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ABSTRACT
We present an efficient computational procedure for finite
abstraction of discrete-time mixed monotone systems by
considering a rectangular partition of the state space.
Mixed monotone systems are decomposable into increasing
and decreasing components, and significantly generalize
the well known class of monotone systems. We tightly
overapproximate the one-step reachable set from a box of
initial conditions by computing a decomposition function
at only two points, regardless of the dimension of the
state space. We apply our results to verify the dynamical
behavior of a model for insect population dynamics and to
synthesize a signaling strategy for a traffic network.

Categories and Subject Descriptors
I.2.8 [ARTIFICIAL INTELLIGENCE]: Problem Solv-
ing, Control Methods, and Search—Control theory ; D.2.4
[SOFTWARE ENGINEERING]: Software/Program
Verification—Formal methods

Keywords
Mixed monotone systems, monotone systems, finite state
abstractions

1. INTRODUCTION
Complex systems often possess intrinsic structure that sig-

nificantly simplifies analysis and control. An important class
of systems exhibiting such structure is monotone systems
for which trajectories maintain a partial ordering on states
[1, 2]. The notion of monotonicity is applicable to both
continuous-time systems [2] and discrete-time systems [3],
and has been extended to control systems with inputs in [4].

References [5, 6, 7, 8] have observed that dynamics which
are not monotone may nonetheless be decomposable into
increasing and decreasing components. Such systems are
called mixed monotone and significantly generalize the class
of monotone systems. Unlike the references above which
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exploit mixed monotonicity for stability analysis, here we
demonstrate that mixed monotonicity enables efficient finite
state abstraction.

Increased interest in verification and synthesis of cyber-
physical systems has motivated symbolic models that ab-
stract the underlying system into a finite set of symbols and
transitions between symbols which reflect the dynamics [9,
10, 11]. The main reason for obtaining finite state abstrac-
tions is to allow formal verification and synthesis for speci-
fications given in, e.g., temporal logic [12, 13, 14, 15].

In rare cases, exact symbolic models exactly capture the
underlying dynamics [16, 17]. In other cases, exact symbolic
models are either impossible to obtain or computationally
prohibitive, however it is still useful to obtain an abstraction
which approximately captures the underlying dynamics [13,
18, 19, 20]. For example, in [21, 22], the authors consider
piecewise affine (PWA) systems and construct a finite state
abstraction using polyhedral computations.

In this work, we compute finite state abstractions of mixed
monotone, discrete-time systems by considering a rectan-
gular partition of the state space. In particular, we show
that the reachable set from a box of initial conditions is
efficiently overapproximated by evaluating a decomposition
function, obtained from the mixed monotone system, at only
two points. We accommodate disturbance inputs in the dy-
namics by suitably generalizing the definition of a mixed
monotone system in [6]. Furthermore, we characterize a spe-
cial class of mixed monotone systems in which the dynamics
are componentwise monotone and show that our overapprox-
imation is tight in a particular sense to be made precise. Ad-
ditionally, we suggest an efficient algorithm for identifying a
class of spurious trajectories from the abstraction.

The importance of monotonicity for reachability compu-
tation and abstraction has been noted in [23, 24, 25]. In par-
ticular, the authors of [23] study discrete-time systems that
are monotone with respect to the positive orthant in Eu-
clidean space and show that the reachable set from a box of
initial conditions is overapproximated by propagating only
the least and greatest points within this box. The present
paper studies the much broader class of mixed monotone
systems and recovers [23] as a special case.

In Section 2, we introduce the notation. In Section 3, we
pose the general problem statement and introduce mixed
monotone systems. In Section 4, we present an algorithm
for efficiently constructing finite state abstractions of mixed
monotone systems. In the case studies of Section 5, we ana-
lyze a model for insect population dynamics and synthesize
a signal controller for a traffic network.



2. PRELIMINARIES
For x ∈ Rn, we use superscripts to index the elements of

x, i.e., xi is the ith component of x and x = (x1, . . . , xn), ex-
cept in the case studies of Section 5 where we use subscripts
for clarity. Let R≥0 = {x | x ≥ 0} and Rn≥0 = (R≥0)n. For
a set Z ⊂ Rn, int(Z) denotes the interior of Z.

Consider a set X ⊂ Rn along with a positive cone Y+ ⊂
Rn satisfying αY+ ⊂ Y+ for all α ∈ R≥0, Y+ + Y+ ⊂ Y+,
and Y+∩(−Y+) = 0. The positive cone Y+ induces an order
relation ≤ on X defined by: x ≤ y if and only if y− x ∈ Y+

for x, y ∈ X . Given x, y ∈ X with x ≤ y, we define the
interval

[x, y] , {z ∈ X | x ≤ z ≤ y}. (1)

For Y+ = Rn≥0, ≤ denotes coordinate-wise inequality; we
distinguish this partial order by ≤+ and generalize it to ar-
bitrary orthants in the following way: Let ν = (ν1, . . . , νn)
with νi ∈ {0, 1} for all i, and define Kν = {x ∈ Rn |
(−1)νixi ≥ 0 ∀i}. Kν is a cone corresponding to an or-
thant of Rn, and we denote the induced orthant order by
≤Kν .

For a matrix M ∈ Rn×p, we additionally interpet 0 ≤+ M
to mean M is elementwise nonnegative.

A set Z ⊂ Rn is said to be a box if it is the Cartesian
product of closed intervals of R, that is, if there exists ai, bi ∈
R for i = 1, . . . n such that ai ≤ bi and Z =

∏n
i=1[ai, bi]R≥0

where [·, ·]R≥0
denotes the usual interval on R.

We let x+ = F (x, d) describe a discrete-time dynamical
system where the state x+ at the next time step is a function
of the current state x and a disturbance input d. We denote
the ith coordinate mapping of F by F i, that is, (xi)+ =
F i(x, d) and F (x, d) = (F 1(x, d), . . . , Fn(x, d)).

3. MIXED MONOTONE SYSTEMS

3.1 Problem Statement
We first consider discrete-time dynamical systems of the

form

x+ = F (x, d) (2)

with state x ∈ X ⊂ Rn, disturbance input d ∈ D ⊂ Rp,
and a continuous map F : X × D → X . We present a tech-
nique for efficiently computing a finite state abstraction of
(2) when F is mixed monotone as defined below. The result-
ing symbolic model is amenable to standard formal methods
techniques to verify desirable properties, as demonstrated in
the case study in Section 5.1.

Next, we consider the problem of controlling the switched
discrete-time dynamical system

x+ = Fm(x, d) (3)

for m ∈ M where M is a finite set of modes and each
Fm : X ×D → X is continuous. For switched systems of the
form (3), the control input is the mode m at each time step.
When each Fm satisfies a mixed monotonicity property, we
propose an efficient algorithm for obtaining a finite state
abstraction. As demonstrated in the case study of Section
5.2, this abstraction is amenable to synthesis algorithms to
meet complex control objectives expressible in, e.g., Linear
Temporal Logic (LTL).

3.2 Basic Definitions and Results
For systems of the form (2), we let ≤X and ≤D denote or-

der relations on X ⊂ Rn and D ⊂ Rp, respectively, induced
by positive cones. The notation [·, ·]X (resp. [·, ·]D) denotes
an interval with respect to ≤X (resp. ≤D). For systems
of the form (3), we wish to allow potentially different order
relations on X , and thus consider a set {≤m}m∈M of order
relations on X and ≤D, a fixed order relation on D. The
notation [·, ·]m denotes an interval with respect to ≤m. For
notational convenience, we assume that the same partial or-
der on D holds for all modes, however different partial orders
on D for each mode are possible with suitable alterations to
the development below.

We begin with the well-known class of monotone dynam-
ical systems:

Definition 1 (Monotonicity). The system (2) is
monotone with respect to ≤X and ≤D, or simply monotone,
if

x1 ≤X x2 and d1 ≤D d2 =⇒ F (x1, d1) ≤X F (x2, d2). (4)

We say that the switched system (3) is monotone with re-
spect to {≤m}m∈M and ≤D, or simply monotone, if each
mode m is monotone with respect to ≤m and ≤D.

We next provide a significant generalization of Definition
1:

Definition 2 (Mixed monotonicity). The system
(2) is said to be mixed monotone with respect to ≤X
and ≤D, or simply mixed monotone [6], if there exists a
function f : X ×D ×X ×D → X satisfying:

C1) ∀x ∈ X , ∀d ∈ D: F (x, d) = f(x, d, x, d)

C2) ∀x1, x2, y ∈ X , ∀d1, d2, e ∈ D: x1 ≤X x2 and d1 ≤D d2

implies f(x1, d1, y, e) ≤X f(x2, d2, y, e)

C3) ∀x, y1, y2 ∈ X , ∀d, e1, e2 ∈ D: y1 ≤X y2 and e1 ≤D e2

implies f(x, d, y2, e2) ≤X f(x, d, y1, e1).

We say that the switched system (3) is mixed monotone with
respect to {≤m}m∈M and ≤D, or simply mixed monotone,
if each mode x+ = Fm(x, d) is mixed monotone with respect
to ≤m.

The function f is nondecreasing in the first pair of vari-
ables and nonincreasing in the second pair of variables, and
is henceforth called a decomposition function:

Definition 3 (Decomposition function). A func-
tion f satisfying C1)–C3) above is a decomposition function
for F (x, d).

Clearly every monotone system is mixed monotone with
f(x, d, y, e) , F (x, d). In the case of a switched system (3),
we denote by fm a corresponding decomposition function for
each mode m ∈M.

Example 1. Consider the system

x+ = G(x, d)−H(x, d) (5)

for x ∈ X ⊂ Rn, d ∈ D ⊂ Rp, and G,H : X × D → X such
that x+ = G(x, d) and x+ = H(x, d) are monotone systems
for ≤X=≤+ and ≤D=≤+. Then (5) is mixed monotone for

≤X=≤+ and ≤D=≤+ and f(x, d, y, e) , G(x, d) − H(y, e)
is a decomposition function.



Example 2. Consider the system

x+ = A(x, d)x+B(x, d)d =: F (x, d) (6)

for x ∈ X ⊂ Rn≥0, d ∈ D ⊂ Rp≥0, such that:

• 0 ≤+ A(x, d) and 0 ≤+ B(x, d) for all x ∈ X for all
d ∈ D,

• x1 ≤+ x2 and d1 ≤+ d2 =⇒ A(x2, d2) ≤+ A(x1, d1)
and B(x2, d2) ≤+ B(x1, d1).

Equations of the form (6) arise in the study of population
dynamics, [26]. Taking f(x, d, y, e) = A(y, e)x + B(y, e)d,
system (6) is mixed monotone for ≤X=≤+ and ≤D=≤+.

We now characterize a special class of mixed monotone
systems in terms of the sign of the entries in ∂F/∂x and
∂F/∂d, the Jacobians of F with respect to x and d.

Proposition 1. Consider the system (2) where x ∈ X ⊂
Rn, d ∈ D ⊂ Rp, X and D are boxes, and F is continuously
differentiable. If for all i ∈ {1, . . . , n},

∀j ∈ {1, . . . , n} ∃sj ∈ {0, 1} : (−1)sj
∂F i

∂xj
(x, d) ≥ 0 ∀x, d

(7)

and

∀j ∈ {1, . . . , p} ∃σj ∈ {0, 1} : (−1)σj
∂F i

∂dj
(x, d) ≥ 0 ∀x, d

(8)

then (2) is mixed monotone with respect to any orthant order
on X and D.

Proof. Let ν ∈ {0, 1}n and µ ∈ {0, 1}p characterize arbi-
trary orthant orders≤Kν and≤Kµ on X andD, respectively.
Define

f i(x, d, y, e) , F i(zi, wi) (9)

where zi = (zi,1, . . . , zi,n), wi = (wi,1, . . . , wi,p), and

zi,j ,

{
xj if (−1)νi+νj∂F i/∂xj ≥ 0 ∀x ∈ X , d ∈ D
yj if (−1)νi+νj∂F i/∂xj ≤ 0 ∀x ∈ X , d ∈ D

(10)

wi,j ,

{
dj if (−1)νi+µj∂F i/∂dj ≥ 0 ∀x ∈ X , d ∈ D
ej if (−1)νi+µj∂F i/∂dj ≤ 0 ∀x ∈ X , d ∈ D.

(11)

If ∂F i/∂xj = 0 ∀x, d for some i, j, then the as-
signment to zi,j is arbitrary, likewise for wi,j if
∂F i/∂dj = 0 ∀x, d for some i, j. Let f(x, d, y, e) =
(f1(x, d, y, e), . . . , fn(x, d, y, e)). Clearly f(x, d, x, d) =
F (x, d), and a straightforward modification of the well-
known Kamke conditions for monotonicity [2, Section 3.1]
proves that f satisfies the remaining conditions of Definition
2.

Proposition 1 states that if the partial derivatives of F
are sign stable over X ×D, then (2) is mixed monotone with
respect to any orthant order on X and D. The special class
characterized in Proposition 1 plays an important role in the
case study of Section 5.2; see [27] for a similar characteriza-
tion that excludes disturbance inputs.

Example 3. Let X = R2
≥0, D = R2

≥0, and consider the
system

x+ = F (x, d) = (F 1(x, d), F 2(x, d)) (12)

= (5x1 − x3
2 + 5d2

1, x
2
1 + 3x2x1 − 6d1d2) (13)

where x = (x1, x2) ∈ R2
≥0 and d = (d1, d2) ∈ R2

≥0 (we mo-
mentarily abandon our superscript convention for notational
convenience). For all x ∈ X , d ∈ D,

∂F 1/∂x1 = 5 ≥ 0 ∂F 1/∂x2 = −3x2
2 ≤ 0 (14)

∂F 2/∂x1 = 2x1 + 3x2 ≥ 0 ∂F 2/∂x2 = 3x1 ≥ 0 (15)

∂F 1/∂d1 = 10d1 ≥ 0 ∂F 1/∂d2 = 0 (16)

∂F 2/∂d1 = −6d2 ≤ 0 ∂F 2/∂d2 = −6d1 ≤ 0. (17)

Thus, the system is mixed monotone by Proposition 1. Tak-
ing ≤X=≤+ and ≤D=≤+, we have that

f(x, d, y, e) = (5x1 − y3
2 + 5d2

1, x
2
1 + 3x2x1 − 6e1e2) (18)

is a decomposition function where y = (y1, y2), e = (e1, e2).

We remark that, while Proposition 1 assumed that F is
continuously differentiable, the results in fact hold if F is
continuous and piecewise differentiable, and thus nondiffer-
entiable on a set of measure zero as in the case study of
Section 5.2.

3.3 Reachable Set Computation
In this section, we show that an overapproximation of the

reachable set from a box of initial states is efficiently com-
puted by evaluating the decomposition function at only two
points, regardless of the state space dimension. In the next
section, we use this result to obtain finite state abstractions
of mixed monotone systems.

We begin with the following key theorem:

Theorem 1. Let (2) be a mixed monotone system with
decomposition function f(x, d, y, e). Given x1, x2 ∈ X and
d1, d2 ∈ D with x1 ≤X x2 and d1 ≤D d2,

f(x1, d1, x2, d2) ≤X F (x, d) ≤X f(x2, d2, x1, d1)

∀ x ∈ [x1, x2]X ∀ d ∈ [d1, d2]D. (19)

Proof. Consider x, d, y, e satisfying

x1 ≤X x and d1 ≤X d, and (20)

y ≤X x2 and e ≤X d2. (21)

It follows that

f(x1, d1, x2, d2) ≤X f(x, d, y, e), and (22)

f(y, e, x, d) ≤X f(x2, d2, x1, d1). (23)

Restricting to the set {(x, d, y, e) | x = y and d = e}, we
obtain

f(x1, d1, x2, d2) ≤X f(x, d, x, d) = F (x, d)

≤X f(x2, d2, x1, d1). (24)

The analogous result for monotone systems is:

Corollary 1. Given x1, x2 ∈ X and d1, d2 ∈ D with
x1 ≤X x2 and d1 ≤D d2. If system (2) is monotone, then

F (x1, d1) ≤X F (x, d) ≤X F (x2, d2)

∀ x ∈ [x1, x2]X ∀ d ∈ [d1, d2]D. (25)
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{F (x, d) : x ∈ [x, x̄]X , d ∈ [d, d̄]D}
f (x, d, x̄, d̄)

f (x̄, d̄, x, d)

Figure 1: The mixed monotone system in Exam-
ples 3 and 4. This system satisfies the conditions of
Theorem 1, thus we bound F (x, d) when x and d are
confined to lie within a given rectangle by evaluating
the decomposition function at two points, and the
bounding is tight. This example readily generalizes
to higher dimensions.

The result in [23] is a special case of Corollary 1 restricted
to systems with no disturbance input and ≤X=≤+.

For X ′ ⊆ X and D′ ⊆ D, we define the shorthand notation

F (X ′,D′) , {F (x, d) | x ∈ X ′ and d ∈ D′}. (26)

Then we respectively write (19) and (25) as

F ([x1, x2]X , [d1, d2]D) ⊆ [f(x1, d1, x2, d2), f(x2, d2, x1, d1)]X
(27)

and

F ([x1, x2]X , [d1, d2]D) ⊆ [F (x1, d1), F (x2, d2)]X . (28)

Definition 4. The set F (X ′,D′) given in (26) is the
one-step reachable set from X ′ and D′.

Example 4. Consider again Example 3 and let
x = (0.6, 0.3), x̄ = (1, 1), d = (0, 0), d̄ = (0.3, 0.3).
From Theorem 1, it follows that

F ([x, x̄]X , [d, d̄]D) ⊂ [f(x, d, x̄, d̄), f(x̄, d̄, x, d)]X

= [(2, 0.36), (5.423, 4)]X . (29)

Figure 1 shows the set {F (x, d) | x ∈ [x, x̄]X , d ∈ [d, d̄]D}
as a shaded region, and plots f(x, d, x̄, d̄) f(x̄, d̄, x, d) as two
corners of a box that bounds this set.

For monotone systems, Corollary 1 provides tight bounds
since the upper and lower bounds are achieved. For mixed
monotone systems satisfying (7)–(8) of Proposition 1, the
bounds given in Theorem 1 are also tight as suggested in Fig-
ure 1 for Example 4. We make this precise in the following
proposition, which follows immediately from the definition
in (9):

Proposition 2. Suppose ≤X=≤Kν and ≤D=≤Kµ for
some orthants Kν and Kµ. If (2) is mixed monotone
by (7)–(8) of Proposition 1, and f is the decomposition
function as defined in (9)–(11), then for all i ∈ {1, . . . , n}
there exists zi, z̄i ∈ [x1, x2]X and wi, w̄i ∈ [d1, d2]D such
that

f i(x1, d1, x2, d2) = F i(zi, wi), and (30)

f i(x2, d2, x1, d1) = F i(z̄i, w̄i). (31)

In particular, zi as in (10) with x = x1 and y = x2, and wi

as in (11) with d = d1 and e = d2 satisfies (30). A symmetric
results holds for (31) after interchanging x1, x2 and d1, d2.

4. ABSTRACTION OF MIXED MONO-
TONE SYSTEMS

We have seen that for mixed monotone systems, an over-
approximation of the one-step reachable set from the set
[x1, x2]X under a disturbance input from the set [d1, d2]D can
be computed by evaluating the decomposition function f at
only two particular points. We now exploit Theorem 1 and
Corollary 1 and present an efficient algorithm for comput-
ing a symbolic model, or finite state abstraction of a mixed
monotone system. For systems of the form (2), we wish
to verify that a certain property, usually given in a tempo-
ral logic, holds under all possible disturbance inputs. For
switched systems of the form (3), we wish to synthesize a
mode selection policy such that the resulting system satisfies
a given property.

4.1 Finite State Abstraction
Now we introduce a partition of the domain X by intervals

and construct a finite state abstraction from the partition.
We discuss systems of the form (3), since (2) is a special
case.

Assume system (3) is mixed monotone with respect to
{≤m}m∈M and ≤D. Furthermore, assume D is repre-
sentable as the union of intervals:

D =

L⋃
`=1

D` (32)

where D` , [d`1, d
`
2]D for d`1 ≤D d`2.

Definition 5 (Interval Partition). The collection
{Iq}q∈Q for finite set Q with Iq ⊆ X for all q ∈ Q is an
interval partition of X if:

1. For all m ∈ M and for all q ∈ Q, there ex-
ists xq,m1 , xq,m2 ∈ X satisfying xq,m1 ≤m xq,m2 and
Iq = [xq,m1 , xq,m2 ]m,

2.
⋃
q∈Q Iq = X ,

3. int(Iq) ∩ int(Iq′) = ∅ for all q, q′ ∈ Q, q 6= q′.

In other words, {Iq}q∈Q is an interval partition of X if the
sets Iq, q ∈ Q partition X and each Iq is representable as
an interval of X with respect to each order ≤m. In defining
a partition, we ignore the set of measure zero where inter-
vals overlap for notational convenience, as is done in, e.g.,
[21]. However, as noted in [21] and [22], if the dynamics are
such that trajectories remain within the boundaries after a
certain time, one should account for such sets.

For example, if each ≤m is an orthant order, then a par-
tition {Iq}q∈Q with each Iq a box constitutes an interval
partition of X ⊂ Rn. For this special case, we further call
the partition a gridded partition if for each i ∈ {1, . . . , n}
there exists Ni > 0 and {ξi,1, . . . , ξi,Ni+1} such that Q =∏n
i=1{1, . . . , Ni} and for each q = (ι1, . . . , ιn) ∈ Q, we have
Iq =

∏n
i=1[ξi,ιi , ξi,ιi+1]R≥0

. Figure 2 shows schematic de-
pictions of two interval partitions, one of which is a gridded
partition.
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Figure 2: Stylized depiction of (a) an interval parti-
tion, and (b) a gridded partition.

When clear from context, we refer to the index set Q
itself as an interval partition with the associated notation as
above. From such a partition, we readily construct a finite
state abstraction of the resulting dynamics.

Consider a map δ : Q×M→ 2Q that satisfies the follow-
ing property:

If ∃x ∈ Iq, ∃d ∈ D such that Fm(x, d) ∈ Iq′
Then q′ ∈ δ(q,m). (33)

The map δ includes a transition from q to q′ whenever it is
possible for the state x to transition from the interval Iq to
Iq′ (although δ may also include additional transitions).

Definition 6 (Interval finite state abstraction).
An interval finite state abstraction or simply abstraction of
system (3) is a tuple T = (Q,M, δ) where Q is an interval
partition of X and δ satisfies (33). We call δ a transition
function and say q′ ∈ Q is a successor of q in mode m if
q′ ∈ δ(q,m).

T is a nondeterministic transition system, i.e., δ(q,m)
is, in general, not a singleton set. The nondeterminism
arises because T abstracts an entire set of states into one
state or symbol, and the transitions account for all possible
states in the symbol as well as the disturbance. Nonethe-
less, T is a transition system that overapproximates the
dynamics (3), that is, for every trajectory x[t] satisfying
x[t + 1] = Fm[t](x[t], d[t]) such that m[t] ∈ M and d[t] ∈ D
for all t, there exists q[t] such that x[t] ∈ Iq[t] and q[t+ 1] ∈
δ(q[t],m[t]) for all t.

Computing a transition function δ that is useful in practice
is a serious difficulty for standard abstraction approaches.
Many existing results apply only to linear or piecewise lin-
ear systems, and even in this case, scale poorly with the state
space. For example, the polytope-based computations sug-
gested in [21] require computing Fm at a number of points
that scales exponentially with the dimension of the state
space and disturbance space. By exploiting the mixed mono-
tonicity properties of system (3), we propose an efficient
method for computing an abstraction that requires evaluat-
ing fm at only two points for each q ∈ Q and m ∈M.

Theorem 2. Consider the mixed monotone system (3)
with interval partition Q. Let δ : Q×M → 2Q be given by
q′ ∈ δ(q,m) if and only if

∃` : [fm(xq,m1 , d`1, x
q,m
2 , d`2), fm(xq,m2 , d`2, x

q,m
1 , d`1)]X

∩ [xq
′,m

1 , xq
′,m

2 ]X 6= ∅. (34)

Then T = (Q,M, δ) is a finite state abstraction of (3).

1: function FiniteStateAbtraction(system, D, Q) re-
turns T

2: inputs: system, a mixed monotone system (3) with
domain X , modes M and decomposition
functions {fm}m∈M

3: D, the disturbance set D = ∪L`=1D` with
D` , [d`1, d

`
2]D for d`1 ≤D d`2

4: Q, an interval partition X
5: for each m ∈M do
6: for each q ∈ Q do
7: δ(q,m) := ∅
8: for ` := 1 to L do
9: y1 := fm(xq,m1 , d`1, x

q,m
2 , d`2)

10: y2 := fm(xq,m2 , d`2, x
q,m
1 , d`1)

11: Q′ := ComputeSuccessors(y1, y2,Q)
12: δ(q,m) := δ(q,m) ∪Q′
13: end for
14: end for
15: end for
16: return T := (Q,M, δ) . abstraction of (3)
17: end function

Algorithm 1: Algorithm for computing an interval
finite state abstraction of (3).

Proof. Consider x ∈ Iq and d ∈ D such that x′ =

Fm(x, d) ∈ Iq′ = [xq
′,m

1 , xq
′,m

2 ]m. Let ` ∈ {1, . . . , L} be

such that d ∈ D`. From Theorem 1, it holds that also

x′ ∈ [fm(xq,m1 , d`1, x
q,m
2 , d`2), fm(xq,m2 , d`2, x

q,m
1 , d`1)]m,

which implies q′ ∈ δ(q,m), thus δ satisfies (33).

Corollary 2. Consider monotone system (3) with in-
terval partition Q. Let δ : Q × M → 2Q be given by
q′ ∈ δ(q,m) if and only if

∃` : [Fm(xq,m1 , d`1), Fm(xq,m2 , d`2)] ∩ [xq
′,m

1 , xq
′,m

2 ] 6= ∅. (35)

Then T = (Q,M, δ) is a finite state abstraction of (3).

We summarize the algorithm implied by Theorem 2 in
Algorithm 1. For systems of the form (2), we interpret M
as a singleton and proceed as above. We then notationally
omit M and instead write T = (Q, δ), and δ(q) ⊂ Q.

4.2 Computing Successor States
Theorem 2 and Corollary 2 provided a method for overap-

proximating the one-step reachable set of an interval. How
do we identify the successor states from this overapproxi-
mation? Lemma 1 below provides an efficient method for
determining if two intervals overlap. With this lemma, we
establish a universal algorithm for computing the set of one-
step reachable intervals in Figure 2.

Lemma 1. Consider [α1, β1]X and [α2, β2]X for α1, β1 ∈
X and α2, β2 ∈ X . Then [α1, β1]X ∩ [α2, β2]X 6= ∅ implies
α1 ≤X β2 and α2 ≤X β1.

Proof. Choosing x ∈ [α1, β1]X ∩ [α2, β2]X , the lemma
follows from transitivity of ≤X .

For special types of partitions, however, more efficient
methods exist for computing the successor states. In par-
ticular, when each ≤m is an orthant order and Q is a grid-
ded partition, computing successor states is accomplished



1: function ComputeSuccessors(y1, y2, Q) returns Q′
2: inputs: y1 and y2, points in domain X ⊂ Rn
3: Q, an interval partition of X
4: initialize: Q′ = ∅
5: for each q′ ∈ Q do

6: if (y1 ≤m xq
′,m

2 )∧(xq
′,m

1 ≤m y2) then
7: Q′ := Q′ ∪ {q′}
8: end if
9: end for

10: return Q′ . successor states from [y1, y2]m
11: end function

Algorithm 2: A universal algorithm for overapprox-
imating successor states.

1: function ComputeSuccessors(y1, y2, Q) returns Q′
2: inputs: y1 and y2, points in domain X ⊂ Rn

where yj = (y1
j , . . . , y

n
j ) for j = 1, 2

3: Q, a grid interval partition of X , i.e.,
Q =

∏n
i=1{1, . . . , Ni} and

Iq =
∏n
i=1[ξi,ιi , ξi,ιi+1]R≥0

for each
q = (ι1, . . . , ιn) ∈ Q

4: for i := 1 to n do
5: if min{yi1, yi2} ≤ ξi,1 then ιi := 1 else
6: ιi := arg maxι∈{1,...,Ni} s.t. ξi,ι ≤ min{yi1, yi2}
7: if ξi,Ni+1 ≤ max{yi1, yi2} then ῑi := Ni else
8: ῑi := arg minι∈{1,...,Ni} s.t. ξi,ι+1 ≥ max{yi1, yi2}
9: end for

10: return Q′ := {(ι1, . . . , ιn) | ιi ∈ {ιi, . . . , ῑi} ∀i}
11: end function

Algorithm 3: An algorithm to identify successor
states when Q is a gridded partition of Rn.

by considering each coordinate separately, as in Algorithm
3. This algorithm scales linearly with

∑n
i=1 Ni. When all Ni

are approximately the same, the algorithm scales approxi-
mately linearly with n.

4.3 Spurious Self-Loops
An abstraction may produce spurious trajectories that do

not correspond to any trajectories of (3). While such spuri-
ous trajectories are often unavoidable, we can identify and
ameliorate the effect of a particular type of spurious trajec-
tory that are generated from “self-loops” of the finite state
abstraction. T contains a self-loop at state q∗ ∈ Q for modes
M′ ⊆M if q∗ ∈ δ(q∗,m) for all m ∈M′. A self-loop implies
that under any control action satisfying σ[t] ∈ M′ for all t,
the trajectory q[t] = q∗ for all t is possible in T . If there
is no corresponding trajectory in the original system (3) for
any such choice of σ[t], the state and input set pair (q∗,M′)
is said to be stuttering. A similar definition of stuttering
inputs is given [21]. For systems of the form (2), we instead
say q∗ is stuttering if the above holds with M′ interpreted
to be the singleton set corresponding to F .

In verification problems where the dynamics have the form
(2), it is sometimes possible to simply remove stuttering
transitions. In particular, this is possible if the condition
to be verified belongs to the fragment of LTL without the
“next” operator [28]. In other cases, knowledge of stuttering
inputs leads to less conservative control strategies; see [21]
for a detailed discussion.

x1

x2 Iq
⊇ F (Iq,D)

⊇ Iq ∩ F (Iq,D)

⊇ F (Iq ∩ F (Iq,D),D)

Figure 3: Finding stuttering inputs. The solid out-
line denotes Iq, and the dashed outline denotes
the overapproximation of the one-step reachable set
from Iq. By overapproximating the one-step reach-
able set (lightly shaded region) of the intersection
(darkly shaded region), we determine that q is stut-
tering because this region no longer intersects Iq.

A sufficient condition for determining if (q,M′) is stutter-
ing is to compute a sequence of one-step reachable sets that
eventually do not intersect Iq. As an illustration, consider
system (2) with the standard order ≤+ on X ⊂ R2. Figure 3
shows that the overapproximation of F (Iq,D) intersects Iq,
and thus q ∈ δ(q). We then overapproximate the one-step
reachable set from Iq ∩F (Iq,D), which no longer intersects
Iq, and thus we conclude that q is stuttering because no
trajectory of (2) can remain within Iq for all time.

We generalize this idea and provide Algorithm 4 for
determining if (q,M′) is stuttering. The algorithm requires
a function getNewInt which returns a set of points
{ζm1 , ζm2 }m∈M′ such that for each m ∈M′,

[ζm1 , ζ
m
2 ]m ⊇ [ym

′,`
1 , ym

′,`
2 ]m′ ∩ Iq

∀m′ ∈M′ ∀` ∈ {1, . . . , L}. (36)

These points are used in the next iteration when computing
the one-step reachable set. In Figure 3, these points cor-
respond to the points defining the darkly shaded interval.
As suggested by this example, implementing getNewInt
for Euclidean spaces with orthant orders can be done
coordinate-wise.

4.4 Computational Requirements
We now address the computational requirements of the

proposed algorithms. Determining δ(q,m) requires first
evaluating the decomposition function fm at 2L points
where L is the number of boxes constituting the disturbance
set D. For each ` = 1, . . . L, the corresponding pair of
evaluations of fm is then used to determine successor states
representing an overapproximation of the reachable set from
q. In Algorithm 2, this requires 2|Q| order comparisons of
vectors in Rn, and each comparison scales linearly with n.
For gridded partitions, determining successor states requires∑n
i=1 Ni scalar order comparisons as seen in Algorithm 3.
Thus, computing δ scales linearly with |M| and linearly

with L. Using Algorithm 2, the computation further scales
quadratically with |Q| and linearly with n, and using Algo-
rithm 3, it scales linearly with |Q| and linearly with

∑n
i=1 Ni.

In contrast, computing successor states from a polyhedral re-
gion as in, e.g., [21] requires polyhedral computations that
scale exponentially in both n and p [29]. Above, we have
assumed that fm requires constant computation time. This



1: function Stuttering(system, D, T , (q,M′)) returns
isStuttering

2: inputs: system, a mixed monotone system (3)
3: D, the disturbance set D = ∪L`=1D`
4: T = (Q,M, δ), abstraction
5: (q,M′), a stuttering pair candidate

6: initialize: isStuttering := Null

7: iter := 1
8: ζm1 := xq,m1 , ζm2 := xq,m2 for all m ∈M′
9: while iter ≤ Nmax do

10: for ` := 1 to L do
11: for each m ∈M′ do
12: ym,`1 := fm(ζm1 , d

`
1, ζ

m
2 , d

`
2)

13: ym,`2 := fm(ζm2 , d
`
2, ζ

m
1 , d

`
1)

14: end for
15: end for
16: if ∃` ∈ {0, . . . , L} ∃m ∈M′ s.t.

(ym,`1 ≤m xq,m2 )∧(xq,m1 ≤m ym,`2 ) then
17: {ζm1 , ζm2 }m∈M′ :=

getNewInt({ym,`1 , ym,`2 }m∈M′ , Iq)
18: iter := iter + 1
19: else
20: isStuttering := True

21: break
22: end if
23: end while
24: return isStuttering

25: end function

Algorithm 4: An algorithm to determine if (q,M′)
is stuttering. The parameter Nmax determines how
many time steps should be considered. The function
getNewInt returns a set of points {ζm1 , ζm2 }m∈M such

that for each m ∈ M′, [ζm1 , ζ
m
2 ]m ⊇ [ym

′,`
1 , ym

′,`
2 ]m′ ∩ Iq

for all m′ ∈M′ and ` = 1, . . . , L.

is reasonable in some cases, such as the case study in Section
5.2 where intrinsic sparsity of traffic networks implies that
the required computation time of fm does not scale with n
or p. However, in other cases, the complexity of evaluating
fm must be taken into account.

We further remark that |Q| typically increases exponen-
tially with n. However, this dependence can be mitigated
via various techniques such as interval partitions that incor-
porate domain specific knowledge. For example, the authors
of [23] consider monotone systems that converge to a low-
dimensional manifold, and suggest a methodology for ab-
stracting the low dimensional manifold while retaining the
intrinsic high dimensional dynamics. Future research will
investigate related techniques for mixed monotone systems.

Thus, we summarize by emphasizing that the computa-
tional complexity of the proposed approach effectively does
not depend directly on the state-space dimension n; this con-
trasts with many existing abstraction approaches for which
n is a significant bottleneck. However, the complexity still
depends crucially on |Q|, the number of partitions in the
abstraction.

5. CASE STUDIES

5.1 Verifying Oscillations in Insect Popula-
tion Dynamics

We consider the following model from [30] for the popu-
lation dynamics of the flour beetle Tribolium castaneum:

x+ = A(x)x, x = (x1, x2, x3) ∈ R3, (37)

A(x) =

0 0 b exp(−ce`x1 − ceax3)
p 0 0
0 exp(−cpax3) q

 , (38)

where x1, x2, and x3 represent populations of the insect
at various stages of life (larvae, pupae, and adults, respec-
tively), and p, q ∈ (0, 1] are probabilities of survival. The
exponential nonlinearities are the result of cannibalism of
eggs and pupae. The dynamics are mixed monotone with
f(x, d, y, e) = A(y)x where ≤X=≤+.

Using parameters from [30], we let b = 7.88, cea = 0.011,
ce` = 0.014, p = 0.839, q = 0.5, and cpa = 0.0047, with a
time step of 2 weeks. We first note that the domain

X = [0, (265, 225, 450)]+ (39)

is invariant. This follows because bx3 exp(−ceax3) ≤ 265
for all x3 ≥ 0 and, thus, x1 ≤ 265 is invariant, from which
x2 ≤ p · 265 ≤ 225. Since x+

3 ≤ x2 + qx3, we conclude that
x3 ≤ 225/(1− q) = 450 is invariant.

For certain sets of parameters, the dynamics (37)–(38) in-
duce oscillations in the number of larvae—a phenomenon
documented in controlled laboratory experiments [30]. We
wish to verify the following LTL formula which is a conse-
quence of this oscillatory behavior:

�
((

(x1 ≤ 10) ∧ (x3 ≥ 40)
)
→ ♦(x1 ≥ 150)

)
. (40)

In words, “if the larvae population (x1) reduces to a small
number or zero and the adult population (x3) is not too
small, then the larvae population will eventually reach a
large population size in the future.”

We partition the state space into 2,376 intervals using a
gridded partition. Computing the finite state abstraction
takes less than one second on a standard personal computer.
By applying Algorithm 4, we remove 14 self transitions that
are stuttering. Checking the model with SPIN [31] took 103
seconds, and we verify that (40) is satisfied. Figure 4 shows
a sample trajectory of the population dynamics initialized at
(x1, x2, x3) = (0, 0, 300). We see that the larvae population
does not reach the desired population 150 immediately, but
it does so eventually around week 26.

5.2 Synthesizing Control Laws for Traffic
Networks

We next synthesize a traffic signal control policy for a net-
work of signalized intersections. We consider a discrete-time
model of traffic flow where each road link contains a queue
of vehicles waiting to proceed through an intersection. Each
intersection signal actuates a subset of its queues at a given
time step, and the vehicles in actuated queues are allowed
to flow to downstream links if there is available space. This
example builds on our recent result in [32] which studied
only piecewise affine dynamics. In contrast, here we allow
a nonlinear model with the help of the theory developed in
Sections 3 and 4.
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Figure 4: Sample trajectory of the insect popula-
tion model (37)–(38), plotting x1 over time when the
system is initialized at (x1, x2, x3) = (0, 0, 300). The
trajectory satisfies (40).

We consider a network of L links and a set V of signalized
intersections. We assume each link ` ∈ L has a queue of size
x` ∈ [0, xcrit

` ] representing the number of vehicles on the link
where xcrit

` > 0 is the capacity of link ` ∈ L. By allowing x`
to be continuous, we adopt a fluid model of traffic flow.

For ` ∈ L, let η(`) ∈ V denote the head node of link ` and
let τ(`) ∈ V ∪ ∅ denote the tail node. A link ` with τ(`) = ∅
serves as an entry-point into the network, and we assume
η(`) 6= τ(`) for all ` ∈ L (i.e., no self-loops). Link k 6= `
is upstream of link ` if η(k) = τ(`), downstream of link ` if
τ(k) = η(`), and adjacent to link ` if τ(k) = τ(`). Roads
exiting the traffic network are not modeled explicitly. For
each v ∈ V, define

Lin
v = {` | η(`) = v}, Lout

v = {` | τ(`) = v}. (41)

For simplicity of notation, we assume each intersection
v ∈ V has two possible states actuating either “East-West”
(EW) incoming links or “North-South” (NS) incoming links.
Thus, we have the partition L = LEW ∪ LNS, LEW ∩ LNS =
∅. At each junction v ∈ V, we define the signal variable
mv ∈ {0, 1} as follows:

mv =

{
1 if links Lin

v ∩ LEW are actuated

0 if links Lin
v ∩ LNS are actuated.

(42)

Let m = {mv}v∈V so that M = {0, 1}V . When a link ` is
actuated, the turn ratio β`k denotes the fraction of vehicles
exiting link ` that is routed to link k. It follows that β`k 6= 0
only if η(`) = τ(k) and ∑

k∈Lout
η(`)

β`k ≤ 1. (43)

Strict inequality in (43) implies that a fraction of vehicles
on link ` are routed off the network via unmodeled roads.

Each link ` ∈ L possesses a demand function
Φout
` : [0, xcrit

` ] → R that gives the number of vehicles
wishing to flow downstream in one time step and a supply
function Φin

` : [0, xcrit
` ] → R that gives the available road

space for incoming upstream vehicles in one time step.
Thus, Φout

` is an increasing function and Φin
` is a decreasing

function of queue length. In this example, we let

Φout
` (x`) = c`(1− exp(−x`/c`)) (44)

Φin
` (x`) = w`(x

crit
` − x`) (45)

where c` > 0 is a saturation rate and 0 < w` < 1 scales
the available queue capacity to account for, e.g., vehicles
still traveling on the link and not enqueue. This demand-
supply approach to vehicular traffic flow is rooted in the Cell
Transmission Model [33].

Movement of vehicles among link queues is governed by
mass-conservation laws and the state of the signalized inter-
sections. When a link is actuated, a maximum of Φout

` (x`)
vehicles are allowed to flow from link ` to links Lout

η(`) per
time step. We let α`k denote the fraction of link k’s supply
available to link `. Since only incoming EW or NS links are
actuated in each time step, we have∑

`∈Lin
τ(k)
∩LEW

α`k =
∑

`∈Lin
τ(k)
∩LNS

α`k = 1 (46)

for all k ∈ L. It then follows that the dynamics on link ` are
given by

x+
` = F `m(x, d) (47)

, x` − fout
` (x,m) +

∑
j∈Lin

τ(`)

βj`f
out
j (x,m) + d` (48)

where

fout
` (x,m) = s`(m) ·min

{
Φout
` (x`), min

k s.t.
β`k 6=0

α`k
β`k

Φin
k (xk)

}
(49)

s`(m) =

{
mη(`) if ` ∈ LEW

1−mη(`) if ` ∈ LNS.
(50)

Assumption 1. For all ` ∈ L and all k upstream of `,

exp

(
−1

c`

(
xcrit` − βk`

w`αk`
ck

))
≤ 1− w`. (51)

Assumption 1 ensures that an increase in xi does not lead
to a decrease in x+

i . This assumption is mild because (51)
is satisfied for small enough c` and ck, and these parame-
ters decrease for shorter time steps; indeed, violation of the
assumption would indicate that the chosen time step is to
large to accurately capture the queue dynamics.

Lemma 2. Assumption 1 ensures that
∂F `m
∂x`

(x, d) ≥ 0 for

all m whenever the partial derivative exists1.

Proof. We have

∂F `m
∂x`

(x, d) = 1− ∂fout
`

∂x`
(x`,m) +

∑
j∈Lin

τ(`)

βj`
∂fout

j

∂x`
(x,m).

(52)

Note that
∂fout`
∂x`

(x`,m) ≤ 1. Furthermore,
∂foutj

∂x`
(x,m) 6= 0

only if sj(m) = 1 and
αj`
βj`

Φin
` (x`) is the minimizer in (49).

As Φout
j (xj) ≤ cj , the latter condition can only occur if

cj ≥
αj`
βj`

w`(x
crit
` − x`) ⇐⇒ x` ≥ xcrit

` − βj`
w`αj`

cj . (53)

It then follows that
∑
j∈Lin

τ(`)
βj`

∂foutj

∂x`
(x,m) < 0 only if

there exists j ∈ Lin
τ(`) such that the inequalities in (53) hold.

1The minimization in (49) implies that some partial deriva-
tives do not exist on a set of measure zero. However, as
noted above, the results developed in this paper still apply.



But this implies
∂fout
`
∂x`

(x`,m) ≤ 1 − w` by Assumption 1

and the fact that exp(− 1
c`
x`) decreases in x`. Furthermore,∑

j∈Lin
τ(`)

βj`
∂fout
j

∂x`
(x,m) ≥ −w`, and we thus conclude that

∂F `m
∂x`

(x, d) ≥ 0.

Proposition 3. The traffic dynamics (47)–(48) are
mixed monotone.

Proof. We show for all `, k ∈ L, and all m ∈M,

∂F `m
∂xk

(x, d) ≤ 0 if τ(k) = τ(`), k 6= ` (54)

∂F `m
∂xk

(x, d) ≥ 0 if k = ` or τ(k) 6= τ(`) (55)

∂F `m
∂dk

(x, d) =

{
1 if k = `

0 if k 6= `.
(56)

This implies that the conditions of Propositions 1 are satis-
fied, specifically, we take sj = 1 if and only if τ(j) = τ(i),
j 6= i and σj = 0 for all j in (7)–(8). Note that (56) follows
immediately from (48). We now show (54)–(55) by consid-
ering 4 exhaustive cases:
(Case 1, τ(k) = τ(`), k 6= `). We have that

∂F `m
∂xk

(x, d) =
∑

j∈Lin
τ(`)

βj`
∂fout

j

∂xk
(x,m). (57)

Since
∂fout
j

∂xk
∈ {0, αjk

βjk

dΦin
k

dxk
} and Φin

k is decreasing, we have

∂F `m
∂xk

(x, d) ≤ 0.

(Case 2, η(k) = τ(`) or τ(k) = η(`)). We have that
∂F `m
∂xk

(x, d) ∈ {0,− ∂f
out
`
∂xk

, βk`
∂fout
k
∂xk

,− ∂f
out
`
∂xk

+ βk`
∂foutk
∂xk
} where

the second possibility occurs only if τ(k) = η(`), the third
occurs only if η(k) = τ(`), and the fourth occurs only if
τ(k) = η(`) and η(k) = τ(`). We have ∂fout

k /∂xk ≥ 0 since

Φout
k is increasing and

∂fout
`
∂xk

∈ {0, α`k
β`k

dΦin
k

dxk
} ≤ 0 since Φin

k is

decreasing, thus
∂F `m
∂x`

(x, d) ≥ 0.

(Case 3, k = `).
∂F `m
∂x`

(x, d) ≥ 0 by Lemma 2.

(Case 4, else). Trivially,
∂F `m
∂x`

(x, d) = 0.

Consider the traffic network show in Figure 5 consisting
of two signalized intersections and eight links. We have
LEW = {1, 2, 3, 4} and LNS = {5, 6, 7, 8}. The leftmost sig-
nal actuates the EW links 1 and 3 simultaneously, or the
NS links 5 and 6 simultaneously, and similarly for the right-
most signal. We take the time step to be 15 seconds and
assume c1 = c2 = c3 = c4 = 20, c5 = c6 = c7 = c8 = 5,
xcrit

1 = xcrit
4 = 50, xcrit

2 = xcrit
3 = 60, xcrit

5 = xcrit
6 = xcrit

7 =
xcrit

8 = 40, w` = 0.75 for all `, β12 = β43 = β52 = β62 =
β73 = β83 = 0.5, α52 = α62 = α73 = α83 = 0.5, α12 = 1,
and α43 = 1. For the disturbance input, we assume that at
each time step, up to 7 vehicles join each of the queues on
links 1 and 3, or up to 8 vehicles join each of the queues on
links 5 and 6, or up to 8 vehicles join each of the queues on
links 7 and 8.

We partition the domain of the traffic network, represent-
ing the state of all queues, into 3,600 boxes using a gridded
partition. Using the mixed monotonicity properties of the
dynamics, we obtain a finite state abstraction of the dynam-
ics in 43.8 seconds.

6

5

8

7

1 2

43

Figure 5: A traffic network with two signalized inter-
sections and 8 links. The blue links represent queues
of vehicles. The leftmost signal actuates links 1 and
3 simultaneously, or links 5 and 6 simultaneously.
Likewise, the rightmost signal actuates links 2 and 4
or 7 and 8 simultaneously.
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Figure 6: An example trajectory of the traffic net-
work for links 1, 2, 3, and 4. Signal 1 (resp. 2) is
the leftmost (resp. rightmost) signal in Figure 5.
The trajectory satisfies the given specification. In
the lower plot, green (resp. red) indicates that EW
(resp. NS) links are actuated.

Next, we wish to find a controller that satisfies the speci-
fication:

“Infinitely often, the cross streets on links 5 and 6 are
actuated, AND infinitely often, the cross streets on links
7 and 8 are actuated, AND eventually, the queue lengths
on links 2 and 3 are each less than 40 vehicles and remain
so for all future time, AND whenever the queue on link 1
exceeds 40 vehicles, it eventually is less than 30 vehicles,
AND whenever the queue on link 4 exceeds 40 vehicles,
it eventually is less than 30 vehicles.”

The above specification can be expressed in linear temporal
logic and encoded in a deterministic Rabin automaton [15]
with 46 states. By solving a Rabin game, we construct a
controller that is guaranteed to satisfy the specification. In
Figure 6, we plot an example trajectory of the system where
we assume the maximum number of allowed vehicles enters
the network in each time step. We see in the figure that the
trajectory satisfies the above specification.

6. CONCLUSIONS
We have efficiently computed finite state abstractions for

mixed monotone discrete-time systems. Mixed monotonicity
is a general property encompassing many practical systems
and provides a powerful tool for analysis and control. The
primary feature that permits efficient abstraction is overap-
proximation of reachable sets by evaluating a decomposition



function at two points. Future research will investigate us-
ing mixed monotonicity to reduce the number of intervals
required to establish an effective partition of the state space.
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C. Belta, “Temporal logic control of discrete-time
piecewise affine systems,” IEEE Transactions on
Automatic Control, vol. 57, no. 6, pp. 1491–1504, 2012.

[22] D. Adzkiya, B. De Schutter, and A. Abate, “Finite
abstractions of max-plus-linear systems,” IEEE
Transactions on Automatic Control, vol. 58,
pp. 3039–3053, Dec 2013.

[23] T. Moor and J. Raisch, “Abstraction based
supervisory controller synthesis for high order
monotone continuous systems,” in Modelling, Analysis,
and Design of Hybrid Systems, pp. 247–265, Springer,
2002.

[24] D. Gromov and J. Raisch, “Detecting and enforcing
monotonicity for hybrid control systems synthesis,” in
Proc. 2nd IFAC Conf. on Analysis and Design of
Hybrid Systems, pp. 7–9, 2006.

[25] N. Ramdani, N. Meslem, and Y. Candau, “Computing
reachable sets for uncertain nonlinear monotone
systems,” Nonlinear Analysis: Hybrid Systems, vol. 4,
no. 2, pp. 263–278, 2010.

[26] J. M. Cushing, An introduction to structured
population dynamics. SIAM, 1998.

[27] M. Kulenovic and O. Merino, “A global attractivity
result for maps with invariant boxes,” Discrete and
Continuous Dynamical Systems Series B, vol. 6, no. 1,
p. 97, 2006.

[28] D. Peled and T. Wilke, “Stutter-invariant temporal
properties are expressible without the next-time
operator,” Information Processing Letters, vol. 63,
no. 5, pp. 243–246, 1997.

[29] A. Kurzhanskiy and P. Varaiya, “Computation of
reach sets for dynamical systems,” in The Control
Systems Handbook, ch. 29, CRC Press, second ed.,
2010.

[30] R. Costantino, J. Cushing, B. Dennis, and R. A.
Desharnais, “Experimentally induced transitions in the
dynamic behaviour of insect populations,” Nature,
vol. 375, no. 6528, pp. 227–230, 1995.

[31] G. J. Holzmann, “The model checker SPIN,” IEEE
Transactions on Software Engineering, vol. 23,
pp. 279–295, 1997.

[32] S. Coogan, E. A. Gol, M. Arcak, and C. Belta, “Traffic
network control from temporal logic specifications,”
2014. arXiv:1408.1437.

[33] C. F. Daganzo, “The cell transmission model, part II:
Network traffic,” Transportation Research Part B:
Methodological, vol. 29, no. 2, pp. 79–93, 1995.


