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Abstract— We consider a multiagent coordination problem
where the objective is to steer a group of agents into a
formation that translates along a predefined trajectory velocity.
Unlike previous control strategies that require a static desired
formation or set of desired formations, we introduce a strategy
in which one agent assigns a scale for the formation and the re-
maining agents adjust to the new scale. Thus, the formation can
dynamically adapt to changes in the environment and in group
objectives or respond to perceived threats. We introduce two
strategies: one that requires agents to communicate estimates
of the desired formation scale along edges of a communication
network and one that only requires relative position sensing
among agents. We show that the former strategy guarantees
stability for any desired connected formation. For the latter
strategy, we present a geometric constraint which can be used
with the small gain theorem.

I. INTRODUCTION

Group coordination of mobile agents using distributed
feedback laws has been an active area of control theory
research in recent years. The main emphasis of such co-
ordination problems is to achieve a desired group behavior
using only local feedback rules [1], [2], [3], [4]. In particular,
formation control as a desired group behavior has received
considerable attention, such as in [5], [6], [7]. Use of artificial
potential fields for formation control is explored in [8],
formation control strategies with communication topology
switching are investigated in [9], and strategies allowing the
desired formation to switch among various configurations is
presented in [10].

In this paper, we consider the problem of formation control
along a velocity trajectory when only one agent knows
the desired formation size. The remaining follower agents
estimate the desired formation size and proceed with a co-
operative control law utilizing this estimate. By allowing the
size of the formation to change, the group can dynamically
adapt to changes in the environment such as unforeseen
obstacles along the trajectory path, adapt to changes in group
objectives, or respond to threats.

We present two strategies for updating the desired for-
mation size estimates. In the first strategy, we assume a
communication topology exists among the agents, allowing
the agents to share formation size estimates. Rather than
permitting the leader to simply dictate the desired formation
scale, which requires a communication structure heavily
dependent on the identity of the leader, we present an update
rule utilizing the internal estimates of multiple neighbors
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while still guaranteeing stability for any desired formation.
The advantage to this approach is that the follower agents do
not need to know which agent is the leader. For example, the
leader could be changed during operation without communi-
cating this change to the remaining agents. In some scenarios,
we are interested in the minimum amount of information
required to allow formation scaling and control as it may
be undesirable or impossible for the agents to actively
communicate with one another. In the second strategy, we
assume that only relative position information defined by a
sensing topology is available to each agent. In this strategy,
no interagent communication is needed.

This paper is organized as follows: In Section II, we
introduce the problem statement. In Section III we intro-
duce a cooperative control strategy that requires interagent
communication and guarantees stability for any connected
formation. In Section IV we introduce a strategy that does not
require interagent communication. In this case, we use the
small gain theorem to derive a sufficient geometric condition
for stability. In Section V, we present simulation results,
and in Section VI, we summarize our results and provide
directions for future research.

II. PROBLEM DEFINITION

Consider a team of n agents each represented by the vector
xi ∈ Rp, i = 1, . . . , n, and assume each agent is modeled
with double integrator dynamics:

ẍi = fi. (1)

We define x = [xT1 xT2 xT3 . . . xTn ]T and v = ẋ to denote the
stacked vector containing the velocities of all of the agents.

We assume there is a position sensing topology by which
agents are capable of inferring the relative position of other
agents. We represent this topology with a sensing graph
with n nodes representing the n agents. We assume relative
position sensing is bidirectional, and if agent i and agent j
have access to the quantity xi − xj , then the ith and jth
nodes of the sensing graph are connected by an edge.

Suppose there are m edges in the sensing graph. We
arbitrarily assign a direction to each edge of the sensing
graph and define the n×m incidence matrix D as:

dij =


+1 if node i is the head of edge j
−1 if node i is the tail of edge j
0 otherwise

where dij is the ijth entry of D. Since the graph is
bidirectional, this choice of direction does not affect any of
the following results.



Suppose the agents are to maintain a certain formation by
maintaining the relative interagent distances defined by the
sensing topology. Suppose, in addition, it is allowable for
the formation size to change, and one agent (for notational
simplicity and without loss of generality, agent n) chooses
a constant target formation scale λ∗. Each other agent
possesses a local formation scalar λi representing its estimate
of λ∗. We define λ := [λ1 λ2 . . . λn]T .

Our goal is to achieve the following three desired group
behaviors:
B1) Each agent reaches in the limit a common velocity

vector v(t) for the group, i.e.

lim
t→∞

|ẋi − v(t)| = 0, i = 1, . . . , n. (2)

B2) Each agent’s formation scaling factor reaches λ∗ in the
limit, i.e.

lim
t→∞

|λi − λ∗| = 0, i = 1, . . . , n. (3)

B3) The relative position of two agents connected by an
edge k

zk :=
n∑
i=1

dikxi (4)

converges to a prescribed target value λ∗zdk for each
k = 1, . . . ,m.

Note that zd = [zd1
T
. . . zd2

T ]T must be designed such that
zd ∈ R(DT ⊗ Ip) where R denotes range space, ⊗ is the
Kronecker product operator, and Ip denotes the p×p identity
matrix.

III. FORMATION SCALING WITH COMMUNICATION
BETWEEN AGENTS

We begin by defining a linear controller for the input fi
to each agent:

fi = −
m∑
j=1

dij(zj − λizdj )− ki(ẋi − v(t)) + v̇(t) (5)

where ki > 0 is a damping coefficient. Let 1n denote the
length n column vector of all ones and define

ṽ(t) := ẋ(t)− 1n ⊗ v(t) (6)

and

Γ :=


∑m
j=1 d1jz

d
j 0

. . .
0

∑m
j=1 dnjz

d
j

 (7)

which can be written compactly as Γ := diag{(D⊗ Ip)zd} ·
(In⊗1p) where the diag{·} operation converts a vector into
a diagonal matrix with the elements of the vector along the
diagonal. Then (5) can be written in matrix form as

f = −(D ⊗ Ip)z + Γλ− (K ⊗ Ip)ṽ + 1n ⊗ v̇(t) (8)

where K := diag{
[
k1 . . . kn

]
} and f =[

fT1 . . . fTn
]T

.
Given that λn = λ∗ is constant, we now seek to design an

update rule for λ1, . . . , λn−1. Suppose agents are capable of

communicating a scalar quantity to other agents. One obvious
approach allows the leader agent to communicate the desired
formation scale to its neighbors, who in turn communicate
the desired scale to their neighbors, etc. This approach
requires each agent to know a priori which neighboring
agent forms a path to the leader, may not be robust to
dropped communication links, and does not adapt well to a
reassignment of the leader since a different communication
tree is required for each possible leader agent. We now
present an alternative approach in which a communication
structure and update rule are designed to address these
shortcomings.

Suppose each agent can share its formation scaling factor
with neighboring agents as defined by a communication
graph with n nodes labeled ν1, . . . , νn where an edge points
from agent i to agent j if i has access to j’s scaling factor,
and this edge is denoted by (νi, νj). We will assume there
exists a directed path from any node νi to the leader for all
i 6= n (in the undirected case, this condition is equivalent
to connectedness). We denote the communication graph by
G = (V, E) where V = {ν1, . . . , νn} is the vertex set of
the graph and E ⊂ V × V is the edge set of the graph. Let
Γi = (Di ⊗ Ip)zd be the p× 1 block of Γ corresponding to
agent i’s control input where Di indicates the ith row of the
incidence matrix D, and define tunable parameters αij ≥ 0
for i, j = 1, . . . , n such that αij > 0 iff (νi, νj) ∈ E . We
propose the following control strategy:

λ̇i = −
∑
j∈Nc

i

αij (λi − λj)− βp−1
i ΓTi (vi − v(t)) (9)

for i = 1 . . . n − 1 where β is a tunable, scalar parameter
such that β ≥ 0, N c

i = {j : (νi, νj) ∈ E}, and pi is
a positive scalar designed below to ensure stability. Note
that λ̇n = 0. This control strategy is intuitively appealing
because it includes an agreement expression among the
scaling parameters and an additional term dependent on the
velocity error.

Define
z̃ := z − λ∗zd (10)

and
λ̃ := (λ− λ∗1n) . (11)

Let λ and λ̃ be λ and λ̃ with the last element removed, i.e.

λ = [λ1 λ2 . . . λn−1]T (12)

and
λ̃ = (λ− λ∗1n−1) . (13)

Then objectives B1–B3 amount to asymptotic stability of the
origin for the closed loop system with state

X = [ṽT z̃T λ̃
T

]T . (14)

Let L be an n× n matrix defined by

lij =

{∑n
k=1,k 6=i αik, i = j

−αij , i 6= j.
(15)



Since agent n does not update its scaling factor via feedback,
we set the last row of L to 0. L is called the graph Laplacian
of the communication graph, and when we refer to the graph
Laplacian of a given graph with edge weights, we imply the
above construction.

Define L̄ to be L with the last row removed, and define
L to be L with the last row and the last column removed.
Also, let Γ be equal to Γ with the last column removed, and
let P = diag{

[
p1 . . . pn−1

]
} . Then (9) can be written

in matrix form as

λ̇ = ˙̃
λ = −L̄λ− βP−1ΓT ṽ (16)

= −L̄λ̃+ L̄λ∗1n − βP−1ΓT ṽ (17)

= −Lλ̃− βP−1ΓT ṽ, (18)

where we use the fact that L1n = 0n and hence L̄1n = 0n−1

where 0n denotes the length n column vector of all zeros.
It is apparent from (8) that

f = −(D ⊗ Ip)z + Γλ− (K ⊗ Ip)ṽ + 1n ⊗ v̇(t) (19)

= −(D ⊗ Ip)z̃ − λ∗(D ⊗ Ip)zd + Γλ̃
+ λ∗Γ1n − (K ⊗ Ip)ṽ + 1n ⊗ v̇(t). (20)

This gives

˙̃v = −(D ⊗ Ip)z̃ + Γλ̃− (K ⊗ Ip)ṽ. (21)

Because λ̃n = 0, (21) can be written as

˙̃v = −(D ⊗ Ip)z̃ + Γλ̃− (K ⊗ Ip)ṽ. (22)

Let 0n×m denote the n ×m matrix all zeros. When the
dimensions are clear, the subscript is omitted. The dynamics
of (8) and (18) can then be formulated as a homogenous
linear system

Ẋ =

 −K ⊗ Ip −D ⊗ Ip Γ
DT ⊗ Ip 0 0
−βP−1ΓT 0 −L

X (23)

evolving on the following invariant subspace of
R(n+m)p+n−1:

SX = {(ṽ, z̃, λ̃) : ṽ ∈ Rnp, z̃ ∈ R(DT ⊗ Ip), λ̃ ∈ Rn−1}.
(24)

To facilitate the proof of the stability of (23), we now
introduce a generalization of Lemma 10.36 in [11] to the
case of a directed communication topology.

Lemma 1. All eigenvalues of L are in the open right half
plane.

Proof: Let B(a,R) be the closed disk of radius R
centered at a. The Gershgorin circle theorem states that all
eigenvalues of L are located in the union of the following
n− 1 disks:

Bi

(
lii,
∑n−1
j=1,j 6=i |lij |

)
, i = 1, . . . , n− 1. (25)

But lii ≥ −
∑n−1
j=1,j 6=i |lij |, so the union of the n−1 disks lie

in the closed right half plane and may only intersect the jω-
axis at the origin. It remains to show that L does not have a

zero eigenvalue. As a proof by contradiction, assume L has a
nontrivial nullspace such that Lw = 0 for some nontrivial w.
Because the last row of L is 0Tn , we have

[
wT 0

]T ∈ N (L)
where N denotes null space. By our assumption that the
communication graph contains a directed spanning tree, the
rank of L is n− 1 [2]. Therefore, {1} forms a basis for the
nullspace of L, forming a contradiction.

We require the pis in (9) to be chosen such that

LTP + PL > 0 (26)

where P is a diagonal matrix with the pis along the diagonal.
A diagonal solution P > 0 to (26) exists because L has
nonnegative diagonal and nonpositive off-diagonal entries
and eigenvalues in the open right half plane ([12], Chapter
6, Theorem 2.3).

In many practical cases, pi can be taken to be 1 for all
i. In particular, if the subgraph induced by removing the
leader agent and its edges is balanced (i.e.,

∑n
j=1,j 6=i αji =∑n−1

j=1,j 6=i αij), then LT +L is positive definite and P can be
taken to be the identity as shown in the following corollary.
This encompasses any case in which the communication
graph is bidirectional.

Corollary 1. Let Gl be the subgraph of the communication
graph induced by removing the leader agent. If Gl is bal-
anced, then LT + L > 0.

Proof: Let E be the set of edges connected to node n
in G with the same edge weighting but with the head and
tail of these edges reversed. Define G∗ := (V, E ∪E), i.e. G∗
is the communication graph with additional edges pointing
towards the leader node. By construction, G∗ is balanced. Let
L∗ be the graph Laplacian corresponding to G∗. Note that L
is also equal to L∗ with the last row and column removed.
Because G∗ is balanced, L∗s = L∗ + (L∗)T ≥ 0 [3]. Note
that Ls = L + LT is a principle subminor of L∗s , hence
Ls ≥ 0. Also note that, because G∗ is balanced, 1T is a
left eigenvector of L∗s . As a proof by contradiction, suppose
Ls has a nontrivial nullspace such that Lw = 0 for some
nontrivial w. Because 1TL∗s = 0, we see that the last row
of L∗s is a linear combination of the remaining rows, and
hence y =

[
wT 0

]T ∈ N (L∗s). But {1} forms a basis for
the nullspace of L∗s , a contradiction.

Theorem 1. The origin of (23)–(24) with P selected as in
(26) is asymptotically stable.

Proof:
Case 1. (β > 0) We construct a Lyapunov function

V =
1
2

(ṽT ṽ + z̃T z̃ + β−1λ̃
T
Pλ̃) ≥ 0. (27)

Let Q := LTP + PL.
Then

V̇ = −ṽT (K ⊗ Ip)ṽ − λ̃
T
(
β−1 1

2
Q

)
λ̃ ≤ 0. (28)
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Fig. 1. (a) 4-agent, 5-edge sensing graph with edge indexing based on the
monitoring subgraph. (b) One possible monitoring graph constructed from
the sensing graph.

We now use LaSalle’s invariance principle. Note that V̇ ≡
0 means ṽ ≡ 0, λ̃ ≡ 0. From (23), this implies z̃ ∈ N (D ⊗
Ip) for all t. Recalling that z̃ ∈ R(DT ⊗Ip) = N (D⊗Ip)⊥,
we see that z̃ ≡ 0. Hence, V̇ ≡ 0 iff z̃ ≡ 0, λ̃ ≡ 0, and
z̃ ≡ 0. Therefore, X = 0 is asymptotically stable.
Case 2. (β = 0) The resulting transition matrix of (23) is then
upper triangular, and therefore the system is asymptotically
stable iff the subsystems[ ˙̃v

˙̃z

]
=
[
−K ⊗ Ip −D ⊗ Ip
DT ⊗ Ip 0

] [
ṽ
z̃

]
(29)

and
˙̃
λ = −Lλ̃ (30)

are asymptotically stable. (30) is clearly asymptotically sta-
ble, and (29) can be seen to be asymptotically stable by a
Lyapunov argument and again invoking LaSalle’s invariance
principle as in Case 1.

IV. FORMATION SCALING WITH NO COMMUNICATION

We again consider agent dynamics of the form in (5).
However, we now present an update rule for λi that does
not require agents to share local scaling estimates with
other agents, i.e. only relative position information is shared
along edges in the sensing graph. From the sensing graph,
we construct a directed spanning tree (also known as an
arborescence [13]) rooted at the leader with the following
properties:

1) The arborescence contains all the vertices and a (di-
rected) subset of the edges of the sensing graph.

2) Each vertex except the leader is the head of exactly
one edge. The leader agent is the head of no edge.

3) A directed path exists from the leader node to all other
nodes.

We call this graph the monitoring graph. Without loss of
generality and for notational purposes, assume the leader is
again agent n. To simplify notation and analysis, for each
edge in the monitoring graph, we number the corresponding
edge in the sensing graph to match the head node index of
that edge in the monitoring graph, and we arbitrarily index
the remaining edges of the sensing graph. Fig. 1 shows an
example of a formation with the sensing graph, one possible
construction of the monitoring graph, and the induced edge
indexing scheme.

The proposed update rule for other agents is

λ̇i = −
(
λi −

(zdi )T zi
||zdi ||2

)
for i = 1, . . . , n− 1. (31)

This means that each agent monitors one edge to update its
local formation scaling factor. For notational simplicity, we
let

T =


(zd

1 )T

||zd
1 ||2

0
. . .

0 (zd
n−1)

T

||zd
n−1||2

 (32)

and Ψ = diag{(D⊗ Ip)zd} · (In−1 ⊗ 1p), i.e. Ψ is equal to
Γ with the last row and column removed. We can then write
the dynamics of (8) and (31) as a homogenous linear system ˙̃v

˙̃z
˙̃
λ

 =

−K ⊗ Ip −D ⊗ Ip Γ
DT ⊗ Ip 0 0

0 T̂ −In−1

ṽz̃
λ̃

 (33)

where T̂ = [T 0(n−1)×p(m−n+1)]. Objectives B1–B3
amount to asymptotic stability of the origin of (33).
We can represent this cooperative control system as the
interconnection of two subsystems as in Fig. 2:

• ṽ, z̃ subsystem:[
˙̃v
˙̃z

]
=
[
−K ⊗ Ip −D ⊗ Ip
DT ⊗ Ip 0

] [
ṽ
z̃

]
+

 Ip(n−1)

0p×p(n−1)

0pm×p(n−1)

u
(34)

y =
[
0p(n−1)×pn Ip(n−1) 0p(n−1)×p(m−n+1)

] [ ṽ
z̃

]
.

(35)

• λ̃ subsystem:

˙̃
λ= −In−1λ̃+ Ty (36)

u = Ψλ̃. (37)

Note that both subsystems are stable. The stability of
the composite system can be checked using a number of
techniques, including the small gain theorem. Despite its po-
tential conservatism, the small gain theorem gives a stability
condition that can be verified based on the geometry of the
formation. Because both subsystems are linear and stable,
asymptotic stability of the origin of (33) follows from the
small gain theorem stability condition. We first present a
geometric interpretation of the L2 gain of the λ̃ subsystem:

Theorem 2. The L2 gain of the λ̃ subsystem is:

γ1 = max
i=1,...,n−1


∣∣∣∣∣∣∑m

j=1 dijz
d
j

∣∣∣∣∣∣∣∣∣∣zdi ∣∣∣∣
 . (38)

Proof: Let H(s) be the transfer function of the
λ̃ subsystem, i.e. H(s) = 1

s+1ΨT. To calculate γ1 =
supω ||H(jω)||2, we note that the supremum occurs when



 I0
0

 +
∫ [

0 | I 0
]

[
−K −D
DT 0

]
⊗ Ip

T1
s+1Ψ

[
ṽ
z̃

]

y =

 z̃1
...

z̃n−1


λ̃u = Ψλ̃

Fig. 2. Interconnection of subsystems (34)–(35) and (36)–(37). Dimension
subscripts are removed for clarity.

ω = 0 and is equal to ||ΨT ||2. Observe that Ψ and T are
block diagonal. Therefore, it is clear that ΨT consists of
n − 1 blocks of dimension p × p along the diagonal. The
singular values of ΨT are simply the singular values of each
p× p block.

Let gi =
∑m
j=1 dijz

d
j for i = 1, . . . , n − 1. We have that

γ1 is the largest singular value of ΨT , and the p× p blocks
of ΨT take the form 1

||zd
i ||2

gi(zdi )T . The singular values of

1

||zd
i ||2

gi(zdi )T are
{
||gi||
||zd

i ||
, 0
}
.

This leads to a geometric criterion ensuring stability when
the small gain theorem is applied: if γ2 is the L2 gain
of the ṽ, z̃ subsystem, then γ1 < γ−1

2 ensures stability of
the composite system [14]. Note that γ2 depends on the
damping coefficients and on the incidence matrix D, but does
not depend on the specifics of the formation geometry. We
now present a bound on γ2 in the case when the damping
coefficients are identical for all agents:

Theorem 3. Assume the agents have uniform velocity damp-
ing (i.e. k := k1 = . . . = kn). Let µ1, . . . , µn−1 be
the positive eigenvalues of the unweighted sensing graph
Laplacian DDT . Let

ρi =

1/
√
µi if k ≥

√
2µi

2
√
µi

k
√

4µi−k2
if k <

√
2µi

(39)

for i = 1, . . . , n − 1. The L2 gain of the ṽ, z̃ subsystem,
denoted by γ2, satisfies

γ2 ≤ max
i
{ρi}. (40)

Proof: Define the following:

A :=
[
A11 A12

A21 A22

]
=
[
−K ⊗ Ip −D ⊗ Ip
DT ⊗ Ip 0pm×pm

]
(41)

B :=
[

In−1

0(m+1)×(n−1)

]
⊗ Ip (42)

C :=
[
0(n−1)×n In−1 0(n−1)×(m−n+1)

]
⊗ Ip. (43)

We have that the transfer matrix from u to y of the ṽ, z̃
subsystem is

G(s) = C
(
sI(n+m)p −A

)−1
B. (44)

If we view (sI(n+m)p−A)−1 as a 2×2 block matrix, we see
from the structure of B and C that G(s) is a submatrix of
the lower left block of (sI(n+m)p −A)−1. We can compute
the lower left block using block matrix inversion techniques
and obtain an equivalent expression for G(s):

G(s) =
[
Ip(n−1) 0p(n−1)×p(m−n+1)

]
F (s)

[
Ip(n−1)

0p×p(n−1)

]
(45)

where

F (s) = −((sImp −A22) +A21(sInp −A11)−1)−1 (46)

· (−A21)(sInp −A11)−1

=
[
((s2 + ks)Im +DTD)−1DT

]
⊗ Ip. (47)

We are interested in the value of ||F (s)||2 evaluated along the
jω-axis. First suppose that s = jω where ω 6= 0. Let D =
UΣ1V

T be a singular value decomposition of D with U ∈
Rn×n, V ∈ Rm×m orthonormal, and Σ1 ∈ Rn×m diagonal.
Note that the nonzero diagonal elements of Σ1 are

√
µi for

i = 1, . . . , n − 1. It follows that (s2 + ks)Im + DTD =
V ((s2 + ks)I + ΣT1 Σ1)V T , and therefore we can write

((s2 + ks)Im +DTD)−1 = V Σ2V
T (48)

where Σ2 is a diagonal matrix with the values 1/(s2 + ks+
µi), i = 1, . . . , n − 1 along the diagonal. Thus we see that
for s = jω, ω 6= 0,

F (s) = (V Σ2ΣT1 U
T )⊗ Ip. (49)

Since V and U are orthonormal, the nonzero singular values
of F (s) are the nonzero singular values of Σ2ΣT1 , which are√
µi/|s2+ks+µi|, i = 1, . . . , n−1. In the case when s = 0,

we have

lim
s↘0

[
((s2 + ks)Im +DTD)−1DT

]
⊗ Ip = D+ ⊗ Ip (50)

where + denotes the Moore-Penrose pseudoinverse, and the
singular values of D+ are 1/

√
µi [15]. Thus the p(n − 1)

nonzero singular values of F (s) when s = jω, ω ∈ R are
the second order transfer functions

σi(s) =
√
µi

|s2 + ks+ µi|
, i = 1, . . . , n− 1, (51)

each occurring with multiplicity p due to the Kronecker prod-
uct with the identity in (47). We have thatsupω σi(jω) = ρi.
We also have that G(s) is a submatrix of F (s). It follows that
||G(s)||2 ≤ ||F (s)||2 for all s, and hence γ2 ≤ maxi{ρi}.

Corollary 2. Assume the agents have uniform velocity
damping k. Let µ1 denote the smallest positive eigenvalue
of DDT , known as the Fiedler eigenvalue of the graph
Laplacian. For sufficiently large k, we have

γ2 ≤
1
√
µ1
. (52)

Proof: Let µi be the nonzero eigenvalues of DDT . If
k ≥
√

2µi for all i, then ρi = 1√
µi

for all i, and the result
follows.
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Fig. 3. Simulation results for a 4-agent, 5-edge formation with no interagent
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Fig. 4. Simulation results for a 4-agent, 5-edge formation with interagent
communication, random initial positions and a desired formation scaling
factor of 2.

V. SIMULATION RESULTS

Consider the formation in the plane depicted in Fig.
1(a) where each edge is assigned an arbitrary direction,
D corresponds to the chosen node and edge numbering
and direction assignment, agent 4 is the leader, and the
monitoring subgraph is shown in Fig. 1(b). We let

zd =[
−0.5 −1 −0.5 0.1 0.5 −1 0.5 0.1 0 0.9

]T
,

(53)

which is consistent with the shape depicted in Fig. 1(a). We
have that µ1 = 2 is the smallest positive eigenvalue of DDT

and µ3 = 4 is the largest eigenvalue of DDT . Suppose k :=
k1 = k2 = k3 = k4. If k ≥

√
8, then, by Corollary 2,

γ2 ≤
1√
2
. (54)

Using the geometric condition presented in Theorem 2 we
have that γ1 = 1.33. Thus

γ1γ2 =
1√
2

1.33 = 0.94 < 1 (55)

and therefore the system with no interagent communication
is stable. Fig. 3 shows simulation results in the case of
no interagent communication with λ∗ = 2, λi(0) = 1
for i = 1, . . . , n − 1, and the agents’ initial positions
initialized randomly. Fig. 4 shows simulation results for the
same formation and desired formation size, but interagent

communication is allowed and the communication graph is
equivalent to the unweighted sensing graph with edges point-
ing towards the leader agent removed. The plots demonstrate
that the control strategy with communication converges to
the desired formation more quickly, yet the improvement is
modest.

VI. CONCLUSIONS

In this paper, we introduce increased flexibility and adap-
tivity to the standard formation maintenance problem by
presenting cooperative control strategies that allow a multi-
agent team to dynamically alter its formation size. We have
presented a strategy that relies on interagent communication
and produces a stable cooperative control system given
any desired connected formation, and we have presented a
strategy that relies only on relative position information with
stability results that are dependent on the desired formation
and velocity damping. In the latter case, we have introduced
a simple geometric criterion which may be used with the
small gain theorem to determine stability. In both cases,
these strategies can be combined with other objectives such
as collision avoidance using standard algorithms.
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