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Abstract—The vector field of a mixed-monotone system is
decomposable via a decomposition function into increasing (co-
operative) and decreasing (competitive) components, and this
decomposition allows for, e.g., efficient computation of reachable
sets and forward invariant sets. A main challenge in this
approach, however, is identifying an appropriate decomposition
function. In this work, we show that any continuous-time dy-
namical system with a Lipschitz continuous vector field is mixed-
monotone, and we provide a construction for the decomposition
function that yields the tightest approximation of reachable sets
when used with the standard tools for mixed-monotone systems.
Our construction is similar to that recently proposed by Yang
and Ozay for computing decomposition functions of discrete-
time systems [1] where we make appropriate modifications for
the continuous-time setting and also extend to the case with
unknown disturbance inputs. As in [1], our decomposition func-
tion construction requires solving an optimization problem for
each point in the state-space; however, we demonstrate through
example how tight decomposition functions can sometimes be
calculated in closed form. As a second contribution, we show
how under-approximations of reachable sets can be efficiently
computed via the mixed-monotonicity property by considering
the backward-time dynamics.

Index Terms—Numerical algorithms, Uncertain systems

I. INTRODUCTION

M IXED-MONOTONE systems are characterized by vec-
tor fields that are decomposable into increasing (coop-

erative) and decreasing (competitive) interactions. This allows
for embedding the system dynamics into a higher dimen-
sional system with twice as many states but for which the
dynamics are monotone [2]–[4]; an approach that is similar
in spirit is first pioneered in [5]. Thus, decomposing the
system dynamics enables one to apply the powerful theory
of monotone dynamical systems to the higher dimensional
embedding system to conclude properties of the original sys-
tem. For example, mixed-monotonicity allows for: efficiently
approximating reachable sets by evaluating only one trajectory
of the embedding system [6], [7]; identifying forward invariant
and attractive sets by identifying equilibria in the embedding
space [7]; concluding global asymptotic stability by proving
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the nonexistence of equilibria of the embedding system except
in a certain lower dimensional subspace [8]. See also [9], [10]
for fundamental results on monotone dynamical systems.

A primary challenge in applying the theory of mixed-
monotone systems is in identifying an appropriate decompo-
sition function. There exists certain special cases for which a
decomposition function can be readily identified, e.g., when
each off-diagonal entry of the systems Jacobian matrix is
uniformly upper or lower bounded [11]–[14], however, iden-
tifying decomposition functions generally relies on domain
knowledge of the underlying physical system.

The question of existence of decomposition functions was
recently explored in [1] in the discrete-time setting. In discrete-
time, a decomposition function for an update map F leads to
an embedding system that over-approximates the image of F
when evaluated on a hyperrectangular set. It is observed in
[1] that all discrete-time systems are mixed-monotone with
a decomposition function that tightly approximates one-step
reachable sets; this construction, however, fails to provide tight
approximations for longer time horizons. While this result
is constructive in that it provides an explicit decomposition
function construction applicable to all discrete-time systems,
evaluating the decomposition function at any point in the
embedding space requires computing a reachable set itself.
Nonetheless, knowing that a decomposition function does exist
means that a search directed by, e.g., domain expertise, is not
generally unreasonable.

In this paper, we study an analogous question regarding
existence of decomposition functions in the continuous-time
setting, and we additionally consider systems with distur-
bances. Our main result is to show that any continuous-time
system possessing a vector field that is Lipschitz continuous
in state and disturbance admits a Lipschitz continuous decom-
position function. Moreover, we provide a construction for
the decomposition function that yields the tightest possible
approximations when used with the standard tools for mixed-
monotone systems. Thus, our results complement those from
[1] by answering similar questions in the continuous-time
setting, however, we emphasize that the results and tools here
are different as compared to the discrete-time setting of [1]. In
particular, unlike decomposition functions for continuous-time
systems, decomposition functions for discrete-time systems
do not need to be Lipschitz continuous, or even continu-
ous. Moreover, we allow for disturbance inputs and define
a different notion of tightness to accommodate the fact that
it is generally not possible to obtain tight hyperrectangular
reachable set approximations in continuous-time over any hori-
zon. As in [1], our construction is defined as an optimization



problem, and thus not practically useful for applications other
than system verification via simulation [15], [16]. However,
we demonstrate through examples how tight decomposition
functions can be calculated in closed form in certain instances.

As a second contribution, we show how under-
approximations of reachable sets can be efficiently computed
from a decomposition function for the backward-time
dynamics. Mixed-monotonicity in the backward-time setting
was first considered in [7] where it is shown how finite-
time backward reachable sets can be approximated using
an analogous technique to that of the forward-time case.
Here, we extend these results and specifically show that
(a) a backward-time decomposition function can be used to
compute under-approximations of forward reachable sets, (b)
in certain instances, a tight backward-time decomposition
function can be efficiently derived from a tight forward-time
decomposition function, and (c) a tight backward-time
decomposition function provides the tightest, in a certain
sense, under-approximations of forward reachable sets.

II. NOTATION

Let R≥0 and R≤0 denote the nonnegative and nonpositive
real numbers respectively. Let R := R∪{−∞,∞} denote the
extended real numbers. Let xi for i ∈ {1, · · · , n} denote the
ith entry of x ∈ Rn.

Let (x, y) denote the vector concatenation of x, y ∈ Rn,
i.e. (x, y) := [xT yT ]T ∈ R2n, and let � denote the
componentwise vector order, i.e. x � y if and only if xi ≤ yi
for all i. Given x, y ∈ Rn with x � y,

[x, y] := {z ∈ Rn | x � z and z � y}

denotes the hyperrectangle defined by the endpoints x and y.
We also allow xi, yi ∈ R so that [x, y] defines an extended
hyperrectangle, that is, a hyperrectangle with possibly infinite
extent in some coordinates, where componentwise order is
extended to R in the conventional way, i.e., −∞ ≤ xi ≤ ∞
for all xi ∈ R. Given a = (x, y) ∈ R2n with x � y, we
denote by JaK the hyperrectangle formed by the first and last
n components of a, i.e., JaK := [x, y].

Let �SE denote the southeast order on R2n defined by

(x, x′) �SE (y, y′) ⇔ x � y and y′ � x′

where x, y, x′, y′ ∈ Rn. In the case that x � x′ and y � y′,
note that

(x, x′) �SE (y, y′) ⇔ [ y, y′ ] ⊆ [x, x′ ]. (1)

III. PRELIMINARIES

We consider the system

ẋ = F (x, w) (2)

with state x ∈ X ⊂ Rn and time-varying disturbance
input w(t) ∈ W ⊂ Rm. We assume that the vector field
F : X × W → Rn is locally Lipschitz continuous and that
the disturbance signal w : R → W is piecewise continuous,
so that solutions to (2) are unique. We also assume that X
is an extended hyperrectangle with nonempty interior and

W is a hyperrectangle defined by W := [w, w] for some
w, w ∈ Rm with w � w. Let Φ(T ; x, w) ∈ X denote
the state of (2), reached at time T when starting at the
initial state x ∈ X at time 0 and when subjected to the
disturbance input w : [0, T ] → W . We allow for finite-time
escape so that Φ(T ; x, w) need not exist for all T , however,
Φ(T ; x, w) is understood to exist only when Φ(t; x, w) ∈ X
for all 0 ≤ t ≤ T , and statements involving Φ(T ; x, w) are
understood to apply only when Φ(T ; x, w) exists.

In this work, we are specifically interested in mixed-
monotone systems. Define by

TX := {(x, x̂) ∈ X × X | x � x̂},
TW := {(w, ŵ) ∈ W ×W | w � ŵ},

(3)

the sets of ordered points in X andW , respectively. Addition-
ally, define

T := {(x, w, x̂, ŵ) ∈ X ×W ×X ×W |
(x, x̂) ∈ TX and (w, ŵ) ∈ TW , or
(x̂, x) ∈ TX and (ŵ, w) ∈ TW}.

(4)

Definition 1. Given a locally Lipschitz continuous function
d : T → Rn, the system (2) is mixed-monotone with respect
to d if

1) For all x ∈ X and all w ∈ W we have d(x, w, x, w) =
F (x, w).

2) For all i, j ∈ {1, · · · , n}, with i 6= j, we have
∂di

∂xj
(x, w, x̂, ŵ) ≥ 0 for all (x, w, x̂, ŵ) ∈ T such

that ∂d
∂x exists.

3) For all i, j ∈ {1, · · · , n}, we have ∂di

∂x̂j
(x, w, x̂, ŵ) ≤ 0

for all (x, w, x̂, ŵ) ∈ T such that ∂d
∂x̂ exists.

4) For all i ∈ {1, · · · , n} and all k ∈ {1, · · · , m}, we
have ∂di

∂wj
(x, w, x̂, ŵ) ≥ 0 ≥ ∂di

∂ŵj
(x, w, x̂, ŵ) for all

(x, w, x̂, ŵ) ∈ T such that ∂d
∂w and ∂d

∂ŵ exist. �

If (2) is mixed-monotone with respect to d, d is said
to be a decomposition function for (2), and derivatives of
d exist almost everywhere because d is assumed Lipschitz.
Definition 1 is the standard definition of mixed-monotonicity
for continuous-time dynamical systems and appears in, e.g.
[6], however, we make certain important generalisations here:
Previous works, e.g., [6], [12], [13], consider decomposition
functions with domain X × W × X × W , however, we
observe that the standard analysis tools for mixed-monotone
systems—including those provided later—only require that
d be defined on T . Thus, in Definition 1 we restrict the
domain of d to T without compromising the usefulness of
the mixed-monotonicity property. Additionally, we note that
[12] unnecessarily strengthens the conditions for continuous-
time mixed-monotonicity and requires that Condition 2 from
Definition 2 hold even in the case where i = j, and [13], [14]
define mixed-monotone systems to be systems whose state and
disturbance Jacobian matrices are uniformly bounded over the
system domain. These are special cases of the more general
conditions presented here.

Remark 1. The above definition of mixed-monotonicity is in
terms of the derivatives of the decomposition function d. By



integrating, it can be shown that conditions 2–4 of Definition
1 are equivalent to the following two conditions:
C1) For all i ∈ {1, · · · , n},

di(x, w, x̂, ŵ) ≤ di(y, v, x̂, ŵ) (5)

for all (x, w, x̂, ŵ) ∈ T and all (y, v) ∈ X ×W such
that (y, v, x̂, ŵ) ∈ T , x � y, xi = yi and w � v.

C2) For all i ∈ {1, · · · , n},
di(x, w, ŷ, v̂) ≤ di(x, w, x̂, ŵ) (6)

for all (x, w, x̂, ŵ) ∈ T and all (ŷ, v̂) ∈ X ×W such
that (x, w, ŷ, v̂) ∈ T , x̂ � ŷ and ŵ � v̂.

These are the so-called Kamke conditions for monotonicity,
modified for the mixed-monotone setting [9, Section 3]. �

Construct [
ẋ
˙̂x

]
= e(x, x̂) =

[
d(x, w, x̂, w)
d(x̂, w, x, w)

]
(7)

with state (x, x̂) ∈ TX . We refer to (7) as the embedding
system relative to d and e the embedding function relative to
d. Let Φe(T ; (x, x̂)) be the state transition function for (7),
that is, Φe(T ; (x, x̂)) denotes the state of (7) at time T when
initialised at state (x, x̂) ∈ TX .

Trajectories of the embedding system may leave X × X ,
and this is true even when Φ(t; x0, w) ∈ X for all t ≥ 0,
all x0 ∈ X , and all w : R → W . However, trajectories
of (7) will not evolve from TX to (X × X )\TX [7, Lemma
1]. For this reason, Φe(T ; (x, x̂)) is understood to exist only
when Φe(t; (x, x̂)) ∈ TX for all 0 ≤ t ≤ T , and statements
involving Φe(T ; (x, x̂)) are understood to apply only when
Φe(T ; (x, x̂)) exists. Importantly, (7) is monotone with respect
to the southeast order; that is, for all (x, x̂), (y, ŷ) ∈ TX and
all T ≥ 0 we have

(x, x̂) �SE (y, ŷ)⇒ Φe(T ; (x, x̂)) �SE Φe(T ; (y, ŷ)).

We next recall how reachable sets for (2) are over-
approximated by trajectories of (7). To that end, denote by

R(T ; X0) = {Φ(T ; x, w) ∈ X | x ∈ X0,

for some w : [0, T ]→W} (8)

the forward reachable set of (2) over the time horizon T
from the set of initial conditions X0 ⊂ X . The following
fundamental result connects reachable sets to the dynamics
of the embedding system [6], [13].

Proposition 1. Let (2) be mixed-monotone with respect to
d, and let X0 = [x, x] for some x � x. Then R(T ; X0) ⊆
JΦe(T ; (x, x))K. �

The system
ẋ = −F (x, w) (9)

with x ∈ X and w ∈ W encodes the backward-time
dynamics of (2), and (2) and (9) are related in the following
way: if x1 = Φ(T ; x0, w) for w : [0, T ] → W , then
x0 = Φ′(T ; x1, w

′) where w′(t) := w(T − t) and where
Φ′ denotes the state transition function of (9). Therefore, if
(9) is mixed-monotone, then finite-time backward reachable
sets of (2) can be approximated using [7, Proposition 2] and
this procedure is analogous to that of Proposition 1.

IV. TIGHT DECOMPOSITION FUNCTIONS FOR
MIXED-MONOTONE SYSTEMS

In this section, we show that all continuous-time dynamical
systems with disturbances as in (2) are mixed-monotone, and
we provide an explicit construction for the decomposition
function that provides the tightest reachable set approxima-
tions via Proposition 1.

Definition 2 (Tight Decomposition Function). A decomposi-
tion function δ for (2) is tight if for any other decomposition
function d for (2),

d(x, w, x̂, ŵ) � δ(x, w, x̂, ŵ)

δ(x̂, ŵ, x, w) � d(x̂, ŵ, x, w)
(10)

for all (x, x̂) ∈ TX and all (w, ŵ) ∈ TW . �

As we show next, a tight decomposition function, when used
with Proposition 1, will provide a tighter over-approximation
of reachable sets than of any other decomposition function.

Proposition 2. If d is a decomposition function for (2) and δ
is a tight decomposition function for (2), then for all t ≥ 0

JΦε(t; (x, x))K ⊆ JΦe(t; (x, x))K (11)

for all (x, x) ∈ TX where Φε and Φe denote the state transition
functions of the embedding system (7) constructed from δ and
d, respectively. �

Proof: Let δ and d be such that (10) holds. Let ε and e
denote the embedding functions relative to δ and d, respec-
tively, and let Φε and Φe denote the state transition functions
of their respective embedding systems. Choose (x, x) ∈ TX ,
and define

ϕe(t) = Φe(t; (x, x)), and ϕε(t) = Φε(t; (x, x)), (12)

where we write ϕe =: (ϕe, ϕe) and ϕε =: (ϕε, ϕε). Then

ϕ̇e = e(ϕe, ϕe), and ϕ̇ε = ε(ϕε, ϕε). (13)

We now show that ϕe(0) �SE ϕ
ε(0) implies ϕe(t) �SE ϕ

e(t)
for all t ≥ 0. Assume there exists a time T ≥ 0 such that

ϕe
i (T ) = ϕε

i (T ) and ϕe(T ) �SE ϕ
ε(T ) (14)

for some i ∈ {1, · · · , 2n}. Consider first the case that i ∈
{1, · · · , n}. Then

di(ϕ
e(T ), w, ϕe(T ), w) ≤ δi(ϕe(T ), w, ϕe(T ), w),

≤ δi(ϕε(T ), w, ϕε(T ), w),
(15)

where the first inequality comes from the fact that δ is a
tight decomposition function for (2), and where the second
inequality comes from Conditions C1 and C2 in Remark 1.
Thus we now have ϕ̇e

i (T ) ≤ ϕ̇ε
i (T ). If instead (14) holds

for some i ∈ {n + 1, · · · , 2n}, by a symmetric argument,
ϕ̇e
i (T ) ≥ ϕ̇ε

i (T ). Therefore, always ϕe(t) �SE ϕε(t), which
is equivalently to (11) by (1). This completes the proof.

In the following theorem, we show that all continuous-time
systems with disturbances as in (2) are mixed-monotone and
we present a construction for tight decomposition functions.



Theorem 1. Any system of the form (2) is mixed-monotone
with respect to δ : T → Rn constructed elementwise
according to

δi(x, w, x̂, ŵ) =

min
y∈[x, x̂]
yi=xi

z∈[w, ŵ]

Fi(y, z) if x � x̂ and w � ŵ,

max
y∈[x̂, x]
yi=xi

z∈[ŵ, w]

Fi(y, z) if x̂ � x and ŵ � w.
(16)

Moreover, δ is a tight decomposition function for (2). �

Proof: We begin by establishing that δ from (16) is
Lipschitz continuous; this is done by showing that δi is
Lipschitz in x, and Lipschitz continuity holds with respect to
other arguments by analogous reasoning. Let x1, x2, x̂ ∈ X ,
w, ŵ ∈ W , where we assume without loss of generality
that x1 � x̂, x2 � x̂, and w � ŵ. Observe that for
any y1 ∈ [x1, x̂] with y1

i = x1
i , there exists y2 ∈ [x2, x̂]

with y2
i = x2

i such that ‖y1 − y2‖1≤ ‖x1 − x2‖1, and
vice-versa, where ‖·‖1 denotes the usual one-norm on Rn.
In particular, for any minimizer (y1, z) that achieves the
value of δi(x1, w, x̂, ŵ) in the definition (16), there exists a
point y2 so that Fi(y

2, z) upper bounds δi(x2, w, x̂, ŵ) with
‖y1 − y2‖1≤ ‖x1 − x2‖1, and vice-versa. It follows then that
‖δi(x1, w, x̂, ŵ) − δi(x2, w, x̂, ŵ)‖1≤ L‖x1 − x2‖1 where L
is a Lipschitz constant for F applicable on a neighborhood of
[x1, x̂] ∪ [x2, x̂]. Thus δi is Lipschitz in x, and therefore δ is
Lipschitz in x, x̂, w, ŵ.

We next show that δ is a decomposition function for (2).
Trivially, δi(x,w, x, w) = Fi(x,w) for all i and all x ∈ X ,
w ∈ W . We show that δ satisfies Conditions 2–4 from
Definition 1 by showing that δi satisfies the Kamke conditions
in Remark 1. Choose (x, w, x̂, ŵ) ∈ T and (y, v) ∈ X ×W
such that (y, v, x̂, ŵ) ∈ T , x � y, xi = yi, and w � v. Then
δi(x,w, x̂, ŵ) ≤ δi(y, v, x̂, ŵ) follows from the min/max
construction of (16). This proves C1, and C2 is proven
analogously. Thus, (2) is mixed-monotone with respect to δ.

Lastly, we show that δ is a tight decomposition function for
(2). Let d : T → Rn be another decomposition function for
(2) and choose (x, x) ∈ TX and (w, w) ∈ TW . Additionally,
choose x ∈ [x, x] and w ∈ [w, w]. Then (x, x) �SE (x, x)
and (w, w) �SE (w, w), and therefore[

d(x,w, x, w)
d(x,w, x, w)

]
�SE

[
d(x,w, x, w)
d(x,w, x, w)

]
=

[
F (x,w)
F (x,w)

]
. (17)

Since (17) holds for all x ∈ [x, x] and all w ∈ [w, w] we now
have

[
d(x,w, x, w)
d(x,w, x, w)

]
�SE

 min
y∈[x, x],yi=xi,z∈[w,w]

F (y, z)

max
y∈[x, x],yi=xi,z∈[w,w]

F (y, z)

 ,
and thus [

d(x,w, x, w)
d(x,w, x, w)

]
�SE

[
δ(x,w, x, w)
δ(x,w, x, w)

]
.
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Fig. 1: Approximating forward reachable sets for (18) from the
set of initial conditions X0 = [−1, 1] × [0, 1], shown in red.
R(1; X0) is computed via exhaustive simulation and is shown
in green. Hyperrectangular over-approximations of R(1; X0)
are computed from (19) and [1, Theorem 1] and are shown in
blue and pink, respectively1.

Therefore δ is a tight decomposition function for (2) as
(x, x) ∈ TX and (w, w) ∈ TW were selected arbitrarily. This
completes the proof.

We next demonstrate the applicability of Theorem 1 through
an example.

Example 1. The system[
ẋ1

ẋ2

]
= F (x) =

[
|x1 − x2|
−x1

]
(18)

with X = R2 is mixed-monotone with respect to

δ1(x, x̂) =


0 if x2 ≤ x1 ≤ x̂2,

x2 − x1 if 2x1 ≤ min{2x2, x2 + x̂2} ,
x1 − x̂2 if 2x1 ≥ min{2x̂2, x2 + x̂2},

δ2(x, x̂) = −x̂1,

(19)

where δ is a tight decomposition function and solves (16).
To further contrast our results to their discrete-time analog

in [1], an alternative decomposition function is obtained by
applying the construction presented in [1, Theorem 1], which
is a tight decomposition for the discrete-time system x+ =
F (x), but is generally not a tight decomposition function for
the continuous-time system ẋ = F (x), as demonstrated in
Figure 1. �

V. UNDER-APPROXIMATING REACHABLE SETS VIA
MIXED-MONOTONICITY

We next show how under-approximations of reachable sets
are computed via the mixed-monotonicity property. As in (8),
let R(T ; X0) denote the time-T forward reachable set of (2)
from the hyperrectangular set of initial conditions X0.

Theorem 2. Let (9) be mixed-monotone with respect to D,
and let X0 = [x, x] for some x � x. Construct the system[

ẋ
˙̂x

]
= Γ(x, x̂) =

[
−D(x, w, x̂, w)
−D(x̂, w, x, w)

]
(20)

1The code which generates Figure 1 is publicly available on the GaTech
FACTS Lab Github page: https://github.com/gtfactslab/Abate LCSS2020.



with state transition function ΦΓ. If ΦΓ(t; (x, x)) ∈ TX for
all 0 ≤ t ≤ T then JΦΓ(T ; (x, x))K ⊆ R(T ; X0). �

Proof: Let E denote the embedding function relative
to D and let ΦE denote the state transition function of its
embedding system. Then for all (x, x̂), (y, ŷ) ∈ TX and all
T ≥ 0 we have that ΦE(T ; (x, x̂)) = (y, ŷ) if and only if
ΦΓ(T ; (y, ŷ)) = (x, x̂).

We prove Theorem 2 by showing that for all y ∈
JΦΓ(T ; (x, x))K there exists an x ∈ X0 and a disturbance
input w : [0, T ] → W such that y = Φ(T ; x, w). Define
ϕ(t) := ΦΓ(t; (x, x)) where we let ϕ(t) =: (ϕ(t), ϕ(t)).
Choose T ≥ 0 and y ∈ JΦΓ(T ; (x, x))K = [ϕ(T ), ϕ(T )]
where we have (ϕ(T ), ϕ(T )) �SE (y, y) by (1). Then

ΦE(T ; (ϕ(T ), ϕ(T ))) �SE ΦE(T ; (y, y)) (21)

follows from the monotonicity of the embedding system
relative to E. As a result of Proposition 1 we have that for any
w′ : [0, T ]→W , Φ′(T ; y, w′) ∈ JΦE(T ; (ϕ(T ), ϕ(T )))K =
[x, x] where Φ′ is taken to be the state transition function of
(9). Take x = Φ′(T ; y, w′) and define w(t) := w′(T − t).
Then y = Φ(T ; x, w). This completes the proof.

While Γ from (20) is constructed from the decomposition
function of the backward-time dynamics (9), trajectories of
(20) can evolve from TX to (X × X )\TX , unlike trajectories
of (7). For this reason, JΦΓ(T ; (x, x))K ⊆ R(T ; [x, x]) only
if ΦΓ(t; (x, x)) ∈ TX for all 0 ≤ t ≤ T .

In Theorem 2 we show how the system (20), which is
constructed from a decomposition function for (9), is used to
under-approximate forward reachable sets for the system (2).
As a consequence of Theorem 1 we have that (9) is mixed-
monotone, and we next provide a special case for which a
tight decomposition function for the backward-time system
(9) can be computed from a tight decomposition function for
the forward-time system (2).

Special Case 1. If

1) δ is a tight decomposition function for (2), and
2) Fi does not depend on xi for all i ∈ {1, · · · , n},

then ∆(x, w, x̂, ŵ) := −δ(x̂, ŵ, x, w) is a tight decomposi-
tion function for (9). �

To summarise the previous results, the tight decomposition
function δ from (16) allows one to compute tight over-
approximations of forward reachable sets via Proposition
1. If F satisfies the hypothesis of Special Case 1, then
∆(x, w, x̂, ŵ) := −δ(x̂, ŵ, x, w) allows computing over-
approximations of backward reachable sets for (2) via [7,
Proposition 2], and, by analogous reasoning to that of Propo-
sition 2, it can be additionally shown that ∆ provides the
tightest possible over-approximations of backward reachable
sets. Last, note that ∆ provides large under-approximations
of reachable sets when used with Theorem 2, and thus, for
systems satisfying the hypothesis of Special Case 1, imple-
menting the reachability tools detailed in this paper requires
only requires one computation of (16) for each state.

VI. NUMERICAL EXAMPLE

The systemẋ1

ẋ2

ẋ3

 = F (x,w) =

w1x
2
2 − x2 + w2

x3 + 2
x1 − x2 − w3

1

 (22)

with X = R3 and W ⊂ R2 is mixed-monotone with respect
to

δ1(x, w, x̂, ŵ) =

−1
4w1

+ w2 if w1x2 ≤ 1
2 ≤ w1x̂2,

w1x
2
2 − x+ w2 if 1

2 ≤ w1x2 ≤ w1x̂2,
or 1 ≤ w1(x2 + x̂2),

w1x̂
2
2 − x̂+ w2 if w1x2 ≤ w1x̂2 ≤ 1

2 ,
or w1(x2 + x̂2) ≤ 1,

(23)

δ2(x, w, x̂, ŵ) = x3 + 2,

δ3(x, w, x̂, ŵ) = x1 − x̂2 − ŵ3
1.

(24)

where δ is a tight decomposition function and solves (16).
The second and third components of δ, given in (24), are
straightforwardly derived from (16), and we justify the con-
struction of δ1 as follows: The minimum, or maximum, of a
scalar-valued function will either occur on the boundary of the
function’s domain or at a critical point in the interior of the
domain. Note that the optimization problem (16) is evaluated
over a hyperrectangle, and the boundary of this domain is also
comprised of hyperrectangles. Thus, one can move iteratively,
searching for critical points within hyperrectangles, in order
to arrive at (23).

We next demonstrate how forward reachable sets are over-
approximated via Proposition 1 and under-approximated via
Theorem 2. Specifically, we take W = [−1/4, 0] × [0, 1/4]
and approximate R(1/2; X0) for X0 = [−1/2, 1/2]3. An
over-approximation of R(1/2; X0) is computed by simulating
the system (7), here taken relative to δ, forward in time for
T = 1/2. Additionally, note that (22) satisfies the hypothesis
of Special Case 1, and thus ∆(x, w, ŵ, x̂) = −δ(ŵ, x̂, x, w)
is a tight decomposition function for the backward-time system
(9). An under-approximation of R(1/2; X0) is computed by
simulating the system (20), here taken relative to ∆, forward
in time for T = 1/2. The approximations generated in this
study are depicted in Figure 2.

VII. DISCUSSION AND CONCLUSION

A mixed-monotone system is generally mixed-monotone
with respect to many decomposition functions and, as such, we
can expect the system (2) to induce decomposition functions
other than that constructed in (16). However, some decom-
position functions may be more/less conservative than others
when used with Proposition 1, and we have shown that (16)
is the least conservative in the sense that it provides the
tightest rectangular approximations of reachable sets when
used with Proposition 1 and the existing analysis tool for
mixed-monotone systems.

As demonstrated in the examples of this work, however,
a closed form solution to (16) is generally characterized
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(a) Numerical Example: Simulation results.
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Fig. 2: Approximating forward reachable sets for (22) from
the set of initial conditions X0 = [−1/2, 1/2]3, shown in red.
The disturbance bound is given by W = [−1/4, 0]× [0, 1/4].
R(1/2; X0) is computed via exhaustive simulation and is
shown in green. A hyperrectangular over-approximation of
R(1/2; X0) is computed from the embedding system (7)
as described in Proposition 1 and is shown in light blue.
A hyperrectangular under-approximation of R(1/2; X0) is
computed from (20) as described in Theorem 2 and is shown
in pink2.

piecewise and the number of pieces can scale exponentially
in the dimension of the system state and disturbance spaces.
As argued in, e.g., [17], a significant feature of mixed-
monotone systems theory is that is that the computational
complexity of reachable set computations scales linearly in
the state dimension; this is not true when the computational
complexity involved in evaluating the decomposition function
scales exponentially in state and disturbance dimension. Thus,
in certain instances it may be preferable to use alternate
decomposition functions to that constructed in (16).

Theorem 1 suggests a theory as to how decomposition
functions should be formed in the general setting of (2); in
particular, we observe that a decomposition function d should
be large when its first two inputs are larger than its second

2The code which generates Figure 2 is publicly available on the GaTech
FACTS Lab Github page: https://github.com/gtfactslab/Abate LCSS2020.

two inputs and small when its first two inputs are smaller than
its second two inputs. This is because d(x, w, x̂, ŵ) governs
the movement of the first n entries of Φe when x � x̂ and
w � ŵ and therefore should be large in order to attain tight ap-
proximations. Likewise, d(x̂, ŵ, x, w) governs the movement
of the second n entries of Φe and therefore should be small.
Note however that there is an intrinsic maximum/minimum
evaluation of d(x, w, x̂, ŵ) and, as shown in Theorem 1, this
bound is attained only if d is tight.
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