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Abstract— We evaluate the performance of an algorithm,
developed by [1], that formulates offset optimization for a
traffic network with arbitrary topology as a quadratically
constrained quadratic program. The algorithm adjusts the
offset values of traffic signals in urban networks to reduce
delay and the number of stops. The performance of two real-
world networks using the offsets obtained by the algorithm
and those obtained using Synchro, a popular software package
for traffic signal timing, is compared via simulation using the
VISSIM microscopic traffic simulator. The offsets obtained by
the algorithm reduce the average number of stops and total
delay that vehicles experience along the major routes in both
networks and under several traffic profiles as compared with
offsets obtained from Synchro. In addition, the original model
assumed infinite storage capacity for links, we eliminate this
assumption to make the model more realistic. In this paper we
show theoretical work of adding storage capacity constrains to
the original optimization problem, along with an example of
the results from modified version of the algorithm.

I. INTRODUCTION

Traffic signal offsets specify the timing of a traffic light
relative to adjacent signals. Offsets constitute the main
parameter for coordinated traffic movement among multiple
traffic signals.

Optimizing the offsets in an urban network reduces the
delay and the number of stops that vehicles experience.
Existing offset optimization algorithms focus on two-way
arterial roads. The papers [2] and [3] present algorithms
for maximizing the green bandwidth, that is, the length of
the time window in which a vehicle can travel along the
entire road without being stopped by a red light. Traffic
control software such as Synchro [4], TRANSYT [5], [6]
optimize offset values by minimizing delay and number of
the stops. Recently, advances in data collection technology
led to methods for offset optimization using archived traffic
data [7].

All of the above-cited methods assume sufficient storage
capacity for links and therefore do not consider the risk of
spill-back in which a segment of road between traffic lights is
completely filled with vehicles so that upstream traffic cannot
enter the link, even with a green light. However, spill-back is
a critical condition that can arise in an urban network; [8] and
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[9] focus on detecting and modeling spill-back. In some cases
spill-back can be prevented by changing the control system
setting [10]; another study [11] shows that severe congestion
could be improved by dynamically adapting offset values.

The paper [1] introduced a new approach that formulates
offset optimization as a quadratically constrained quadratic
program amenable to convex relaxation. This approach has
many advantages over previous studies. It considers all links
in a network with arbitrary topology and is not restricted to
a single arterial. Further, the approach is computationally
efficient and used in [12] to optimize offsets for large
networks with high traffic demand from multiple directions.

We evaluate the performance of the algorithm on two real-
world case study networks. These two networks are also
simulated using VISSIM microscopic traffic simulator, which
simulates traffic patterns realistically [13]. The first network
is a ten-intersection portion of the San Pablo Ave. arterial
in Berkeley, California, and the second network is a seven-
intersection portion of Montrose Rd. and adjacent streets
in Montgomery County, Maryland. Under several realistic
traffic profiles based on sensor measurement data from the
networks, the proposed offset optimization algorithm exhibits
better performance compared to the offsets obtained using
the Synchro offset optimization tool.

Next, we extend the algorithm in [1] to allow for links
with finite storage capacity. By eliminating the assumption
of infinite storage capacity we get one step closer to improve
the original model and make it more realistic. Moreover,
with an example, we show how the result changes when the
storage capacity constraints are active.

The rest of the paper is organized as follows. Section II
briefly describes the vehicles arrival and departure model and
offset optimization algorithm from [1]. Section III presents
the simulation results from two different networks. Section
IV introduces the storage capacity constraints and extends
the algorithm from Section II. Section V presents the evalu-
ation process of the optimization problem when the storage
capacity constraints are active with an example, and Section
VI explains the conclusions.

II. ALGORITHM DESCRIPTION

A. Cost Function Formulation

In this section, we briefly recall the traffic network model
proposed in [1]. Consider a network with a set S of signal-
ized intersections and a set L of links. Let σ(l) denote the
traffic signal at the head of the link l controlling the departure
of vehicles from link l, and let τ(l) denote the signal at the
tail of the link l controlling the arrivals of vehicles into link
l. (Traffic in a link flows from its tail to its head.)



All signals have a common cycle time T , hence a common
frequency ω = 2π/T rad/sec. The signals follow a fixed-time
control. Relative to some global clock, each signal s has an
offset value of θs ∈ [0, 2π) radians that represents the start
time of the fixed control pattern of the intersection. This
pattern has designated green interval for each movement that
repeats every cycle and controls the vehicle flow. Therefore,
each link l ∈ L has a queue of length ql(t) ≥ 0 at time
t equal to the difference between the cumulative arrivals of
vehicles, al, and departures, dl,

q̇l(t) = al(t)− dl(t). (1)

Note that the queue ql(t) is the number of vehicles occupying
link l at time t, and should not be confused with the (smaller)
number of vehicles waiting at intersection τ(l).

If exogenous arrivals into the network are periodic with
period T and there is no spill-back, it is reasonable to assume
the network is in periodic steady state so that all arrivals,
departures, and queues are also periodic with period T [14].

We then approximate the arrival and departure processes in
a link as sinusoids of appropriate amplitude and phase shift.
To this end, for each entry link l, the arrival of vehicles into
link l at signal σ(l) is approximated as

âl(t) = Al + αl cos(ωt− ϕl), (2)

for constants Al, αl, ϕl ≥ 0 with Al ≥ αl. The constant Al
is the average arrival rate of vehicles into link l; αl allows
for periodic fluctuation in the arrival rate.

For a non-entry link l, the arrival process is approximated
by

âl(t) =
∑
i∈L

βilAi(1 + cos(ωt− (θσ(i) + γi)− λl))

= Al + αl cos(ωt− (θτ(l) + ϕl)), (3)

where λl denotes the travel time, in radians, of link l and
βil denotes the fraction of vehicles that are routed to link l
upon exiting link i, which is given and fixed. The mid-point
of the green interval in every cycle is specified by its offset
γi ∈ [0, 2π]. The signal offsets at the tail and head of each
link are respectively θτ and θσ .

In addition, Al, αl, and ϕl are given by

Al =
∑
i∈L

βliAi, (4)

α2
l =

(∑
i∈L

βilAi cos(γi)

)2

+

(∑
i∈L

βilAi sin(γi)

)2

, (5)

ϕl = λl + arctan

(∑
i∈L βilAk sin(γi)∑
i∈L βilAi cos(γi)

)
. (6)

Similarly, we approximate the departure process for both
entry and non-entry links by

d̂l(t) = Al
(
1 + cos(ωt− (θσ(l) + γl))

)
∀l ∈ L, (7)

where (θσ(l) + γl) is the actuation offset of link l as
determined by the offset of signal σ(l) at the head of link l
and the green interval offset, γl, of link l.

From equation (1), (3), and (7) we formulate the approx-
imating queueing process, q̂(t), as

˙̂ql(t) =âl(t)− d̂l(t) (8)
=αl cos(ωt− (θτ(l) + ϕl))

−Al cos(ωt− (θσ(l) + γl))

=Ql cos(ωt− ξl),

where

Ql =
√
A2
l + α2

l − 2Alαl cos((θτ(l) + ϕl)− (θσ(l) + γl)),

(9)

and ξl is a phase shift; we omit the explicit expression for
ξl but note that it is easily computed.

It therefore follows that

q̂l(t) =
Ql
ω

sin(ωt− ξl) +Bl, (10)

where Bl is the average queue length on link l. Since q̂l(t)
cannot be negative, we conclude that Ql

ω ≤ Bl.
The cost function is to minimize the total average

queue length in all links,
∑
l∈LQl. Since the first part

A2
l + α2

l of formula (9) is constant, instead of minimizing∑
l∈LQl, we can maximize the negative part of the formula,

Alαl cos(θτ(l)−θσ(l)+ϕl−γl) for all links and our objective
function becomes

maximize
{θs}s∈S

∑
l∈L

Alαl cos(θτ(l) − θσ(l) + ϕl − γl), (11)

in which the offset values, θs, are the only decision variables
and all other parameters are given by the green splits.

B. Equivalent Quadratically Constrained Quadratic Pro-
gram (QCQP)

Problem (11) is non-convex. To solve it, [1] uses semi-
definite relaxation. To this end, [1] first formulates the equiv-
alent QCQP by defining z = (x, y), where xs = cos(θs) and
ys = sin(θs). Thus, the equivalent cost function becomes
zTWz, where

W1[s, u] =
∑

l∈Ls�u

Alαl cos(ϕl − γl) (12)

W2[s, u] =
∑

l∈Ls�u

Alαl sin(ϕl − γl) (13)

and

W =

[
W1 W2

−W2 W1

]
, W =

1

2
(W +WT ). (14)

Also, we have the constraints x2s + y2s = 1 for all s ∈ S.
Let Es ∈ R|S|+1 for s ∈ S be given by

Es[u, v] =

{
1 if u = v = s

0 otherwise
(15)

and define

Ms =

[
Es 0
0 Es

]
. (16)



Then the constraints x2s+y
2
s = 1 are equivalent to zTMsz =

1. As a result, the optimization problem is

maximize
z∈R2|S|+2

zTWz

subject to zTMsz = 1 ∀s ∈ S.
(17)

C. Semi-Definite Program (SDP) Relaxation

The quadratic terms in (17) are of the form zTQz =
Tr(QZ) with Z = zzT . Further if the matrix Z is positive
semi-definite and of rank 1, it can be decomposed as Z =
zzT . The advantage of this transformation is that Tr(QZ)
is linear in the new variable Z.

In the original offset optimization algorithm, [1] relaxes
the exact, non-convex QCQP into a convex Semi-Definite
Programming (SDP) by removing the rank constraint and
gets the following formulation

maximize
Z∈R(2|S|+2)×(2|S|+2)

Tr(WZ)

subject to Tr(MsZ) = 1 ∀s ∈ S ∪ ε (18)
Z � 0.

The solution to the relaxed convex SDP problem gives
an upper bound on the value of the optimization problem.
This upper bound is the optimum solution of the rank-
constrained SDP problem if the solution matrix has rank
1. If solution matrix has rank bigger than 1, [1] proposes
vector decomposition as one of the options for obtaining
the optimum solution. In this paper, we used vector
decomposition to estimate the optimum solution as well.

III. CASE STUDY NETWORKS

A. Sites Description

In this section, we test the performance of the offset
optimization algorithm that was developed in [1] on two real
world case study networks. Figure 1 shows a ten-intersection
portion of San Pablo Ave. in Berkeley, California that serves
as our first case study. The figure also indicates the input
approaches that have the most traffic volume.

The second case study network is shown in Figure 2,
which is a seven-intersection portion of Montrose Rd. in
Montgomery County, Maryland. Similar to the first network,
Figure 2 indicates the major inputs of the network. This
network is equipped with detectors from Sensys Network
Inc., a company specializing in wireless traffic detection.
According to the detection data, major traffic flows into the
network from three directions. The same figure indicates that
most traffic in the eastbound direction comes from input 1
and in the westbound direction comes from inputs 2 and 3.

B. Experiment Design for Case Study Networks

We used Synchro 9 to build a test-bed of the networks and
then used Synchro’s offset optimization tool to optimize the
intersection offsets, while other control parameters such as
cycle time, green time, split ratio, and etc. are constant. As
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Fig. 1. Case study 1: San Pablo Ave Network in Berkeley, California.
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Fig. 2. Case study 2: Montrose Rd. Network in Montgomery County,
Maryland.

explained in the Synchro user manual, for each offset com-
bination, Synchro reevaluates the departure patterns at the
intersection and surrounding intersections and uses Highway
Capacity Manual (HCM) delay equation to recalculate delay
values [15]. Then chooses the offset values with the lowest
delay as the optimum. We repeated this process for all the
traffic profiles and recorded the offset values.

In addition, a simulation test-bed was built in VISSIM
8 for evaluating the performance of different offsets. We
used the current signal settings and network information for
modeling, and for each traffic profile we tested 2 scenarios:
• Offsets determined by Synchro’s optimization method.
• Offsets determined by the proposed offset optimization

algorithm.
Based on available data, we designed several different

traffic profiles for each network. Figure 3 shows the tested
scenarios for the San Pablo Ave Network. For this case study,
scenarios 1 and 2 correspond to the traffic during the peak
hour in different directions, and scenario 3 corresponds to
the traffic during off-peak hours. Figure 4 shows the tested
traffic scenarios for the Montrose Rd. Network. For this case,
scenarios 1 and 5 represent the AM-peak condition while
scenarios 2 and 4 are the PM-peak condition, and scenario
3 represents the mid-day traffic profile.

C. Analysis of the Result for Case Study Networks

For both case study networks and for each traffic sce-
nario, we tested the performance of the offsets suggested by
the offset optimization algorithm and offsets suggested by
Synchro. To do so, we ran the VISSIM simulation for one
hour for each scenario. In order to evaluate the performance
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Fig. 3. San Pablo Ave Network traffic profiles
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Fig. 4. Montrose Rd. Network traffic profiles

of the network under each offset configuration, we collected
the following measures for vehicles moving along the major
routes:
• Average number of stops that each vehicle experiences.
• Average vehicle delay that each vehicle experiences.
Major routes have the most traffic volume. In the San

Pablo Ave network, these are the south-to-north and north-
to-south routes through all intersections. In the Montrose Rd.
network, there are four major routes: from west to the upper
east leg and vice-versa, and from west to lower east leg and
vice-versa.

The following results present the average traffic measures
over all the major routes in each network. In Figure 5(a),
the orange (respectively, yellow) columns show the average
number of the stops that vehicles experience under offset
values suggested by Synchro (respectively, the proposed
algorithm). Clearly, the algorithm offsets reduce the number
of the stops in all three traffic profiles for the San Pablo Ave
Network, and up to 20% improvement in scenario 2.

In the Montrose Rd. Network, we tested 5 traffic profiles.
Figure 5(b) shows the average number of the stops for these
profiles. In all scenarios, the proposed algorithm outperforms
Synchro. Scenario 2 shows the most improvement of 30%
reduction in the number of stops.

In addition to the number of stops, VISSIM estimates the
vehicle delay as the difference between the travel time in free
flow condition and actual travel time of each vehicle. This
delay includes the time that a vehicle is stopped at red lights
and accounts for the acceleration and deceleration time as

Fig. 6. Queue spill-back at the first intersection (red circle) blocks the
entrance.

well. Figure 5(c) shows the average delay for the San Pablo
Ave network and we see that for scenario 2, the average
delay is reduced, but in scenarios 1 and 3, the average delay
remains almost the same. However, in these scenarios, the
average number of stops is reduced, as has already been
noted in Figure 5(a).

In the Montrose Rd. network, as seen in Figure 5(d), the
average delay is lower for all traffic scenarios under offset
values suggested by the proposed offset optimization algo-
rithm compared with Synchro, and scenario 2 experiences
the most improvement, with 30% reduction in delay.

IV. STORAGE CAPACITY CONSTRAINTS

The result from case studies show the algorithm’s sug-
gested offset values improve the traffic condition in the
networks. However, this algorithm implicitly assumes infinite
storage capacity on links. While this assumption may be
sometimes reasonable, as in the case studies above, some
networks with short links or high traffic volumes may
be susceptible to the spill-back phenomenon where a link
exceeds its capacity and the queue blocks upstream traffic
flow. In the next two sections we show how to modify the
algorithm to work for networks with limited storage capacity
links.

A. Storage Capacity Constraint Formulation

At this point we have a model of the average queue length,
equation (9), in each link as a function of the offsets θs for
s ∈ S. However, in reality, the length of a queue in each link
cannot exceed the storage capacity of that link, and if the
queue length reaches this capacity, vehicles will not be able
to enter the link and will block the upstream intersection;
this situation is called spill-back. Figure 6 shows an example
of the spill-back in a network. The intersection marked by
the red circle is experiencing spill-back, and vehicles cannot
enter the intersection even though the light is green.

In order to prevent spill-back, we constrain the maximum
queue length that can exist in each link, 2Bl, to be equal or
less than the maximum number of the vehicles that can be
stored in the link under jam density, kl. From Section II-A
we have Ql

ω ≤ Bl, so for each link l ∈ L, we introduce the
storage capacity constraint

2Ql ≤ ωkl

⇐⇒ Q2
l −

(
ωkl
2

)2

≤ 0. (19)
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Fig. 5. Case studies average vehicle delay and number of the stops results for every scenario

This leads to the final optimization problem by adding the
constraint (19) to (11)

maximize
{θs}s∈S

∑
l∈L

Alαl cos(θτ(l) − θσ(l) + ϕl − γl)

subject to Q2
l −

(
ωkl
2

)2

≤ 0 ∀l ∈ L. (20)

B. Solving the Optimization Problem

In Subsection IV-A, we introduced the concept of storage
capacity constraints that would protect the network against
suffering from spill-back. Now, to incorporate these con-
straints in the QCQP formulation, for each link we have
zTClz ≤ Kl where Kl = −A2

l − α2
l + (ωkl2 )2 and Cl is

given by

C1[s,u] =

{
−2Alαl cos(ϕl − γl) if s = τ(l) and u = σ(l)

0 otherwise

C2[s,u] =

{
−2Alαl sin(ϕl − γl) if s = τ(l) and u = σ(l)

0 otherwise

with

Cl =

[
C1 C2

−C2 C1

]
, Cl =

1

2
(Cl + Cl

T ). (21)

The original optimization problem from (17) together with
the new storage capacity constraints leads to

maximize
z∈R2|S|+2

zTWz

subject to zTMsz = 1 ∀s ∈ S
zTClz ≤ Kl ∀l ∈ L.

(22)

Then, we relax the exact, non- convex QCQP into a convex
Semi-Definite Programming (SDP) by removing the rank
constraint

maximize
Z∈R(2|S|+2)×(2|S|+2)

Tr(WZ)

subject to Tr(MsZ) = 1 ∀s ∈ S ∪ ε (23)
Tr(ClZ) ≤ Kl ∀l ∈ L

Z � 0.

If Z has rank higher than 1, we use vector decomposition
to estimate the result.

V. ALGORITHM EVALUATION

A. New Algorithm’s Evaluation

Now, let’s test the algorithm by assuming a network such
as the one in Figure 6, with 4 intersections and fixed common
cycle time for all intersections. Starting from the most left
hand side intersection, we have intersection 1, 2, 3, and 4.
Also, there is link 1, connecting intersection 1 and 2, link 2,
connecting intersection 2 and 3, and finally we have link 3,
connecting intersection 3 and 4.

Input demand from minor streets to the network is minimal
and there are 800 and 500 vehicle per hour traffic flow on
the eastbound and westbound approaches. We assumed a
fixed predesigned timing plan for signals but used the Offset
Optimization Algorithm to estimate the offset values under
the following condition
• Scenario 1: Infinite storage capacities for links.
• Scenario 2: Storage capacity of link 1, 2, and 3 are

respectively 3, 4, and 5 vehicles.



Intersection 1 2 3 4
Offset values in seconds for scenario 1 0 4 10 19
Offset values in seconds for scenario 2 0 3 7 12

TABLE I
OFFSET VALUE OF EACH INTERSECTION UNDER THE TWO SCENARIOS

Link Number of vehicles in Number of vehicles in
Scenario 1 Scenario 2

Link 1 EB 1.8 2.2
Link 2 EB 2.3 3.0
Link 3 EB 2.5 4.6
Link 1 WB 3.2 3.0
Link 2 WB 4.4 4.0
Link 3 WB 6.0 5.0

TABLE II
MAXIMUM NUMBER OF VEHICLES IN QUEUE UNDER THE TWO

SCENARIOS

As a result, Table I shows the offset values before and
after applying the storage capacity constraints on the links.
Moreover, Table II presents the algorithm’s estimated values
of the maximum number of the vehicles in the queue in
each link under each scenario. According to that table, the
maximum queue length in link 1 WB, 2 WB, and 3 WB
are smaller in scenario 2 and they are equal to the storage
capacity values of the links. However, the maximum queue
length in link 1 EB, 2 EB, and 3 EB, increase due to the
new offset values.

With the current model, estimated queue length values
from the algorithm are not equal to the queue length from
simulation, because the model does not consider the car
following theory. So we will not be able to test the new
algorithm in a simulator and on a real world network. But if
we improve the model to estimate an accurate queue length
value, we can use the storage capacity constraints to prevent
spill-back in links.

VI. CONCLUSION

In this paper, we evaluated the performance of an offset
optimization algorithm on two real world networks under
several traffic profiles. In almost all cases, the offset values
obtained by the proposed algorithm reduce the average
number of the stops and total delay that vehicles experience
as compared to Synchro’s extracted optimum offset values.
We used Synchro’s suggested optimum offset value as our
baseline because it is a popular method among transportation
engineers that is commonly used in practice.

The improvement varies depending on the geometry of the
network and traffic profile. However, in all scenarios, the pro-
posed offset optimization algorithm has better performance
compared to Synchro. Networks that are larger and more
complicated, in other words having multiple major traffic
inputs, such as Montrose Rd. network, are likely to benefit
more from the proposed offset optimization method because
by considering the demand in all the existing links and
traffic approaches, this algorithm can also improve network

congestion in a time-efficient manner. For example, in the
Montrose Rd. network, the offset optimization algorithm
reduces the delay and number of the stops by about 30%
in some traffic profiles.

In the last sections of the paper, we extended the original
offset optimization algorithm by eliminating the assumption
of infinite storage capacities for links. We added storage
capacity constraints to the optimization problem, so the
maximum queue length in the links can not pass the storage
capacity of the links. The ultimate goal is to prevent spill-
back in the network by controlling the maximum queue
length in critical links. In order to achieve this, we need
to improve the current model in a way that it will estimate
a more accurate queue length value. One approach for
improving the current algorithm in future, is to use multiple
sinusoidal waves to model arrival and departure instead of
using a single wave.
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