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Abstract

We consider a multiagent coordination problem where the objective is to steer a team of mobile agents into a formation of
variable size. We assume the shape description of the formation is known to all agents, but the desired size scaling of the
formation is known only to a subset of agents. We present two strategies that allow the agents to maneuver to the desired scaled
formation using only local relative position information. These strategies can be implemented using information gathered via
local sensors and no interagent communication. We compare the two methods through several examples with simulations.

Key words: Cooperative control, Autonomous mobile robots, Formation control

1 Introduction

Group coordination of mobile agents using distributed
feedback laws has received increased attention as hard-
ware and computing costs have decreased. In many
cases, a team of interacting autonomous agents can ac-
complish tasks that are difficult or impossible for one
robot to accomplish. Often, the goal of such coordination
problems is to achieve global group behavior through
local feedback interactions, Tsitsiklis et al. (1986),
Reynolds (1987), Jadbabaie et al. (2003), Olfati-Saber
& Murray (2004), Ren & Beard (2005), Olfati-Saber
et al. (2007), Arcak (2007), Yu et al. (2010).

Formation control and maintenance is a common group
task and has been addressed using a variety of methods
in the literature as in Tanner et al. (2003), Lawton et al.
(2003), Fax & Murray (2004), Vicsek et al. (1995), Desai
et al. (1998), Ogren et al. (2004), Axelsson et al. (2003),
Krick et al. (2008), Hendrickx et al. (2007), Sepulchre
et al. (2008), Basiri et al. (2010), and Cao et al. (2011).

Allowing some agents to be leaders and others to be
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followers with unique tasks for each has also been ex-
tensively studied. To name a few, Shi & Hong (2009)
discuss flocking and consensus techniques with leaders
when the communication topology is time-varying and
agents have nonlinear dynamics, Tanner et al. (2004) an-
alyze stability of formation control strategies by viewing
the leaders as inputs and developing a notion of leader-
to-formation stability that is similar to input-to-state
stability (Sontag (1989)), and Cao & Ren (2009) present
a strategy for containment control using stationary or
dynamic leaders with a static or time-varying directed
communication topology.

In this paper, we consider the problem of formation con-
trol when only a subset of the agents, henceforth called
the leaders, know the desired formation size. The re-
maining follower agents implement a cooperative control
law using only local interagent position information such
that the agents converge to the desired formation scaled
by the desired size. By allowing the size of the formation
to change, the group can dynamically adapt to changes
in the environment such as unforeseen obstacles, adapt
to changes in group objectives, or respond to threats.

We present a control strategy for the leaders and pro-
pose two strategies for the follower agents. In the first
strategy, referred to as the single link method, each fol-
lower agent relies on one link to estimate the desired
size scaling and uses a formation control law to achieve
the formation. This method results in a simple geomet-
ric condition for certifying stability given a specific for-
mation via a small-gain analysis. In the second strat-
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egy, referred to as the multiple link method, the follower
agents calculate estimates of the desired scale along each
adjacent edge. This strategy typically offers better per-
formance in terms of speed of convergence and stability
but requires a further constraint to ensure that the final
formation is a scaling of the desired formation.

In both designs, we assume the agents are equipped with
sensing capabilities such that relative positions of neigh-
boring agents are available to an agent, but agents are
not necessarily capable of communicating other informa-
tion to one another. Such a construction may be valuable
in cases where communication is expensive, unreliable,
or dangerous, yet passive sensors can allow the agents to
nonetheless interact with each other and accomplish a
desired group behavior. Furthermore, by allowing only
some nodes to determine a formation size, it may be
possible to equip only these leader nodes with the po-
tentially expensive sensing, computational, and/or com-
munication equipment necessary for determining an ap-
propriate formation size given factors such as environ-
mental conditions, mission commands, etc. The follower
agents could conceivably be much simpler and therefore
less expensive and expendable. In addition, a fundamen-
tal understanding of what can be accomplished with rel-
ative position feedback alone is of theoretical interest in
cooperative control problems.

The case of direct communication was studied in Coogan
et al. (2011). A special case of the single link method in
which each formation has one leader, and each follower
agent employs feedback with memory to update its es-
timate was also studied in Coogan et al. (2011). In the
present sequel, we allow multiple leaders, we consider the
case in which the speed of the estimate dynamics is al-
tered or memory in the feedback is removed altogether,
and we present an alternative feedback method in which
each agent monitors multiple links for the purpose of es-
timating the formation scale.

This paper is organized as follows: In Section 2, we in-
troduce the problem statement. In Section 3 and Sec-
tion 4, we present the single link method, and in Sec-
tion 5 we present the multiple link method. We extend
these methods to single integrator models and nonlin-
ear models that are input-output linearizable in Section
6. In Section 7, we present three examples with simula-
tions, and we summarize our main results and provide
discussion in Section 8.

2 Problem Definition

Consider a team of n agents each represented by a posi-
tion vector xi ∈ Rp, i = 1, . . . , n, and assume each agent
is modeled with double integrator dynamics:

ẍi = fi. (1)

We define x = [xT1 xT2 xT3 . . . xTn ]T and v = ẋ to denote
the stacked vector containing the velocities of all of the
agents.

We assume there is a position sensing topology by which
agents are capable of inferring the relative position of
other agents. We represent this topology with a sensing
graph with n nodes representing the n agents. We assume
relative position sensing is bidirectional, and if agent i
and agent j have access to the quantity xi − xj , then
the ith and jth nodes of the sensing graph are connected
by an edge. We also assume that the sensing graph is
connected.

Suppose there are m edges in the sensing graph. We
arbitrarily assign a direction to each edge of the sensing
graph and define the n×m incidence matrix D as:

dij =


+1 if node i is the head of edge j

−1 if node i is the tail of edge j

0 otherwise

where dij is the ijth entry of D. Since the graph is bidi-
rectional, this choice of direction does not affect any of
the following results.

Suppose the agents are to keep a certain formation by
maintaining the relative interagent displacements de-
fined by the sensing topology. Suppose, in addition, it is
allowable for the formation size to change, and a subset of
the agents possess a static desired target formation scale
λ∗ ∈ R. We call the agents in this subset leaders and the
remaining agents followers. Unless otherwise stated, we
assume there is at least one leader. We denote the num-
ber of leaders by nl and the number of followers by nf ,
and we assume the followers are indexed first. We thus
let IF = {1, . . . , nf} be the set of indices corresponding
to the follower agents and IL = {nf + 1, . . . , n} be the
set of indices corresponding to the leader agents.

Our goal is to achieve the following group behavior:

The relative position of two agents connected by an edge
k, denoted by

zk ,
n∑
i=1

dikxi, (2)

converges to a prescribed target value zdkλ
∗ for each k =

1, . . . ,m, i.e.,

lim
t→∞

zk = zdkλ
∗, for k = 1, . . . ,m (3)

and
lim
t→∞

vi = 0, for i = 1, . . . , n (4)

where vi = ẋi.
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Remark 1 For ease of exposition, we have assumed that
the agents do not follow a prescribed velocity profile. If
a common velocity vd(t) is known to all the agents, then
we can replace v with ṽ(t) = v(t)− vd(t) and proceed as
below. See Coogan et al. (2011) for an example of how
this can be achieved.

Let z , [zT1 . . . zTm]T = (DT ⊗ Ip)x and zd ,
[(zd1)T . . . (zdm)T ]T where ⊗ is the Kronecker product
operator, and Ip denotes the p× p identity matrix.

We make the following two assumptions regarding zd to
avoid ill-posedness:

(1) We assume zd ∈ R(DT⊗Ip) whereR denotes range
space. This requirement is necessary to ensure that
there exists agent positions in Rp that achieve the
desired formation.

(2) We assume ||zdk || > 0 for all k.

All agents have access to the static vector zd, but only the
leaders possess knowledge of λ∗. Thus we seek a control
strategy for the leaders and the followers that achieves
the desired group behavior (3)–(4), relies only on local
relative position information, and does not depend on
λ∗ in the case of the followers.

Observe that our approach is a displacement-based al-
gorithm and thus we require all agents to have access
to a global reference frame, see Oh & Ahn (2010) for a
review of formation control methods. We note that, in
practice, it can be difficult to establish a global reference
frame but this can be accomplished using, e.g., a global
positioning system.

3 Formation Scaling via the Single Link Method

We introduce the following strategy for the leader agents:

fi = −
m∑
j=1

dij(zj − zdj λ∗)− κvi, i ∈ IL (5)

where κ > 0 is a damping coefficient. Note that dij is ei-
ther 0, 1, or −1, and is only nonzero when zj is an edge
connected to node i. Thus fi in (5) is a function of only
the position of neighboring agents and therefore is a dis-
tributed control strategy. Towards developing a strategy
for the follower agents, we now construct a directed sub-
graph of the sensing graph with the following properties:

• The subgraph contains all the vertices and a (directed)
subset of the edges of the sensing graph.
• Each follower node is the head of exactly one edge.

The leaders are the head of no edge.
• A directed path exists to each follower node originat-

ing from a leader node.
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Fig. 1. (a) 4-agent, 5-edge sensing graph where agent 4 is the
leader with edge indexing based on the monitoring graph. (b)
One possible monitoring graph constructed from the sensing
graph.

In the case of one leader, this subgraph is a directed
spanning tree rooted at the leader. We call this graph the
monitoring graph. We have assumed the follower nodes
are indexed first, and without loss of generality, we now
index the edges of the sensing graph such that for each
edge of the monitoring graph, the index of the corre-
sponding edge in the sensing graph matches the head
node index from the monitoring graph. We arbitrarily
index the remaining edges. Thus vectors z1, . . . , znf

cor-
respond to the monitoring edges of agents 1, . . . , nf , re-
spectively. Fig. 1 shows an example of a formation with
the sensing graph, one possible construction of the mon-
itoring graph, and the induced edge indexing scheme.

The proposed update rule for the follower agents is

fi = −
m∑
j=1

dij
(
zj − zdj λi

)
− κvi, i ∈ IF (6)

where

λi ,
1

||zdi ||2
(zdi )T zi. (7)

This means that each follower agent i monitors one edge
(edge i) to gain a sense of the value of λ∗ and employs
(7) as an estimate. We let

∆ ,

m∑
j=1

d1j
1∣∣∣∣zd1 ∣∣∣∣2 zdj (zd1)T 0

. . .

0

m∑
j=1

dnf j
1∣∣∣∣∣∣zdnf

∣∣∣∣∣∣2 zdj (zdnf
)T


(8)

and
z̃ , z − zdλ∗, (9)

and we write the strategies (5) and (6) in matrix form as

v̇ = −κv − (D ⊗ Ip)z̃ +

[
∆ 0

0 0

]
z̃. (10)
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where we have used (Df ⊗ Ip)z
d = [∆ 0]zd with Df

consisting of the first nf rows of D, i.e. we decompose
D as [

Df

Dl

]
, D (11)

where Df includes the rows of D corresponding to the
followers and Dl includes the rows corresponding to the
leaders. Observing that

˙̃z = (DT ⊗ Ip)v, (12)

we see that we are interested in the stability of the ori-

gin of
[
vT z̃T

]T
where the dynamics of the system are

given by (10) and (12). It is easy to see that R(DT ⊗ Ip)
is invariant under the dynamics of (12). Furthermore,
zd is designed such that zd ∈ R(DT ⊗ Ip), hence for our
physical setup in which z represents relative displace-
ment among a team of agents, z̃ will evolve in the sub-
space R(DT ⊗ Ip).

While the stability of the overall dynamics governed by
(10) and (12) can be determined using a number of tech-
niques including direct calculation of eigenvalues, we
propose a simple condition derived via application of the
small-gain theorem as a certificate of stability. While this
condition may be conservative, it provides an appealing
geometric criterion that is easy to check using the for-
mation geometry and eigenvalues of the graph Laplacian
matrix. To this end, we consider (10) and (12) as the
interconnection of two subsystems:

(1) Subsystem 1:

v̇ = −κv − (D ⊗ Ip)z̃ + u (13)

˙̃z = (DT ⊗ Ip)v (14)

y = z̃. (15)

(2) Subsystem 2:

u =

[
∆ 0

0 0

]
y. (16)

We have the following Lemmas:

Lemma 2 Let µ1, . . . , µn−1 be the positive eigenvalues
of the unweighted sensing graph Laplacian DDT . Let

ρi =

{
1/
√
µi if κ ≥

√
2µi

2
√
µi

κ
√

4µi−κ2
if κ <

√
2µi

(17)

for i = 1, . . . , n− 1.

The L2 gain from u to y of subsystem 1 defined by (13)–
(15) is

γ1 = max
i
{ρi}. (18)

Proof. We observe that the “⊗ Ip” term only in-
creases the multiplicity of a singular value and therefore
it suffices to assume that p = 1 to determine γ1. Let
D = UΣV T be the singular value decomposition of D
with U ∈ Rn×n, V ∈ Rm×m, and Σ ∈ Rn×m where
Σ = diag{{√µi}n−1i0

} and {µi}n−1i=0 are the eigenvalues

of DDT such that 0 = µ0 < µ1 ≤ µ2 ≤ · · · ≤ µn−1.
Note that if m = n− 1 (the minimum number of edges
needed for a complete graph), then

√
µ0 = 0 is not a

singular value of D, thus we have i0 = 0 if n ≥ m, and
i0 = 1 otherwise.

We let v̄ = UT v, z̄ = V T z̃ and obtain the following
decoupled system after a change of basis:

˙̄v = −κv̄ − Σz̄ + ū (19)

˙̄z = ΣT v̄ (20)

ȳ = z̄ (21)

where ū = UTu and ȳ = V T y. Each decoupled system
with nonzero output takes the form

˙̄vi = −κv̄i −
√
µiz̄i + ūi (22)

˙̄zi =
√
µiv̄i (23)

ȳi = z̄i (24)

for i = 1, . . . , n−1. Each of these subsystems has transfer
function

Gi(s) =

√
µi

s2 + κs+ µi
, (25)

each with L2 gain ρi given in (17). Using the fact that
U and V are orthonormal and therefore do not alter the
magnitude of the input u or the output y, the lemma
follows. 2

Corollary 3 Let µ1 denote the smallest positive eigen-
value of DDT and µn−1 the largest. For κ ≥

√
2µn−1,

we have

γ1 =
1
√
µ1
. (26)

Lemma 4 The L2 gain from y to u of subsystem 2 de-
fined by (16) is

γ2 = max
i∈IF


∣∣∣∣∣∣∑m

j=1 dijz
d
j

∣∣∣∣∣∣
||zdi ||

 . (27)

Proof. Since

[
∆ 0

0 0

]
is a static matrix, it is clear that
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γ2 =

∣∣∣∣∣
∣∣∣∣∣
[

∆ 0

0 0

]∣∣∣∣∣
∣∣∣∣∣
2

(28)

= ||∆||2 (29)

which is simply the largest singular value of ∆. Since ∆
is block diagonal, the singular values of ∆ are just the
singular values of the blocks. Each block is a dyad of the
form  m∑

j=1

dijz
d
j

( 1

||zdi ||2
(zdi )T

)
(30)

for i ∈ IF . Therefore each block has one nonzero singular
value equal to the product of the norms of the column
vector and the row vector which form the dyad, i.e. the
nonzero singular values of ∆ are

∣∣∣∣∣∣
∣∣∣∣∣∣
m∑
j=1

dijz
d
j

∣∣∣∣∣∣
∣∣∣∣∣∣ · 1

||zdi ||

 , i ∈ IF . (31)

2

Theorem 5 Let ρi be defined as in (17). Then the con-
trol strategy (5) and (6) achieves the desired group be-
havior (3) and (4) if

max
i
{ρi} ·max

i∈IF


∣∣∣∣∣∣∑m

j=1 dijz
d
j

∣∣∣∣∣∣
||zdi ||

 < 1. (32)

Proof. Using Lemma 2, Lemma 4 and applying the
small-gain theorem, see e.g. Khalil (2002), we conclude
that without exogenous input, both u and y are L2 func-
tions. Because both subsystem 1 and subsystem 2 are
linear, u and y are uniformly continuous, and, applying
Barbalat’s Lemma, we conclude y → 0. 2

A combination of Theorem 5 and Corollary 3 leads to
the following:

Corollary 6 Let µ1 be the smallest positive eigenvalue
of DDT and let µn−1 be the largest eigenvalue. If κ ≥√

2µn−1 and

1
√
µ1
·max
i∈IF


∣∣∣∣∣∣∑m

j=1 dijz
d
j

∣∣∣∣∣∣
||zdi ||

 < 1, (33)

then the control strategy (5) and (6) achieves the desired
group behavior (3) and (4).

We note that when the sufficient condition above fails,
stability of the single link method can be checked us-
ing other traditional approaches (eigenvalue calculation,

etc.), and the proposed algorithm still offers a novel for-
mation control strategy.

4 Adding Memory to the Scaling Estimate

We note that it is easy to add dynamics to the follower
agents’ estimates of the desired formation scaling with-
out qualitatively altering the results from Section 3. This
may be desirable to prevent large fluctuations in the “es-
timate” of λ∗ given by (7) during transient periods when
the agents may be far from the desired configuration.
Suppose each follower agent possesses a dynamic local
formation scalar λi for i ∈ IF which serves as a local
estimate of λ∗. Define

λ ,
[
λ1 . . . λnf

]
. (34)

We now propose a control strategy to drive λi to λ∗ for
i ∈ IF . For the follower agents, let

fi = −
m∑
j=1

dij
(
zj − zdj λi

)
− κvi, i ∈ IF (35)

with

λ̇i = −α
(
λi −

(zdi )T zi
||zdi ||2

)
, i ∈ IF (36)

where α ∈ (0,∞). To write the system in block form,
define the following:

∆1 ,


∑m
j=1 d1jz

d
j 0

. . .

0
∑m
j=1 dnf jz

d
j

 (37)

∆2 ,


1

||zd1 ||2
(zd1)T 0

. . .

0 1
||zdnf

||2 (zdnf
)T

 . (38)

We can then write (5), (35), and (36) in matrix form as

v̇ = −κv − (D ⊗ Ip)z̃ +

[
∆1

0nlp×nf

]
λ̃ (39)

˙̃z = (DT ⊗ Ip)v (40)

˙̃
λ = −αλ̃+

[
∆2 0nf×(m−nf )p

]
z̃ (41)

where we shift the equilibrium to the origin by defining
λ̃ = λ − λ∗1. We depict system (39)–(41) as the inter-
connection of two subsystems as in Fig 2.

We again apply the small-gain theorem to these two sub-
systems to determine the stability of (39)–(41). Observ-
ing that the H∞ gain of the lower subsystem is obtained
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[
v̇

˙̃z

]
=

[
−κI −D ⊗ Ip

DT ⊗ Ip 0

][
v

z̃

]
+

[
I

0

]
u

y =
[
0 I
] [v
z̃

]

 α
s+α 0

0
. . .



+

[
∆2 0

][
∆1

0

]

yu

Fig. 2. System (39)–(41) as the interconnection of two sub-
systems.

when s = 0j and that ∆1∆2 = ∆, we obtain the follow-
ing lemma:

Lemma 7 The L2 gain from y to u of

u =

[
∆1

0

] α
s+α 0

0
. . .

[∆2 0
]
y (42)

is

γ2 = max
i∈IF


∣∣∣∣∣∣∑m

j=1 dijz
d
j

∣∣∣∣∣∣
||zdi ||

 . (43)

Substituting Lemma 7 for Lemma 4, we see that The-
orem 5 and Corollary 6 still hold if the followers use λ
update rule (36) with control strategy (35).

5 Formation Scaling via the Multiple Link
Method

We again assume that the leader agents use strategy (5).
We define

λj ,
1

||zdj ||2
(zdj )T zj (44)

and propose the following strategy for the follower
agents:

fi = −
m∑
j=1

dij
(
zj − zdj λj

)
− κvi, i ∈ IF . (45)

The difference between (45) and (6) is that in (45), the
estimate of λ∗ changes for each link within the summa-
tion, whereas in (6), one link was assigned to each agent
in order to estimate λ∗. Let

Pj ,
1

||zdj ||2
zdj (zdj )T (46)

be the orthogonal projection matrix onto

Sj , span{zdj } ⊂ Rp. (47)

Let
Qj = Ip − Pj (48)

be the orthogonal projection onto S⊥j where ⊥ denotes
orthogonal complement. Also let

P ,


P1 0

. . .

0 Pm

 (49)

Q ,Ipm − P, (50)

observing that P is the orthogonal projection matrix
onto

S , S1 × · · · × Sm =

m∏
j=1

Sj ⊂ Rmp (51)

and Q is the orthogonal projection onto S⊥. Let

DQ ,

[
(Df ⊗ Ip)Q
(Dl ⊗ Ip)

]
. (52)

Then we can rewrite (45) as

fi = −
m∑
j=1

dijQjzj − κvi, i ∈ IF . (53)

Observing that Qzd = 0, we can combine the leader and
follower strategies and write (5) and (45) in matrix form
as

v̇ = −DQz̃ − κv. (54)

We first explore the case in which we do not have any
leaders, which is interesting in its own right and offers
insight into the geometric requirements for ensuring that
the scaled formation is attained.

Lemma 8 Suppose there are no leader agents, i.e.DQ =
(D ⊗ Ip)Q. Then strategy (53) asymptotically converges
to a scaling of the desired formation zd for all initial
conditions if and only if

R(DT ⊗ IP ) ∩ S = span{zd}. (55)

Proof. With no leaders, we let λ∗ = 0 without loss of
generality and then z = z̃.

(if) Let V , 1
2 (vT v + zTQz) be a Lyapunov function

for the system. Recalling that ż = (DT ⊗ Ip)v, we have

V̇ = −kvT v ≤ 0. Applying LaSalle’s principle, we see
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that v ≡ 0 only if (D⊗Ip)Qz = 0 =⇒ Qz ∈ N (D⊗Ip).
But also z ∈ R(DT ⊗ Ip) = N (D ⊗ IP )⊥. Therefore,
if v ≡ 0, we have ||Qz||2 = zTQTQz = zT (Qz) = 0,
and thus z ∈ N (Q) = S. By condition (55), we have
z ∈ span{zd}.

(only if) If we assume that condition (55) does not hold,
then there exists a z∗ such that z∗ ∈ R(DT ⊗Ip)∩S and
z∗ 6∈ span{zd}. Since z∗ ∈ S and Q is the orthogonal
projection onto S⊥,Qz∗ = 0 and therefore v = 0, z = z∗

is an equilibrium of (53), but z∗ is not a scaling of the
desired formation. 2

Via the proof of Lemma 8, we see that strategy (45) en-
sures that limt→∞ z ∈ S, i.e. that each edge specified in
the formation obtains the correct direction in the limit.
Thus, to ensure that a scaling of the desired formation
is obtained, we must ensure that if all formation edges
zj are constrained to have the prescribed direction of zdj ,
then it must be that all edges have the same scaling of
zdj , and this condition is captured explicitly in (55). A
formation specification satisfying this condition is said
to be parallel rigid and has been studied primarily in
the computer-aided design literature, see e.g. Servatius
& Whiteley (1999). If z is such that z ∈ R(DT ⊗Ip)∩S,
then z is said to be a parallel redrawing of zd, and z is
a trivial parallel redrawing if z = αzd for some α ∈ R.
Thus a formation is parallel rigid (i.e. satisfies (55)) if
and only if all parallel redrawings are trivial. There ex-
ists a duality between the concepts of parallel rigidity
and the more standard distance-based rigidity, see Eren
(2007) and Eren et al. (2004) for details.

Theorem 9 With at least one leader, the control strat-
egy (5) for the leaders and the multiple link method (45)
for the followers achieves the desired group behavior (3)–
(4) for sufficiently large κ if and only if the equilibrium
subspace R(1T ⊗ Ip) of the auxiliary system

ξ̇ = −DQ(DT ⊗ Ip)ξ (56)

is asymptotically stable.

Proof. We consider the asymptotic stability of the ori-
gin of

v̇ = −κv −DQz̃ (57)

˙̃z = (DT ⊗ Ip)v. (58)

(if) Let

A =

[
−κInp −DQ

(DT ⊗ Ip) 0mp×mp

]
. (59)

We have that the system (57)–(58) evolves in the sub-

space z̃ ∈ R(DT ⊗ Ip), thus R(W ) with

W =

[
I 0

0 DT ⊗ Ip

]
(60)

is an A-invariant subspace. Rather than investigate the
dynamics of (57)–(58) directly, we can instead consider
the dynamics in this A-invariant space. To this end, note
that AW = WC with

C =

[
−κI −DQ(DT ⊗ Ip)
I 0

]
. (61)

Thus, we can consider the stability properties of

η̇ = Cη, (62)

keeping in mind that

N (C) = N (W ) = R
([

0 (1T ⊗ Ip)
]T)

(63)

is nontrivial. In particular, (57)–(58) restricted to the
subspace R(W ) is asymptotically stable if and only if
the equilibria subspace N (W ) of (62) is asymptotically
stable. Via block matrix inversion formulae using Schur
complements, we have that the characteristic polynomial
of C is

det(sI − C) = det(s2I + κsI +DQ(DT ⊗ Ip)) (64)

=

mp∏
i=1

(s2 + κs− µi(−DQ(DT ⊗ Ip)))

(65)

where µi(−DQ(DT ⊗ Ip)) is the ith eigenvalue of
−DQ(DT ⊗ Ip). Thus each eigenvalue of −DQ(DT ⊗ Ip)
generates two eigenvalues of C, specifically

µi+,i− =
−κ±

√
κ2 + 4µi(−DQ(DT ⊗ Ip))

2
. (66)

In general, Re[µi] < 0 does not imply Re[µi+,i− ] < 0,
however this implication is true if

κ >

√
Im[µi]2

|Re[µi]|
. (67)

By assumption,−DQ(DT⊗Ip) has p eigenvalues at 0 and
the rest are in the open left half plane. Thus, if κ satisfies
(67) for all nonzero µi, then the p zero eigenvalues of
−DQ(DT ⊗ Ip) will generate p zero eigenvalues of C

7



corresponding to the equilibria subspaceN (W ), and the
remaining eigenvalues will be in the open left half plane.

(only if) Via (66), it is clear that if Re[µi] ≥ 0, then this
µi corresponds to an eigenvalue of (59) with real part
greater than or equal to zero. Thus if (56) has additional
unstable modes, this will correspond to unstable modes
of (59).

2

When we introduce leaders, (55) is no longer a necessary
condition for stability and is thus not an assumption in
Theorem 9, but we can modify (55) slightly and obtain
the following necessary condition:

With at least one leader, the following is a necessary con-
dition for the system defined by (54) and (12) to achieve
the desired group behavior (3)–(4):

R(DT ⊗ Ip) ∩ S ∩N (Dl ⊗ Ip) = {0}. (68)

Thus, we see that (55) is most valuable as a design tool
for use with the multiple link method as is seen in the
following corollary:

Corollary to Lemma 8 If (55) is satisfied for the case
with no leaders, then converting at least one follower to
a leader removes (z̃ ∈ span{zd}, v = 0) from the equi-
librium subspace of (54) and (12) for almost all desired
formations zd (i.e., except a set of measure zero).

Proof. First, observe that there exists some z̄ ∈
R(DT ⊗ Ip) such that (Dl ⊗ Ip)z̄ 6= 0: if not, then
(Dl ⊗ Ip)(D

T ⊗ Ip)ξ = 0 for all ξ, which implies
(DlD

T
l ⊗ Ip)η = 0 for all η, which is a contradiction

since it is easily verified that DlD
T
l > 0 for connected

graphs. Thus N (Dl ⊗ Ip) ∩ R(DT ⊗ Ip) is a proper
subspace of R(DT ⊗ Ip) and therefore the set of ξ such
that (DlD

T ⊗ Ip)ξ = 0 has zero (Lebesgue) measure.
Applying Lemma 8 and (68) gives the result. 2

The corollary shows that (61) and its geometric inter-
pretation should be interpreted as a design methodology
for designing desired formations. However, introducing
leaders may create instabilities, thus we have Theorem
9. 2

6 Extensions to Other Agent Models

6.1 Single Integrator Agent Models

Suppose agent i is modeled as a single integrator agent,
i.e.

ẋi = fi (69)

where we now consider the same control strategies (5)
and (6) with κ = 0 (i.e., no velocity damping). The single
link method and the multiple link method then result in
the following dynamics:

(1) Single link method:

ẋ = −(DDT ⊗ Ip)x+ u (70)

y = (DT ⊗ Ip)x (71)

u =

[
∆ 0

0 0

]
y. (72)

(2) Multiple link method:

ẋ = −(DQ(DT ⊗ Ip))x. (73)

We have again written the single link method as the
interconnection of two subsystems so we can easily apply
the small-gain theorem. Indeed, we have the following
lemma:

Lemma 10 The L2 gain of

ẋ = −(DDT ⊗ Ip)x+ u (74)

y = (DT ⊗ Ip)x (75)

is

γ2 =
1
√
µ1

(76)

where µ1 is the second smallest eigenvalue of the graph
Laplacian DDT , known as the Fiedler eigenvalue or the
algebraic connectivity of the sensing graph.

The proof is similar to that of Lemma 2 and is omitted.

Using Lemma 10, Lemma 4, and the small-gain theorem,
we see that condition (33) of Corollary 6 ensures that the
single link method applied to single integrator models
achieves the desired group behavior (3) and (4).

In the case of the multiple link method, we observe that
system (73) is identical to the auxiliary system (56) in
Theorem 9. Thus we see a formation resulting in stable
dynamics for double integrator dynamics also results in
stable dynamics when applied to single integrator mod-
els.

6.2 Input-Output Linearizable Agent Models

Suppose each agent i has a model of the form

ζ̇i = f i(ζi) + gi(ζi)ui (77)

vi = hi(ζi) (78)

ẋi = vi (79)

8



where ζi ∈ Rqi for some qi ≥ p, ui ∈ Rp is the input, and
vi ∈ Rp is the output. Further suppose the agent models

have vector relative degree
[
1 . . . 1

]
with respect to vi,

see e.g. Sastry (1999).

Note that the dynamics (77)–(78) do not depend on xi.
This captures the intuitive notion that, for most physi-
cally relevant systems in which we identify xi with po-
sition, the internal dynamics will not depend on the ab-
solute position of the agent. The double integrator dy-
namics of (1) are a special case of (77)–(79) in which
f i(ζi) ≡ 0, gi(ζi) ≡ 1, and hi(ζi) = ζi.

After input-output linearization, it is possible to bring
each system into the form

v̇i = ẍi = wi (80)

with zero dynamics defined by

η̇i = f i0(ηi, ξi) (81)

where wi is the (new) input, ηi ∈ Rqi−p, ξi ∈ Rp, and
ηi, ξi are the state variables after a change of coordinates,

i.e.
[
ηTi ξTi

]T
= Ti(ζi) with Ti(·) a diffeomorphism.

If the single link method or the multiple link method is
stable in the case considered in Sections 3 and 5, then
the same strategy with wi as input results in exponen-
tial stability of the origin for the system (80) with state[
vT z̃T

]T
where, as before, z̃ = (DT ⊗ Ip)x − λ∗zd.

Thus, if the origin of the zero dynamics η̇i = f i0(η, 0) is
also asymptotically stable for each i, i.e. each system is
minimum phase, then the system dynamics are locally
asymptotically stable. Global stability results can be ob-
tained under more restrictive conditions on the zero dy-
namics such as input-to-state stability of (81) with re-
spect to input ξi, Sontag (1989).

7 Simulation Results

Example 1. Single link method with scaling estimate
memory.

Consider the formation in the plane depicted in Fig. 1(a)
where the direction of each edge is arbitrary, D corre-
sponds to the chosen node and edge numbering and di-
rection assignment, agent 4 is the leader, and the moni-
toring subgraph is shown in Fig. 1(b). We let

zd =
[
−1 0.5 0.1 0.5 −1 −0.5 0.1 −0.5 0.9 0

]T
,

(82)
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Agent trajectories over time using the single link method with scale estimate memory

0 2 4 6 8 10

0

1

2

Time

λ
i

Evolution of formation scaling factors over time

0 2 4 6 8 10
0

2

4

Time

||
z
j
||

||
z
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Fig. 3. Simulation results for a 4-agent, 5-edge formation
using the single link method with formation scale estimate
memory. The shaded node indicates the leader.

which is consistent with the shape depicted in Fig. 1(a).
We have that µ1 = 2 is the smallest positive eigenvalue of
DDT and µ3 = 4 is the largest eigenvalue of DDT . Now
suppose we implement the control strategy (35) with λ

update rule (36). If κ ≥
√

8, then, by Corollary 3,

γ1 ≤
1√
2
. (83)

Using the geometric condition presented in Lemma 7 we
have that γ2 = 1.373. Thus

γ1γ2 = 1.373
1√
2

= 0.971 < 1 (84)

and therefore the system achieves the desired group be-
havior by Theorem 5 and its corollary. Fig. 3 shows sim-
ulation results for this case with λ∗ = 2, λi(0) = 1 for
i = 1, . . . , nf , α = 1, and the agents’ initial positions
initialized randomly.

Example 2. Dynamic desired formation scale.

While the results derived in this paper assume a static
λ∗, it is clear that if λ∗ does not change quickly or often
with respect to the formation dynamics, then the desired
scaling can be used to dynamically adjust the formation
over time. We demonstrate this using the multiple link
method in Figure 4. The formation is initialized so that

z(0) = zd(0) with λ∗(t) =

{
2, t ∈ [0, 7.5)

0.75, t ∈ [7.5, 15].

Example 3. Comparison of methods when condition (55)
is and is not satisfied.

Consider the regular pentagon formation depicted in
Fig. 5(a) with monitoring subgraph depicted in Fig. 5(b).
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Fig. 4. Simulation results for a 4-agent, 5-edge formation using the multiple link method in which the agents are initialized
in the correct formation such that z(0) = zd(0) and λ∗ = 2 on t ∈ [0, 7.5) and λ∗ = 0.75 on t ∈ [7.5, 15]. The shaded node
indicates the leader.

6

1

2 3

4
5

6

1

2 3

4
5

(a) (b)

Fig. 5. (a) Regular pentagon formation with (b) monitoring
subgraph where agent 6 is the leader.

This example formation does not satisfy (55). Indeed,
Fig. 6 shows that, while both methods are stable, the
multiple link method does not reach the desired scaled

formation. The plot of
||zj ||
||zd

j
|| shows that the lengths of the

edges does not converge to a common value reflecting
the fact that the subspaceR(DT ⊗Ip)∩S has dimension
larger than one. By adding edges between nodes 1 and
5 and nodes 4 and 5 to the desired formation, condition
(55) is satisfied and (3)–(4) is achieved. Figure 7 shows
that both methods converge to the desired formation in
this case. In Fig. 6 and 7, the simulation using the single
link method does not use scale estimate memory.

We note that the regular pentagon and monitoring graph
depicted in Fig. 5 do not satisfy (33) because the product
of the L2 gains is 1.892. Therefore Theorem 5 cannot be
used to certify stability, however the formation control
strategy is indeed stable as can be clearly seen in the
simulations and verified by inspecting the eigenvalues of
the closed loop system. Thus the single link method still
offers a novel formation control approach.
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Agent trajectories over time using the single link method
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Fig. 6. Simulation results for a 6-agent, 8-edge formation
that does not satisfy (55). The shaded node is the leader.

8 Conclusions

In this paper, we introduce increased flexibility and
adaptivity to the standard formation maintenance
problem by presenting cooperative control strategies
that allow a multiagent team to dynamically alter its
formation size while only requiring relative position in-
formation. To address interagent collisions or collisions
with the environment, we note that low level collision
avoidance controllers can be incorporated which are in-
active or have negligible effect when agents are not at
risk of colliding. In addition, the leaders could poten-
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Fig. 7. Simulation results for a 6-agent, 10-edge formation
that satisfies (55). The shaded node is the leader.

n = 4, m = 5, nl = 1

n = 5, m = 7, nl = 1

Fig. 8. Formations that result in unstable dynamics with the
multiple link method. The shaded node indicates the leader
agent.

tially avoid collision with environmental obstacles by
altering the formation size.

For the single link method, we have presented an easily
verified sufficient condition for stability derived via the
small-gain theorem. While such a geometric condition
for stability does not exist for the multiple link method,
we remark that, qualitatively, the multiple link method
offers superior performance in terms of speed of conver-
gence and stability as observed in simulation. In addi-
tion, we observe that formations which tend to be un-
stable when used with the multiple link method are for-

mations in which three or more agents are very nearly
colinear, a condition which can often be avoided when
designing the desired formation. Fig. 8 shows several un-
stable formation shapes with one leader for varying n
and m that fail Theorem 9 because the corresponding
auxiliary system (56) is unstable.

A number of interesting directions for future research
remain. For example, we assume the sensing topology is
fixed. It may be more practical for the sensing topology
to be time-varying according to the sensing properties
of the agents. Additionally, rather than requiring the
agents’ velocities to decay to zero, we could allow the
agents to agree on a constant but nonzero velocity.
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