufficient to solve the problem statement. Therefore, we now for-
malize the main result of the work (Theorem 5.6) and then demonstrate this result
(Example 3).

Theorem 5.6. Given a transition system, T , and an LTL property ϕ, let Pn/∼=

10



Algorithm 1 Find Sb given Pn/∼

input : automaton quotient Pn/∼= (X∼, x⊥, U , f∼)
output: largest winning component Sb of Pn/∼

1: function Win(Pn/∼)
2: Initialize: Bad← ∅, Holder = {x⊥}.
3: while Bad 6= Holder do
4: Bad← Holder
5: for x ∈ X∼ \Bad do
6: if for all u ∈ U there exists an
7: xb ∈ Bad such that xb ∈ f∼(x, u) then
8: Holder ← Holder ∪ {x}
9: Sb := X∼ \Bad

10: return Sb

11: end function

(X∼, x⊥, U , f∼) denote the quotient of Pn = T ⊗nMϕ under product observational
equivalence. Let Sb ⊆ X∼ be a winning component of Pn/∼, with a corresponding
winning policy µ. Then the pair (µ, Sb) solves the Problem Statement.

Proof. By definition, Sb ⊆ X n is forward-invariant under the control-policy µ. Con-
sider a finite run of the system x0, · · · , xk, such that [L(x0, · · · , xk) |= ϕ] 6=⊥ ; by
definition, the system run over the monitor automaton Mϕ is guaranteed to end in a
monitor state qk 6= q⊥. We can equivalently consider the system run over the product
automaton Pn = T ⊗nMϕ, which will end in a state sk = (xk+1−n, · · · , xk, qk) ∈ X
where o(sk) = s̃k 6= x⊥. Now consider the state s̃k ∈ X∼ in the automaton quo-
tient Pn/∼, and assume s̃k ∈ Sb. If the control input uk ∈ µ(s̃k) is guaranteed
to take s̃k to a state s̃k+1 ∈ Sb, where s̃k+1 6= x⊥, then uk is guaranteed to take
sk to a state sk+1 = (xk+2−n, · · · , xk+1, qk+1) such that qk+1 6= q⊥. Equivalently,
[L(x0, · · · , xk+1) |= ϕ] 6=⊥ for all xk+1 ∈ f(xk, uk). Therefore, Sb is safe.

Example 3. Consider a system whose dynamics are encoded in the transition system
T = (X , U , f, Σ, L), where

• X = {x1, x2, x3}, is a set of system states,
• U = {u1, u2} is a set of control inputs,
• f : X × U → 2X is a transition relation, as given in Figure 5a,
• Σ = {A,B,C} is a set of labels, and
• L : X → Σ is a labeling map, as given in Figure 5a.

We aim to enforce the LTL property ϕ = �(A → ©2B) (studied previously in
Example 1) over a run of T , using a history-register style controller with n = 1 memo-
rized system state. We synthesize such a controller by forming the product automaton
P1 = T ⊗1Mϕ (Figure 5b), and then searching for the largest forward-invariant re-
gion Sb

1 in the quotient automaton P1/∼ (Figure 5c). In this case, assurance can be
provided over Sb

1 = {x1, x2} ⊂ X , where control inputs are chosen according to

µ1(x) =


{u2} x = x1

{u1} x = x2

? x = x3,

11
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Figure 5.: Generating controllers with memory (Example 3). The quotient systems
P1/∼ and P2/∼ are formed to classify a control policy that enforces ϕ = �(A→©2B)
online when n ∈ {1, 2} previous system states are known.

where the symbol “? ” denotes the control output in the case that correct performance
cannot be assured.

We now repeat this procedure to create the input map µ2 : X 2 → 2U . We synthesize
this control policy by forming the two-state product automaton P2 = T ⊗2Mϕ and
then searching for the largest forward-invariant region Sb

2 in the automata quotient
P2/∼ (Figure 5d). In the case of this example, assurance can be provided over the
region Sb

2 ⊂ X 2 where control inputs are chosen according to

µ2(s) =


{u1} s = (x1, x2)

{u2} s ∈ {(x2, x1), (x3, x3)}
{u1, u2} s ∈ {(x2, x2), (x2, x3), (x3, x1)}

? s = (x1, x3)
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Sb
2 =

{
(x1, x2), (x2, x1), (x3, x3), (x2, x2), (x2, x3), (x3, x1)

}
.

Note that a controller that chooses inputs according to µ2 will have significant
advantages over a controller that chooses inputs according to µ1. For instance, at
a time k, a controller that chooses inputs according to µ1 will be able to provide
assurance if and only if the current system state xk ∈ {x1, x2}; whereas, a controller
that chooses inputs according to µ2 will be able to provide assurance when xk = x3,
provided that the previous system state is known to be xk−1 ∈ {x2, x3}. Additionally,
in some cases µ2 allows the system designer to choose which control input is applied.
For instance, if, at a time k, the current system state xk = x1, then µ1 will apply
control input uk = u2 to T ; whereas, in the same situation, the control policy µ2 will
allow the system designer to choose between the control input uk = u1 and uk = u2,
provided that the previous system state is known to be equal to xk−1 = x3. Finally,
recall from Example 1 that Mϕ is invertible with two memorized system. Therefore,
increasing the memory capabilities of the controller beyond n = 2 memorized system
states will not increase the number of instances when assurance is guaranteed, as
shown in Theorem 4.1.

6. Experimental Demonstration

We now present a case study demonstrating the findings of the work. In this study
we design three different history-register based controllers to assure a differential drive
robot against an LTL safety property. These controllers are generated using MATLAB
2020a and implemented on an actual robotic testbed.

6.1. Controller Synthesis

Consider an autonomous vehicle which must refuel periodically, while also avoiding
obstacles. We abstract the vehicle dynamics in a 200 state nondeterministic transition
system T , representative of a discrete-time discrete-state unicycle model. Here, each
state of T denotes a unique position (x, y) ∈ {1, · · · , 5} × {1, · · · , 5} and rotation
θ ∈ {0, π4 , · · · , 7π

4 }. The control inputs to the system are linear velocity v ∈ {0, 1} and
angular velocity ω ∈ {0, ±π

4 }. Nondeterminism in the system arises when the control
input (v, ω) = (1,±π

4 ), i.e. when the system intends to drive forward and turn during
the same time-step. In this case the system will nondeterministically enter either the
state arising from moving forward one unit and then rotating, or the state arising
from rotating first and then moving forward one unit. This problem setting is shown
in Figure 6.

We stipulate that the vehicle must spend 2 consecutive time-steps in a refueling
region every 8 time-steps and always avoid obstacles. This mission objective is captured
in the LTL safety specification

ϕ = �(¬Obs) ∧�(∨7i=0©i (Ref ∧©Ref))

where refueling states are labeled Ref and obstacle states are labeled Obs. We use
the symbol ∅ to represent the system label when the vehicle is neither refueling or at
an obstacle position. Therefore, we evaluate ϕ over the alphabet Σ = {Obs, Ref, ∅};
the labeling of T over Σ is shown in Figure 6a. The monitor automaton Mϕ was
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(a) Two-dimensional projection of system
state space. Refueling (Ref) states are
shown in blue, obstacle (Obs) states are
shown in pink, and the remaining states (∅)
are shown in yellow. Vehicle states x1 =
(1, 5, 7π4 ) and x2 = (5, 2, π2 ) are shown as
purple triangles, where L(x1) = Ref and
L(x2) = ∅.

4/18/2020 about:blank

about:blank 1/1

(b) Visualisation of nondeterminism in the
system model. When beginning at an initial
state (1, 1, π4 ), shown in purple, and applying
the control input (v, ω) = (1,−π4 ) the sys-
tem will nondeterministically enter either of
the states shown in light pink: (2, 2, 0) which
is the state arising from moving forward one
unit and then rotating, or (2, 1, 0) which is
the state arising from rotating first and then
moving forward one unit.

Figure 6.: Problem setting. Figure 6a shows the labeling of the system state space,
and Figure 6b describes the nondeterminic control actions.

formed using Spot 2.0 [20]; the resultant automaton is composed of 16 monitor states,
15 of which output inconclusive and 1 of which is a false trap-state. A graph search
conducted using MATLAB 2020a showsMϕ to be 7-step invertible; this search is con-
ducted by computing all words w ∈ Σ7 and then showing that δ(q0, v1w) = δ(q0, v2w)
all v1, v2 ∈ Σ∗ whenever δ(q0, v1w) 6= q⊥ and δ(q0, v2w) 6= q⊥. Therefore, a history
register based controller that stores seven previous system states will provide the same
guarantees as a traditional automaton based controller. In the remainder of this sec-
tion, we explore the guarantees that are possible with even fewer memory states.

We now consider three alternative controllers constructed to assure T against ϕ
where these controllers are required to make runtime decisions based on n ∈ {1, 2, 3}
memorized system states. These controllers are formed according to the procedures laid
out in Section 5, i.e., we identify a controlled invariant region of the quotient system
Pn/∼ and the corresponding winning policy µn. In general, such controllers will not
be able to guarantee ϕ from all initial states. Intuitively, this is because ϕ requires
refueling only every 8 time-steps, but a controller with limited memory will need to act
conservatively and guarantee refueling within its memory horizon as it cannot know
of refueling events further in the past. However, if the system is initialized within the
winning invariant region, then they controller will ensure that ϕ is satisfied along the
infinite trace of the system execution.

First, a control policy µ1 : X → 2U is formed to provide assurance when n = 1
system state is available to the controller. Note µ1 is memory-less and makes control
decisions based solely on the current vehicle state. µ1 has a corresponding region
Sb
1 ⊂ X and is able to provide assurance over |Sb

1 |= 62 of the 200 system states. Here,
Sb
1 is comprised of every refueling state, as well as the states that can reach a refueling

state in one time step; µ1 then either brings the vehicle to the refueling region or
forces the vehicle to remain inside the fueling region. At any other state outside Sb

1 ,
a memoryless controller is unable to guarantee satisfaction of ϕ since it is unable to
reach a refueling state in the next step and has no memory of the last refueling event.
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(a) Projection of system trajectory to the
x–y plane. The system state is notated by
a green triangle when a 3 state fragment
of the system’s history is not accessible.

(b) Three-dimensional visualisation of sys-
tem trajectory.

Figure 7.: Simulated system trajectory when µ3 is employed. A 10 step simulation is
conducted where the system begins at state x1 = (1, 5, 0) at time 1 and L(x1) = Ref .
A memory loss event occurs at time step 7 when the system is at state x7 = (5, 2, 3π

2 )
shown in green, and L(x7) = ∅. By making intermediate decisions to avoid obstacles,
the system is able to regain a full history register at time 9 and the system acts
unaltered for the remainder of the study. Moreover, the resulting finite system trace
over Σ before the history is recovered is not a bad prefix for ϕ and therefore, after
recovery of the three-state system history, satisfaction of ϕ remains guaranteed.

Next, a control policy µ2 : X 2 → 2U is formed to provide assurance when n = 2
system states are available to the controller. µ2 has corresponding region Sb

2 ⊂ X 2,
where assurance can be provided over |Sb

2 |= 369 possible two-state system histories.
The controller µ2 allows the vehicle to enter 123 of the possible 200 states without
violating the system specification.

Finally, a control policy µ3 : X 3 → 2U is formed to provide assurance with n = 3
stored history states. The controller µ3 has a corresponding safe region Sb

3 ⊂ X 3 and
is able to provide assurance over |Sb

3 |= 2310 possible three-state system histories. This
controller allows the vehicle to enter 134 of the possible 200 states without violating
the system specification. Note that 64 of the 200 system states have label Obs and are
inherently inadmissible; therefore, µ3 allows the system to enter all but 2 admissible
system states and is therefore almost as effective as the least conservative policy that
requires seven history states. Provided that the initial state of the system and its
history register is within Sb

3 , the controller µ3 ensures satisfaction of ϕ. Additionally,
for certain three-state system histories, µ3 allows the nondeterministic control input
(v, ω) = (1,±π

4 ), which is not the case for µ1 and µ2. This indicates that the controller
has an assurance plan for both possible states at the next time-step and can allow the
nondeterministic action without risk.

A simulated system trajectory under µ3 is shown in Figure 7; this simulation is
conducted in MATLAB 2020a. In the following section, we provide an experimental
demonstration of µ3 on a robotic testbed.
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(a) PiBorg differential drive robot, shown
refueling.

(b) Experimental setup. Refueling (Ref)
states are shown in blue, and obstacle
(Obs) states are shown in red.

Figure 8.: Robotic implementation. Figures 8a and 8b show experimental setup and
the robotic platform.

6.2. Implementing a Memory-Loss Resilient Controller on a Differential
Drive Robot

The three-state history register based controller µ3 is implemented on a PiBorg model
MonsterBorg car (Figure 8). The robot conforms to differential drive dynamics, and is
controlled onboard by a Raspberry Pi. Localization is performed using apriltags ros
[21].

During periods of memory-loss, there is an inevitable risk that the system will
falsify ϕ, i.e., a bad prefix for ϕ may be encountered. To address this risk, we choose
control actions during memory-loss according to the following principles: when the
controller experiences a memory loss event, only the current system state will be
available and, thus, µ3 is no longer applicable for the next 2 timesteps. At this point,
if the current system state is in Sb

1 , then µ1 is applied to the system for the next 2
timesteps and, in this case, system safety guaranteed for all future time. If instead
the current system state is not contained in Sb

1 , then the system attempts to steer to
Sb
2 ; there is no guarantee in this procedure that the system will not violate ϕ at this

timestep, however, if the system transitions to Sb
2 without-reaching a bad prefix for

ϕ then µ2 can be applied at the next timestep and system safety is guaranteed for
all future time. If the system cannot steer to Sb

2 , then the system must steer to Sb
3 ;

note that there will always be a control scheme which returns the system to Sb
3 in 2

timesteps as Sb
3 is forward invariant under µ3, however, again there is no guarantee

that ϕ will not be violated along the way. Once the system has regained a full history
register, if a bad prefix for ϕ is not encountered, then the system regains its guarantee
of satisfying ϕ for all future time.

In the experiment, the vehicle operated continuously for 3 minutes, and
was subjected to two artificial memory-loss events. The resulting finite sys-
tem trace over Σ is not a bad prefix for ϕ and, thus, the system safely
recovered from the memory loss. A video of this experiment is available at
https://www.youtube.com/watch?v=bn9fCWTrfpY.
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8. Conclusion

This paper proposes a controller architecture that analyzes a finite fragment of the
system history at each timestep in order to enforce a linear temporal logic property
online. Unlike standard methods, the resulting controller does not rely on an onboard
automaton, and therefore can withstand memory loss without compromising system
safety. We demonstrate the implementation of such a memory-loss resilient controller
through an experimental demonstration on a differential-drive robot.
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