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Abstract— We present a technique for synthesizing switching
guards for hybrid systems by using sum of squares (SOS)
programming. The guards are defined to be semialgebraic sets
calculated from a bilinear SOS program. We present a method
for ensuring that synthesized guards satisfy a state-based safety
constraint and do not allow Zeno executions. We use an iterative
algorithm to solve the bilinear program and demonstrate our
approach with an example.

I. INTRODUCTION

Hybrid systems have emerged as a powerful modeling
paradigm for complex systems that incorporate continuous
and discrete phenomena. Often, it is desired for these systems
to satisfy a safety property whereby the system is guaranteed
not to enter an unsafe region of the state space. Verifying
such properties given a specified hybrid system has received
considerable attention, e.g. [1], [2], [3].

Synthesizing control strategies ensuring safety of a hybrid
system is a challenging task. One approach is to calculate
a controlled invariant set via an iterative algorithm. The
algorithm is initialized with the safe set and iteratively
removes trajectories that may be forced to exit the set due
to disturbance inputs or system dynamics. If the algorithm
terminates at a fixed point, this final set is the maximal
controlled invariant. A controller can be obtained as a
byproduct of the iteration procedure, [4], [5], [6]. A similar
iterative fixed point algorithm that can accomodate dwell-
time requirements is presented in [7].

An alternative approach to controller synthesis is to create
a transition system from the hybrid dynamics by partitioning
the state space and introducing transitions between partitions
which reflect the dynamics and safety properties of the hybrid
system model. The relation between the hybrid system and
the new transition system is called a bisimulation, and a
controller for the original system can be synthesized from
this bisimulation, [8], [9]. In a separate line of work [10], an
optimal switching problem is solved by synthesizing guards,
however safety constraints are not explicitly considered.

In this paper, we use sum of squares (SOS) programming
to synthesize switching laws that are guaranteed to satisfy
a state-based safety constraint. We consider hybrid systems
with a finite number of modes in which the state evolution
is governed by a differential inclusion, and we synthesize
guards that trigger transitions between modes. Guards are
assumed to be semialgebraic sets, i.e. a guard is a subset
of the continuous state space which satisfies a collection of
polynomial inequalities and equalities. We fix the number of
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polynomial inequalities and equalities and the polynomial
degree to make the problem tractable. Other applications
of SOS programming to control theory include region-of-
attraction analysis and Lyapunov function calculation, [11],
[12], and hybrid system verification, [2]. See [13] for an
overview of SOS.

The focus of this paper is on deciding when to switch
between discrete modes. We present a synthesis procedure
which results in a bilinear feasibility problem as well as an
algorithm for iteratively solving this feasibility problem. Our
results rely on knowing the reach set from a given set in
a particular mode, or at least an overapproximation of this
set. Finding such sets can be very difficult and is an active
area of research, see e.g. [1], [3], [14]. As discussed in the
sequel, some techniques are particularly appropriate for sum
of squares programming, e.g. [15], [11], [2].

This paper is organized as follows: Section II reviews
hybrid systems and SOS programming, and Section III states
the problem formulation. Our main result is presented in
Section IV, which describes our guard synthesis algorithm.
In Section V we present an example, and we offer directions
for extending our algorithm in Section VI.

II. PRELIMINARIES

A. Hybrid Systems

A hybrid system is a tuple H = (Q,X, Init, f, R) where
the total state space Q × X consists of a finite set Q
of “modes” and a continuous state space X = Rn. The
system is initialized in a set Init ⊆ Q × X , and we define
Init(q) , {x : (q, x) ∈ Init}. We consider differential
inclusions, [16], [17], and let f(·, ·) : Q × X → P(Rn)
where P(·) denotes the powerset and ẋ(t) ∈ f(q, x(t))
constrains the continuous evolution while in mode q. Mild
assumptions on f(q, ·) guarantee the existence of solutions
for all time. This formulation is general and can accomodate,
for example, parameter uncertainty or disturbance inputs.

We define the reset map as follows: R(·, ·, ·) : Q ×
Q × X → P(X) where R(q, q′, x) ⊆ X is the set of
continuous states which can be reached when the system
undergoes a transition from discrete state q to q′ while at
x ∈ X . We denote the domain of R for fixed q, q′ by
Rqq′ , Dom(R(q, q′, ·)) ⊆ X. We also assume R(q, q′, ·)
can accept set-valued arguments, i.e. for a set W ⊆ Rqq′ ,
we define R(q, q′,W ) ,

⋃
x∈W R(q, q′, x).

Note that if a transition from q to q′ is not possible, then
Rqq′ = ∅. Furthermore, we assume Rqq = ∅ ∀q ∈ Q.



A set of guards for a hybrid system is a collection of sets

G = {Gqq′}q,q′∈Q ⊂ P(X)

such that Gqq′ ⊆ Rqq′ . Each Gqq′ is called a guard. Let
Gq ,

⋃
q′∈QGqq′ . The purpose of the guards is to trigger

transitions. We refer to the pair (H,G) as a controlled hybrid
system.

An execution of a controlled hybrid system (H,G) is a
sequence of mode transition times {τi}Ni=1 with τ0 = 0,
τi ≤ τi+1 along with a state trajectory (q(t), x(t)) where q(t)
is constant for all t ∈ [τi, τi+1), x(t) ∈ X\Gq(t), and ẋ(t) ∈
f(q(t), x(t)) for all t ∈ [τi, τi+1). We denote the continuous
state immediately prior to the ith transition by x(τ ′i−1),
i.e. x(τ ′i−1) , limt→τ−i

x(t). We further require x(τ ′i) ∈
Gq(τi)q(τi+1), and x(τi+1) ∈ R(q(τi), q(τi+1), x(τ ′i)) for
i = 1, . . . , N − 1. If N =∞ but τN <∞, the execution is
called Zeno.

B. Sum of Squares Programming

For a variable x ∈ Rn, we denote by R[x] the set of all
polynomials in x. Define

Σ[x] ,

{
s(x) ∈ R[x] : s(x) =

m∑
i=1

fi(x)2, fi(x) ∈ R[x]

}
.

A polynomial s(x) ∈ Σ[x] is called a sum of squares (SOS)
polynomial. Note that if s(x) ∈ Σ[x], then s(x) ≥ 0 for
all x. This important property is used in the sequel as a
relaxation of the condition p(x) ∈ R[x], p(x) ≥ 0 for all
x. Given {pi(x)}mi=0 with pi ∈ R[x], the problem of finding
{qi(x)}mi=1 with qi(x) ∈ R[x] (or qi(x) ∈ Σ[x], or a mix of
constraints for different i’s) such that

p0(x) +

m∑
i=1

qi(x)pi(x) ∈ Σ[x] (1)

is an LMI feasibility problem [13]. An equation of the
form (1) is called an SOS program, and the MATLAB
toolbox SOSTOOLS [18] transforms such SOS programs
into semidefinite programs.

III. PROBLEM FORMULATION

Consider an unsafe set U ⊆ Q × X which may include
undesirable or physically unattainable regions of the state
space. Given a controlled hybrid system (H,G), we call an
execution of (H,G) unsafe if (q(t), x(t)) ∈ U for some
t ∈ [0, τN ]. We call (H,G) safe if there does not exist an
unsafe execution of (H,G).

Guard Synthesis Problem. Given a hybrid system H and
an unsafe set U ⊆ Q ×X , synthesize a set of guards G =
{Gqq′}q,q′∈Q such that (H,G) is safe.

A. Overapproximations of Reach Sets

For S ⊂ X , we call Φ ⊂ X an overapproximation of the
reach set (o.a.r.s) from (q, S) if Φ contains all trajectories
of the continuous dynamics in mode q that originate in S
and have either just encountered a guard or remain in q
for all time without encountering a guard. Specifically, Φ

is an o.a.r.s. from (q, S) if the following implication holds
for every T > 0: if for all t ∈ [0, T )

x(0) ∈ S and ẋ(t) ∈ f(q, x(t)) and x(t) ∈ (X\Gq)
then x(t) ∈ Φ for all t ∈ [0, T ]. Let

OARSq(S) , {Φ : Φ is an o.a.r.s. from (q, S)}.
Note that ∅ ∈ OARSq(∅). Also, if S ⊂ X is a positively
invariant set for the dynamics ẋ ∈ f(q, x), then S ∈
OARSq(S).

A number of techniques exist for obtaining such over-
approximations. For example, in [2], the authors consider
scalar-valued “barrier functions” Bq(x) and use the fact that
if for all v(x) ∈ f(q, x)

∇Bq(x)T v(x) ≤ 0 ∀x ∈ (X\Gq), (2)

then {x : Bq(x) ≥ 0} ∈ OARSq({x : Bq(x) ≥ 0}) and
propose a technique for constructing such barrier functions
from a basis set of functions using an SOS program. This
technique can be incorporated into our approach. We discuss
this approach and others for calculating o.a.r.s in the example
in Section V, but otherwise do not concern ourselves with
the computation of Φ ∈ OARSq(S).

Propositions 1 and 2 are straightforward, but facilitate later
proofs:

Proposition 1. If Φ ∈ OARSq(S), then S ⊂ Φ.

Proposition 2. If W ⊆ S, then Φ ∈ OARSq(S) =⇒ Φ ∈
OARSq(W ).

We now characterize a sufficient condition for safety using
o.a.r.s. which serves as the foundation for our guard synthesis
algorithm.

Lemma 1. Given unsafe U ⊆ Q×X and a controlled hybrid
system (H,G), if there exists {Φq} ⊂ P(X) such that

Φq ∈ OARSq(Init(q)) ∀q ∈ Q (3)
Φq′ ∈ OARSq′(R(q, q′,Φq ∩Gqq′)) ∀q, q′ ∈ Q (4)

(q,Φq) ∩ U = ∅ ∀q ∈ Q (5)

then (H,G) is safe.

Proof: Suppose not. Then there exists a time t∗ and
an execution such that (q(t∗), x(t∗)) ∈ U . It must be that
x(t∗) 6∈ Φq(t∗) by (5). Let i∗ , max{i : τi ≤ t∗}. We
have x(τi∗) 6∈ Φq(τi∗ ) since Φq(τi∗ ) = Φq(t∗) is an o.a.r.s
for mode q(τi∗). But x(τ0) ∈ Φq(τ0) by condition (3), thus
i† , max{i : x(τi) ∈ Φq(τi)} is well-defined. We have
x(τi†) ∈ Φq(τ

i† )
=⇒ x(τ ′i†) ∈ Φq(τ

i† )
by the definition

of o.a.r.s and x(τ ′i†) ∈ Gq(τ
i† )q(τi†+1

) by the definition of
an execution. Also, x(τi†+1) ∈ R(q(τi†), q(τi†+1), x(τ ′i†)).
Thus

x(τi†+1) ∈ R(q(τi†), q(τi†+1),Φq(τ
i† )
∩Gq(τ

i† )q(τi†+1
))

⊂ Φq(τ
i†+1

)

by Proposition 1 and (4). But this contradicts the definition
of i†.



Note that while Lemma 1 ensures (H,G) is safe, it does not
establish the nonexistence of Zeno executions. Below is a
sufficient condition for ruling out this phenomenon.

Proposition 3. If cl(∪qΦq) is compact and

cl(R(q, q′,Φq ∩Gqq′)) ∩ cl(Gq′) = ∅ ∀q, q′ ∈ Q (6)

where cl denotes closure then no executions of (H,G) are
Zeno.

Proof: When cl(∪qΦq) is compact, we have
cl(R(q, q′,Φq ∩ Gqq′)) ⊂ Φq′ compact, thus the distance
between cl(R(q, q′,Φq∩Gqq′)) and cl(Gq′) is strictly greater
than 0. Since this holds for all q, q′ ∈ Q, there is a minimum
dwell time and thus Zeno executions are prevented.

We will primarily be interested in systems which do not
allow trajectories to become unbounded, thus the assumption
that cl(∪qΦq) is compact is reasonable. It is possible to
extend Proposition 3 to the case when cl(∪qΦq) is not
compact by making additional assumptions on the reset map.
Condition (6) can also be relaxed by considering all cycles
of the hybrid automaton instead of all transitions, see [6].
It is not difficult to adjust the algorithm presented below
(specifically, (11)) for this more general case.

IV. GUARD SYNTHESIS ALGORITHM

Consider the hybrid system H and unsafe set U ⊂ Q×X .
Let U(q) , {x : (q, x) ∈ U}. We assume Init(q) can
be written as Init(q) = {x ∈ X : γInit(q)(x) � 0}
where γInit(q)(·) is a vector-valued, polynomial function, 0 is
interpreted as a vector of zeros, and � denotes elementwise
inequality (similarly for �, �, and ≺). We also assume
R = {Rqq′} and {U(q)}q∈Q can similarly be described with
vector-valued polynomial functions γRqq′ (x) and γU(q)(x).
The output dimensions of each polynomial need not be the
same, and we denote the dimension of a vector v ∈ Rd by
Dim(v) = d. Finally, we assume the reset map R(q, q′, ·) is
a vector-valued polynomial function for each q, q′ ∈ Q.

We now present a theorem which extends [2] and forms
the basis of our guard synthesis algorithm by converting
conditions (3)–(6) to SOS programs where feasibility is
sufficient for each condition. In particular, (7)–(9) below
correspond to (3)–(5), and (11) corresponds to (6). Equation
(10) ensures that guard transitions are only taken when in
the domain of the reset map. See the end of this section for
a comparison of our approach to [2].

Theorem 1. Given a hybrid system H and a set of bounded
o.a.r.s {Φq} and sets {Sq} with Φq ∈ OARSq(Sq) described
by Φq , {x : φq(x) � 0} and Sq(x) , {x : σq(x) � 0}
with φq(x), σq(x) vector-valued, polynomial functions.

Consider a set {gqq′(·)} of vector-valued, polynomial
functions defining a set of guards G , {Gqq′}q,q′∈Q by
Gqq′ , {x : φq(x) � 0 and gqq′(x) � 0}.

If there exists a set of SOS polynomial vectors {si,∗(x)}8i=1

with ∗ replaced by elements from an appropriate index set

such that

σ(i)
q (x)− sT1,q(x)γInit(q)(x) ∈ Σ[x]

∀i = 1, . . . ,Dim(σq(x)),∀q ∈ Q (7)

σ
(i)
q′ (R(q, q′, x))− sT2,qq′(x)φq(x)

−sT3,qq′(x)gqq′(x) ∈ Σ[x]

∀i = 1, . . . ,Dim(σq′(x)),∀q, q′ ∈ Q (8)

−(1 + sT4,q(x)γU(q)(x) + sT5,q(x)φq(x)) ∈ Σ[x]

∀q ∈ Q (9)

γ
(i)
Rqq′

(x)− sT6,qq′(x)φq(x)− sT7,qq′(x)gqq′(x) ∈ Σ[x]

∀i = 1, . . . ,Dim(γRqq′ (x)),∀q, q′ ∈ Q (10)

−(1 + sT8,q′q′′(x)gq′q′′(R(q, q′, x)) + sT8,qφq(x)

+sT8,qq′(x)gqq′(x)) ∈ Σ[x]

∀q, q′, q′′ ∈ Q (11)

then (H,G) is safe. Furthermore, no execution of (H,G)is
Zeno.

Proof: We will show that (7)–(11) imply (3)–(6) and
conclude the results from Lemma 1 and Proposition 3.
Observe that (10) implies[

φq(x)
gqq′(x)

]
� 0 =⇒ γ

(i)
Rqq′

(x) � 0. (12)

Indeed, suppose not for a particular x′. Then γ
(i)
Rqq′

(x′) −
sT6,qq′(x

′)φq(x
′) − sT7,qq′(x

′)gqq′(x
′) < 0 since s6,∗(x

′) ≥
0 and s7,∗(x

′) ≥ 0, contradicting (10). Since this holds
for all i = 1, . . . ,Dim(γRqq′ (x)), we have Gqq′ = {x :[
φTq (x) gTqq′(x)

]T � 0} ⊆ Rqq′ and therefore G is a valid
guard set.

(7) =⇒ (3). Applying reasoning similar to (12), we
conclude from (7) that γInit(q)(x) � 0 =⇒ σ

(i)
q (x) � 0

for all q ∈ Q and for all i = 1, . . . ,Dim(σq). This implies
Sq ⊇ Init(q) for all q ∈ Q, and we invoke Proposition 2.

(8) =⇒ (4). Similarly, we conclude from (8)[
φq(x)
gqq′(x)

]
� 0 =⇒ σ

(i)
q′ (R(q, q′, x)) � 0

for all i, thus R(q, q′,Φq ∪ Gqq′) ⊂ Sq . We again invoke
Proposition 2.

(9) =⇒ (5). We have (9) implies{
x :

γU(q)(x) � 0
φq(x) � 0

}
is empty.

Indeed, suppose not and let γU(q)(x
′) � 0 and φq(x

′) �
0. Then −(1 + sT4,q(x

′)γU(q)(x
′) + sT5,q(x

′)φq(x
′)) < 0, a

contradiction.
Applying Lemma 1, we have that (H,G) is safe. Finally,

(11) impliesx :

 φq(x)
gqq′(x)

gq′q′′(R(q, q′, x))

 � 0

 is empty ∀q, q′, q′′ ∈ Q

which gives (6), thus preventing Zeno executions.



A number of remarks are in order:

Remark 1. It is sometimes more convenient or necessary to
represent U(q) as

U(q) = {x : (γ1,U(q)(x) � 0) ∨ . . . ∨ (γJ,U(q)(x) � 0)}.

For such U(q), we can simply verify (9) for each γj,U(q)(x),
j = 1, . . . , J .

Remark 2. If a convenient vector-valued polynomial in-
equality description exists for the safe set (i.e., Safe(q) =
(q,X\U(q)) = {x : γSafe(q)(x) � 0}), we can replace (9)
with an SOS program of the form:

γSafe(q)(x)− sT4,q(x)φq(x) ∈ Σ[x] ∀q ∈ Q.

Remark 3. If Φq is an invariant set for the dynamics in mode
q, then we can let σq(x) = φq(x).

We use Theorem 1 as a guide for synthesizing guards. To
make the problem numerically tractable, we fix the degrees
of the SOS variables and the guards. We also introduce an
iterative procedure solving a convex problem at each stage.
Such a procedure is widely used when solving SOS programs
related to control, see e.g. [12], [11], and [2]. Our iterative
procedure involves initially loosening the constraints (7)–
(11) and iteratively tightening the constraints. The appropri-
ate constraint relaxation depends on the particular problem,
but should be such that starting sets {φq(x)}, {gqq′(x)} are
easy to find and may include:
• Relaxed safety conditions, i.e. γ̃U(q)(x) = γU(q)(x)− c

for c > 0,
• Relaxed reset maps or differential inclusions (as in the

example in Section V),
• Considering (7)–(11) separately
• Adding positive constants to the left hand side of (7)–

(11). For this approach, the norm of the constant vector
can be added as a variable to be minimized since the
constants appear affinely in the problem.

We have solved the guard synthesis problem if (7)–(11) is
feasible. We use a sequence of relaxed problems {Ri}Ti=1

where Ri is a relaxed version of (7)–(11). For example,
Ri might employ the relaxed safety condition γ̃iU(q)(x) =

γU(q)(x)− c(2−i).
Our proposed guard synthesis strategy is as follows:

Guard Synthesis Algorithm

Initialize by constructing a sequence {Ri}Ti=1 of relaxed
problems as describe above where it is easy to randomly
generate or construct by hand guards and reach sets such
that R1 is feasible.

Fix {φq(x)} and {gqq′(x)}, and solve for feasible SOS
variables {si,∗(x)}8i=1 satisfying R1.

Set i← 2
While i ≤ T

1) Fix SOS variables, and solve for feasible {φq(x)},
{gqq′(x)} and {s4,∗} satisfying Ri.

2) Fix {φq(x)} and {gqq′(x)}, and solve for feasible SOS
variables {si,∗(x)}8i=1 satisfying Ri.

3) Set i← i+ 1

End while
Fix SOS variables, and solve for feasible {φq(x)}, {gqq′(x)}

and {s4,∗} satisfying (7)–(11).

We note that, as for all bilinear feasibility/optimization
problems, the proposed iterative procedure is not guaranteed
to generate a feasible solution of the original problem.

Our synthesis algorithm is similar in spirit to the non-
convex, worst-case safety verification procedure proposed in
[2], however there are some key differences. Our proposed
algorithm is a method for synthesizing safe control strategies,
while [2] seeks to verify that a given strategy is safe.
In addition, [2] verifies scalar-valued barrier functions by
checking the flow of the vector field along the boundary of
the barrier, specifically condition (2). We do not specify how
the o.a.r.s. are obtained, and checking the vector field flow
along the barrier is a possible method. However, in principle,
o.a.r.s. can be obtained using other methods and we allow
for vector-valued o.a.r.s as in the example below.

V. EXAMPLE: TWO AGENT SURVEILLANCE

Consider two agents (e.g. UAVs) patrolling a one-
dimensional region with positions xi ∈ R, i = 1, 2. Let x ,[
x1 x2

]T
be the state of the system. Let Ωsurv = (−β, β)

be the region that the agents are patrolling, see Fig. 1.
Each agent has a left traveling mode, and a right traveling

mode, but we assume a finite time τi ∈ [τmin
i , τmax

i ] ⊂ R+ is
required to transition between the two modes for each agent
where R+ (resp. R−) is the set of positive (resp. negative)
real numbers. We assume the velocity in the right (resp.
left) mode for each agent at any particular time is ẋi ∈
[vmin
i , vmax

i ] ⊂ R+ (resp. ẋi ∈ [−vmax
i ,−vmin

i ] ⊂ R−).
We model each agent as having four modes: a left and right

mode modeled by differential inclusions, and two transistion
modes for transitioning between left and right. We assume
that each agent has access to its current mode and the
position of the other agent. Thus, the synthesized guards will
be functions of x1 and x2.

We consider the scenario unsafe if there exists a time
at which neither agent is in the surveillance region. Addi-
tionally, we assume agents are incapable of surveilling the
region while in a mode transition. We relax this condition by
enforcing that agents do not undergo mode transitions within
the surveillance region.

From this formulation, we can set the problem up as
a guard synthesis problem where the hybrid system H =
(Q,X, Init, f, R) is as in Fig. 2 with Q = {A,B,C,D},
X = R2, x ,

[
x1 x2

]T
, Init ⊂ Q×X , f(·, ·) : Q×X →

P(R2) such that

f(A, ·) =
{

[v1 v2]T : vi ∈ [vmin
i , vmax

i ]
}

f(B, ·) =
{

[v1 − v2]T : vi ∈ [vmin
i , vmax

i ]
}

f(C, ·) =
{

[−v1 − v2]T : vi ∈ [vmin
i , vmax

i ]
}

f(D, ·) =
{

[−v1 v2]T : vi ∈ [vmin
i , vmax

i ]
}
,



(
−β

)
βΩsurv

Fig. 1. Two agents are patrolling a one dimensional surveillance region.
The scenario is safe if at least one agent is within the surveillance region
at all times.

Mode A[
ẋ1

ẋ2

]
∈ f(A, x)

Mode B[
ẋ1

ẋ2

]
∈ f(B, x)

g2rl(x) ≥ 0

g2lr(x) ≥ 0

Mode C[
ẋ1

ẋ2

]
∈ f(C, x)

g1rl(x) ≥ 0g1lr(x) ≥ 0

Mode D[
ẋ1

ẋ2

]
∈ f(D,x)

g1lr(x) ≥ 0 g1rl(x) ≥ 0

g2rl(x) ≥ 0

g2lr(x) ≥ 0

Fig. 2. The system dynamics for the agents in Fig. 1 as a finite state
automata. Reset maps are not indicated.

and R(A,B, x) = R(B,A, x) , {
[
x1 + τ1ξ x2

]T
:

ξ ∈ [vmin
1 , vmax

1 ], τ1 ∈ [τmin
1 , τmax

1 ]} and similarly for
R(B,C, x) = R(C,B, x), R(C,D, x) = R(D,C, x),
R(D,A, x) = R(A,D, x). Finally, Rqq′ = {(x1, x2) :
γRqq′ (x1, x2) ≥ 0} where γRAB

(x) = γRBA
(x) =

γRCD
(x) = γRDC

(x) , (x22 − β2) and γRDA
(x) =

γRAD
(x) = γRBC

(x) = γRCB
(x) , (x21 − β2).

The unsafe set does not depend on the discrete state and
can be formulated in several ways. It proves useful when
establishing (10) to use the following formulation:

U(q) ={x : (x1 − β) ≥ 0, (x2 − β) ≥ 0} ∪
{x : (−x1 − β) ≥ 0, (x2 − β) ≥ 0} ∪
{x : (−x1 − β) ≥ 0, (−x2 − β) ≥ 0} ∪
{x : (x1 − β) ≥ 0, (−x2 − β) ≥ 0} ∀q ∈ Q.

A naı̈ve approach to this problem is to enforce a mode
transition as soon as each agent reaches the boundary of the
surveillance region. In general, however, this is an unsafe
strategy due to the time required for each agent to execute
a mode transition. If this strategy is employed, eventually
both agents will execute a mode transition just outside the
surveillance region, and the scenario is unsafe. Fig. 3 shows
an unsafe execution employing this simple scheme.

To synthesize the guards, we seek functions gilr(x), i = 1, 2
and girl(x), i = 1, 2 with

gAB(x) = gDC(x) , g2rl(x)

gBC(x) = gAD(x) , g1rl(x)

gCD(x) = gBA(x) , g2lr(x)

gDA(x) = gCB(x) , g1lr(x)

such that gAB(x) ≥ 0 =⇒ γRAB
(x) ≥ 0, etc.

We can easily describe a positively invariant set V
containing S as the intersection of sets satisfying three
affine inequalities as shown in Fig. 4. For instance, we

−1 0 1

−1

0

1

x 1

x
2

x (0)

x ( · ) becomes unsafe

Unsafe set

Fig. 3. An execution generated using a straightforward but unsafe control
strategy in which each agent initiates a mode transition immediately upon
leaving the surveillance region with β = 1. The trajectory eventually reaches
an unsafe state.

S

V

x1

x2

[vmin
1 vmax

2 ]T

[vmax
1 vmin

2 ]T

Fig. 4. Overapproximation of the reach set from S in mode A.

let VA(x) ,
[
V 1
A(x) V 2

A(x) V 3
A(x)

]T
where V jA(x), j =

1, . . . , 3 are the affine functions describing the positively
invariant set. In addition, since trajectories are only pos-
sible when guards are not active, we can augment VA to
obtain the final o.a.r.s: ΦA = {x : φA(x) � 0} where
φA(x) =

[
VA(x)T −gAB(x) −gAD(x)

]T
. We can easily

parameterize the three affine functions for each mode and
use SOS to ensure that {φA(x) � 0} satisfies the conditions
required of an o.a.r.s. Similarly for modes B, C, and D.

For numerical calculations, we let Init =
{(A, x) : γInit(A)(x) � 0} with γInit(A) =

(xT −
[
−1.5 0

]
)(x −

[
−1.5 0

]T
) ≤ (0.1)2, β = 1,

(vmin
1 , vmax

1 , vmin
2 , vmax

2 ) = (1.0, 1.1, 1.2, 1.3), and
(τmin

1 , τmax
1 , τmin

2 , τmax
2 ) = (0.55, 0.60, 0.45, 0.50).

We choose to synthesize guards defined by affine inequal-
ities, thus guards are halfspaces. We initialize the guard
synthesis algorithm with o.a.r.s. and guards for the easy case
when τmin

1 = τmax
1 = τmin

2 = τmax
2 = 0 and vmin

1 = vmax
1 =

vmin
2 = vmax

2 = 1 and begin the proposed iterative algorithm
with relaxed {Rqq′}. Via the iteration process, we arrive at
a solution for the actual problem, shown in Fig 5.

Remark 4. Note that since Φq is a positively invariant set
for the dynamics in mode q, we can in fact conclude that
the system is safe for Init = (A,ΦA)∪ (B,ΦB)∪ (C,ΦC)∪
(D,ΦD). Thus, we see that we need a specific Init ⊂ Q ×
X to begin the guard synthesis algorithm but can conclude
safety for a much larger initial set after synthesizing guards
and calculating o.a.r.s.
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Fig. 5. Overapproximation of reach sets and guards generated by the
guard synthesis algorithm. The boundaries of the guards are plotted. The
gaps between o.a.r.s. are a result of the time required for each agent to
transition from one direction of travel to the other, modeled as reset maps.
In the legend, q+ denotes the next mode alphabetically, and q− denotes the
previous mode, with A− , D and D+ , A.

VI. CONCLUSIONS

We present a technique for hybrid system synthesis by
designing guards using sum of squares techniques. We em-
ploy an iterative algorithm to solve a bilinear SOS program
that synthesizes a set of guards satisfying a state-based
safety constraint. Our technique relies on describing the
guard sets as semialgebraic sets defined by vector-valued
polynomial functions found using SOS techniques. While
we do not elaborate on the difficult task of computing
reach sets in each discrete mode, we do present an example
demonstrating a technique for overapproximating these reach
sets that is amenable to our SOS approach. Further directions
for research include incorporating additional reachability
analysis tools into our approach, as well as applying our
technique to more complex examples. However, as for all
SOS programs, computation time rapidly increases with
problem complexity. In addition, it is difficult to incorporate
o.a.r.s. that are the union of two or more semialgebraic sets
into an SOS program, and these sets often arise in more
complex examples. We are also extending our results to
include the problem of driving the system to a desired target

set while avoiding an unsafe set, and we are investigating
specialized bilinear matrix inequality solvers for the bilinear
SOS program.
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