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Abstract

At diverging junctions in vehicular traffic networks, congestion on one

outgoing link may impede traffic flow to other outgoing links. This phe-

nomenon is referred to as the first-in-first-out (FIFO) property. Traffic

network models that do not include the FIFO property result in mono-

tone dynamics for which powerful analysis techniques exist. This note

shows that a large class of FIFO network models are nonetheless mixed
monotone. Mixed monotone systems significantly generalize the class of

monotone systems and enable similarly powerful analysis techniques. The

studied class of models includes the case when the FIFO property is only

partial, that is, traffic flow through diverging junctions exhibit both FIFO

and non-FIFO phenomena.

1 Introduction

Models of vehicular traffic flow at diverging junctions must account for the
effects, if any, of congestion of one outgoing link on the flow to other outgoing
links. If congestion on one outgoing link negatively impacts the incoming flow to
any other outgoing link, the diverging junction is said to be a first-in-first-out
(FIFO) node model. Otherwise, the diverging junction is said to be a non-
FIFO node model. To the extent that FIFO node models have been studied
in the literature, it is often assumed that complete congestion on one outgoing
link completely blocks access to another outgoing link; we say such a diverging
junction model is a fully FIFO node model. Of particular interest in this note is
the case when the node model is FIFO but not fully FIFO, and we refer to such
models as partially FIFO, see Figure 1. The FIFO effect in traffic flow networks
has been observed even for multilane diverging junctions [1, 2].
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Figure 1: A traffic network consisting of a diverging junction with one incoming
link and two outgoing links. When traffic flow is assumed to obey the first-in-
first-out (FIFO) property, congestion on link 2 (resp. 3) impedes flow to link 3
(resp. 2) whereas in a non-FIFO flow model, the flow from link 1 to link 2 (resp.
link 3) is independent of the congestion on link 3 (resp. 2). For the FIFO case,
if complete congestion on one outgoing link completely impedes the outgoing
flow from link 1, the node model at the diverging junction is said to be fully
FIFO, otherwise it is partially FIFO.

Whether a node model of a diverging junction is FIFO or non-FIFO affects
the qualitative dynamical behavior of traffic flow through the junction. In [3], a
class of non-FIFO node models are studied. Such non-FIFO node models may
be interpreted in at least two ways: 1) As a relaxation of the FIFO assump-
tion, or 2) As a model in which vehicles always myopically reroute to avoid
congested links. An attractive feature of non-FIFO node models is that the
resulting traffic network dynamics are monotone, as is shown in [3]. Trajecto-
ries of a monotone dynamical system preserve a partial order over the system’s
state [4, 5]. Preservation of this partial order imposes restrictions on the be-
havior exhibited by such systems which is exploited for, e.g., characterization
of equilibria and stability analysis in [3].

In general, FIFO node models are not monotone. In [6], it is shown that a
particular fully FIFO node model is mixed monotone, which significantly gen-
eralizes the class of monotone systems. However, a fully FIFO model may be
conservative since complete congestion on one outgoing link completely blocks
flow to other outgoing links. In this note, we study a general class of partially
FIFO node models and show that the resulting dynamics are mixed monotone.

2 Network Flow Model

A traffic flow network consists of a directed graph G = (V ,L) with junctions or
nodes V and links L. Let σ(ℓ) and τ(ℓ) denote the head and tail junction of
link ℓ ∈ L, respectively, where we assume σ(ℓ) 6= τ(ℓ), i.e., no self-loops. Traffic
flows from τ(ℓ) to σ(ℓ).

For each v ∈ V , we denote by Lin
v ⊂ L the set of input links to node v and

by Lout
v ⊂ L the set of output links, i.e.,

Lin
v , {ℓ | σ(ℓ) = v} (1)

Lout
v , {ℓ | τ(ℓ) = v}. (2)
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For each ℓ, we denote by Lup
ℓ ⊂ L the set of links immediately upstream of link

ℓ, and by Ldown
ℓ ⊂ L the set of links immediately downstream of link ℓ. We say

that links ℓ and k are adjacent if τ(ℓ) = τ(k) and ℓ 6= k and let Ladj
ℓ ⊂ L be the

set of links adjacent to link ℓ. Thus

Lup
ℓ , {k ∈ L | σ(k) = τ(ℓ)} = Lin

τ(ℓ) (3)

Ldown
ℓ , {k ∈ L | τ(k) = σ(ℓ)} = Lout

σ(ℓ) (4)

Ladj
ℓ , {k ∈ L | τ(k) = τ(ℓ), k 6= ℓ} = Lout

τ(ℓ)\{ℓ}. (5)

Each link ℓ ∈ L has state xℓ(t) ≥ 0 evolving over time that is the density
of vehicles on link ℓ. We denote the state of the network by x(t) , {xℓ(t)}ℓ∈L.
Vehicles flow from link to link over time; the state-dependent flow of vehicles
from link k to link ℓ is denoted by fk�ℓ(x). We assume fk�ℓ(x) ≡ 0 if σ(k) 6= τ(ℓ)
so that flow is allowed only between links connected via a junction. Furthermore,
vehicles flow to link ℓ from outside the network at rate f�ℓ(x) and vehicles leave
the network from link ℓ at rate fℓ�(x) so that

ẋℓ =
∑

k∈L

fk�ℓ(x)−
∑

j∈L

fℓ�j(x) + f�ℓ(x) − fℓ�(x) =: Fℓ(x). (6)

In Section 3, we suggest specific forms for fk�ℓ, fℓ�, and f�ℓ based on
phenomenological properties of traffic flow. Here, we only assume x evolves on
the invariant subspace X ⊆ (R≥0)

L where R≥0 = {z ∈ R | z ≥ 0} and for
all ℓ, k ∈ L, we assume each f�ℓ(x), fℓ�(x), and fk�ℓ(x) is locally Lipschitz
continuous.

We further assume that each fk�ℓ(x) may be decomposed as

fk�ℓ(x) = fF
k�ℓ(x) + fNF

k�ℓ(x) (7)

where fF
k�ℓ(x) is the flow from link k to link ℓ that is subject to the FIFO

phenomenon and fNF
k�ℓ(x) is the flow from link k to link ℓ that is not subject to

the FIFO phenomenon.
The following captures the fundamental properties of traffic flow networks.

Assumption 1. For all ℓ, k ∈ L, the functions fk�ℓ(x), fℓ�(x), f�ℓ(x) are
locally Lipschitz continuous. For all x ∈ X and whenever the given derivative
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exists,

∂f�ℓ

∂xm

(x) ≥ 0 ∀ℓ,m ∈ L such that m 6= ℓ (8)

∂fℓ�
∂xm

(x) ≤ 0 ∀ℓ,m ∈ L such that m 6= ℓ (9)

∂fNF
k�ℓ

∂xm

(x) ≡ 0 ∀ℓ, k,m ∈ L such that m 6∈ Lin
σ(k) ∪ Lout

σ(k) (10)

∂fF
k�ℓ

∂xm

(x) ≡ 0 ∀ℓ, k,m ∈ L such that m 6∈ Lin
σ(k) ∪ Lout

σ(k) (11)

∂

∂xm





∑

j∈L

fF
j�ℓ



 (x) ≥ 0 ∀ℓ,m ∈ L such that m ∈ Lup
ℓ (12)

∂

∂xm





∑

j∈L

fNF
j�ℓ



 (x) ≥ 0 ∀ℓ,m ∈ L such that m ∈ Lup
ℓ (13)

∂

∂xm





∑

j∈L

fℓ�j



 (x) ≤ 0 ∀ℓ,m ∈ L such that m ∈ Lin
σ(ℓ) ∪ Lout

σ(ℓ), m 6= ℓ

(14)

∂fNF
k�ℓ

∂xm

(x) ≥ 0 ∀ℓ, k,m ∈ L such that m ∈ Ladj
ℓ (15)

∂fF
k�ℓ

∂xm

(x) ≤ 0 ∀ℓ, k,m ∈ L such that m ∈ Ladj
ℓ . (16)

We have the following intuitive interpretations of (8)–(12):

• (Eq. (8)) For anym 6= ℓ, increasing the density on linkm can only increase
the exogenous flow into link ℓ. For example, congestion on link m of the
network may cause vehicles that wish to enter the network to reroute and
enter at link ℓ.

• (Eq. (9)) For anym 6= ℓ, increasing the density on linkm can only decrease
the flow that exits the network from link ℓ. For example, downstream
congestion on link m may impede the outflow of vehicles via an offramp
on link ℓ.

• (Eqs. (10) and (11)) The flow rate from link k to link ℓ through some
junction v = σ(k) = τ(ℓ) ∈ V is instantaneously affected by the change in
density of vehicles on link m only if m is incoming or outgoing of junction
v.

• (Eqs. (12) and (13)) For any link m immediately upstream of link ℓ (that
is, σ(m) = τ(ℓ)), increasing the density of vehicles on link m cannot
decrease the net incoming FIFO or non-FIFO flow to link ℓ.
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• (Eq. (14)) For any link m 6= ℓ incoming or outgoing from junction σ(ℓ), in-
creasing the density of vehicles on link m cannot increase the net outgoing
flow from link ℓ to other outgoing links.

• (Eq. (15)) For any link m adjacent to link ℓ, increasing the density of
link m can only increase the non-FIFO flow from an upstream link k to ℓ.
This may occur if, e.g., vehicles reroute to avoid the increased congestion
on link m.

• (Eq. (16)) For any link m adjacent to link ℓ, increasing the density of
link m can only decrease the FIFO flow from an upstream link k to link ℓ.
This captures the fundamental feature of FIFO flow whereby congestion
on link m may block access to link ℓ.

Requirements (8)–(14) are standard for traffic flow networks. The require-
ment (15) is found in, e.g., [7, Definition 2] where it is used to establish mono-
tonicity for non-FIFO policies. Requirement (16) captures the FIFO phe-
nomenon.

3 Examples

We now present several related examples satisfying (8)–(16) based on the supply
and demand concept of traffic flow. We assume each link ℓ ∈ L possesses a jam
density xℓ such that xℓ(t) ∈ [0, xℓ] for all time and thus X =

∏

ℓ∈L[0, xℓ]. We
further assume each link possesses a state-dependent demand function dℓ(xℓ)
and a state-dependent supply function sℓ(xℓ) satisfying:

Assumption 2. For each ℓ ∈ L:

• The demand function dℓ(xℓ) : [0, xℓ] → R≥0 is strictly increasing and
Lipschitz continuous with dℓ(0) = 0.

• The supply function sℓ(xℓ) : [0, xℓ] → R≥0 is strictly decreasing and Lips-
chitz continuous with sℓ(xℓ) = 0.

The demand of a link is interpreted as the maximum outflow of the link, and
the supply of a link is interpreted as the maximum inflow of the link.

Let R = {ℓ ∈ L | Lin
τ(ℓ) = ∅}, that is, R is the set of links for which there

are no upstream links. We assume exogenous traffic enters the network only
through R so that

f�ℓ(x) ≡ 0 for all ℓ 6∈ R. (17)

For each ℓ ∈ R, we assume there exists a constant exogenous inflow demand
δℓ such that

f�ℓ(x) = min{δℓ, sℓ(xℓ)} for all ℓ ∈ R. (18)
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We further assume that fℓ�(x) is a fixed fraction γℓ of the total outflow from
link ℓ if there are any links downstream of ℓ, otherwise fℓ�(x) is equal to the
demand of link ℓ. That is,

fℓ�(x) =

{

γℓ
∑

j∈L fℓ�j(x) if Lout
σ(ℓ) 6= ∅

dℓ(xℓ) otherwise
∀ℓ ∈ L (19)

where γℓ ≥ 0 for each ℓ such that Lout
σ(ℓ) 6= ∅.

Finally, we assume there exist fixed turn ratios βℓ > 0 for each ℓ with Lup
ℓ 6= ∅

that describe how vehicles route through the network. The role of these turn
ratios is made explicit subsequently, but the interpretation is that βℓ is the
fraction of the upstream demand that is bound for link ℓ. Note that each turn
ratio is associated with an outgoing link and not an incoming-outgoing link pair,
thus at the upstream junction τ(ℓ), we do not allow different turn ratios for the
different incoming links. Physically, this means that traffic from all incoming
links join at the junction and a fraction βℓ of the demand is destined for link ℓ.

It remains to characterize fk�ℓ(x) for all ℓ, k ∈ L.

Example 1 (non-FIFO). For all ℓ ∈ L, let

αNF
ℓ (x) = min

{

1,
sℓ(xℓ)

βℓ

∑

j∈L
up

ℓ
dj(xj)

}

. (20)

Let fF
k�ℓ(x) ≡ 0 for all k, ℓ ∈ L and let

fNF
k�ℓ(x) = αNF

ℓ (x)βℓdk(xk) ∀ℓ ∈ L, ∀k ∈ Lup
ℓ . (21)

Example 2 (Fully FIFO). For all v ∈ L, let

αF
v (x) = min

{

1, min
k∈Lout

v

{

sk(xk)

βk

∑

j∈Lin
v
dj(xj)

}}

. (22)

Let fNF
k�ℓ(x) ≡ 0 for all k, ℓ ∈ L and let

fF
k�ℓ(x) = αF

τ(ℓ)(x)βℓdk(xk) ∀ℓ ∈ L, ∀k ∈ Lup
ℓ . (23)

Example 3 (Convex combination of non-FIFO and fully FIFO). Let αNF
ℓ (x)

be given as in (20) and let αF
v (x) be given as in (22). Suppose there exists

ηℓ ∈ [0, 1] for all ℓ ∈ L, and let

fF
k�ℓ(x) = ηℓα

F
τ(ℓ)(x)βℓdk(xk) ∀ℓ ∈ L, ∀k ∈ Lup

ℓ (24)

fNF
k�ℓ(x) = (1− ηℓ)α

NF
ℓ (x)βℓdk(xk) ∀ℓ ∈ L, ∀k ∈ Lup

ℓ . (25)

Example 3 is proposed in [3, Example 4] and is a natural extension of the
ideas in Examples 1 and 2, however it exhibits the following property: it is
possible for αNF

ℓ (x) < 1 yet
∑

j∈L fj�ℓ(x) < sℓ(xℓ), that is, the supply of link ℓ
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restricts the flow to link ℓ, yet the total inflow of link ℓ is less than this supply.
This property may be undesirable, depending on the specific phenomena which
the node model is desired to capture. We now suggest an alternative partially
FIFO model inspired by the physical division of an incoming link at a diverging
junction. To fix ideas, we assume that each diverging junction has exactly one
incoming link, that is,

|Lout
v | > 1 =⇒ |Lin

v | = 1 ∀v ∈ V . (26)

Example 4 (Shared and exclusive lanes for a partially FIFO model). Assume
(26) holds. We consider ηℓ ∈ [0, 1] for each ℓ ∈ L representing the degree of
influence on link ℓ of the FIFO restriction at the intersection so that ηℓ is the
fraction of traffic bound for link ℓ that is subject to a FIFO restriction and
(1 − ηℓ) is the fraction of traffic bound for link ℓ that is not subject to a FIFO
restriction. For example, 1− ηℓ is the fraction of lanes at the diverging junction
exclusively bound for link ℓ and ηℓ is the fraction of lanes that are shared among
all outgoing links.

Whenever Ladj
ℓ = ∅, we assume ηℓ = 1 without loss of generality. Let αF

v (x)

be given as in (22) for all v ∈ V. For ℓ ∈ L such that Ladj
ℓ 6= ∅, let k be the

unique link such that Lup
ℓ = {k} (uniqueness is guaranteed by (26)), and let

fF
k�ℓ(x) = ηℓα

F
τ(ℓ)(x)βℓdk(xk) (27)

fNF
k�ℓ(x) = min

{

(1− ηℓ)βℓdk(xk), sℓ(xℓ)− fF
k�ℓ(x)

}

. (28)

For ℓ ∈ L such that Ladj
ℓ = ∅, we have that ηℓ = 1 so that

fF
k�ℓ(x) = αF

τ(ℓ)(x)βℓdk(xk) ∀k ∈ Lup
ℓ (29)

fNF
k�ℓ(x) ≡ 0. (30)

We extend Example 4 to the case where there are multiple sets of interacting
outgoing links that result in a collection of FIFO restrictions.

Example 5. Assume (26) holds. For each v ∈ V with Lin
v 6= ∅, let Φ(v) ⊂

P (Lin
v ), where P (·) denotes the power set operator, be a collection of subsets of

Lin
v so that each ϕ ∈ Φ(v), ϕ ⊆ Lin

v is a set links which are mutually governed
by a FIFO restriction. When |Lout

v | = 1, we assume Φ(v) = {Lout
v }.

For ϕ ∈ Φ(v) and ℓ ∈ Lout
v , let ηℓ,ϕ ∈ [0, 1] represent the degree of influence

on link ℓ of the FIFO restriction set ϕ. We make the following assumptions:

ℓ 6∈ ϕ =⇒ ηℓ,ϕ = 0 ∀ϕ ∈ Φ(τ(ℓ)) (31)
∑

ϕ∈Φ(v)

ηℓ,ϕ ≤ 1 ∀ℓ ∈ Lin
v ∀v ∈ V . (32)

Define

η̄ℓ = 1−
∑

ϕ∈Φ(v)

ηℓ,ϕ. (33)
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For all v ∈ V such that |Lout
v | > 1, define

αϕ(x) = min

{

1,min
j∈ϕ

{

sj(xj)

βjdk(xk)

}}

∀ϕ ∈ Φ(v) (34)

where k is the unique upstream link such that Lin
v = {k}.

For ℓ ∈ L such that Ladj
ℓ 6= ∅, let k be the unique link such that Lup

ℓ = {k},
and let

fϕ
k�ℓ(x) = ηℓ,ϕαϕ(x)βℓdk(xk) ∀ϕ ∈ Φ(τ(ℓ)) (35)

fF
k�ℓ(x) =

∑

ϕ∈Φ(τ(ℓ))

fϕ
k�ℓ(x) (36)

fNF
k�ℓ(x) = min

{

η̄ℓβℓdk(xk), sℓ(xℓ)− fF
k�ℓ(x)

}

. (37)

For ℓ ∈ L such that Ladj
ℓ = ∅, we again let

fF
k�ℓ(x) = αF

τ(ℓ)(x)βℓdk(xk) ∀k ∈ Lup
ℓ (38)

fNF
k�ℓ(x) ≡ 0 (39)

where αF
τ(ℓ)(x) is as given in (22).

Taking Φ(v) = {Lout
v } for all v ∈ V , we see that Example 4 is a special case

of Example 5.
All the examples above satisfy

fk�ℓ(x) ≤ βℓdk(xk) ∀k ∈ L ∀ℓ ∈ Ldown
ℓ (40)

fk�ℓ(x) ≤ sℓ(xℓ) ∀k ∈ L ∀ℓ ∈ Ldown
ℓ . (41)

If we further assume that
∑

k∈Ldown
ℓ

βk ≤ 1 and

γℓ ≤
1

∑

k∈Ldown
ℓ

βk

− 1 (42)

for all ℓ such that Lout
σ(ℓ) 6= ∅, we have that

∑

k∈L

fℓ�k(x) + fℓ�(x) ≤ dℓ(xℓ) ∀ℓ ∈ L ∀x ∈ X . (43)

Proposition 1. Examples 1, 2, 3, 4, and 5 satisfy Assumption 1.

Proof. It follows straightforwardly from results in [3] that the conditions of
Assumption 1 hold for Example 1, and, similarly, it follows from results in [6]
that the assumption holds for Example 2. From Example 1 and Example 2,
the assumption immediately holds for Example 3. We now show that Example
5 satisfies Assumption 1, from which it follows that also Example 4 satisfies
Assumption 1 because Example 4 is a special case of Example 5. To that end,
we now prove each of condition (8)–(16) for Example 5.
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• (Condition 8). Follows trivially from (17) and (18).

• (Condition (9)). Follows from (19) and Condition (14), proved below, as
well as Conditions (10) and (11), proved below.

• (Conditions (10) and (11)). Follows immediately from the fact that for all
v ∈ V and all ϕ ∈ Φ(v), αF

v (x) and αϕ(x) are only functions of dℓ(xℓ) for
ℓ ∈ Lin

v and sℓ(xℓ) for ℓ ∈ Lout
v and from (37).

• (Conditions (12) and (13)). Consider ℓ ∈ L. If |Lup
ℓ | > 1, then Ladj

ℓ = ∅
by (26) and

∑

j∈L

fF
j�ℓ(x) ∈







∑

j∈L
up

ℓ

βℓdj(xj), sℓ(xℓ)







(44)

∑

j∈L

fNF
j�ℓ(x) ≡ 0 (45)

and thus (12) and (13) hold.

Now suppose |Lup
ℓ | = 1 and let Lup

ℓ = {k} so that

∑

j∈L

fF
j�ℓ(x) = fF

k�ℓ(x) =
∑

ϕ∈Φ(τ(ℓ))

fϕ
k�ℓ(x) (46)

∑

j∈L

fNF
j�ℓ(x) = fNF

k�ℓ(x). (47)

We have

αϕ(x)dk(xk) = min

{

dk(xk),min
j∈ϕ

{

sj(xj)

βj

}}

(48)

and thus (12) holds by (35) and (46).

Still supposing |Lup
ℓ | = 1 with Lup

ℓ = {k}, consider now Condition (13).
The only possibility for which this condition would not hold is if ∂

∂xk
fF
k�ℓ(x) >

0 and sℓ(xℓ)− fF
k�ℓ(x) is the minimizer in (37). But

∂

∂xk

fF
k�ℓ(x) > 0 (49)

only if αϕ(x) = 1 for some ϕ for which ℓ ∈ ϕ on some neighborhood of x so
that, in particular, sℓ(xℓ)/(βℓdk(xk)) > 1, equivalently, sℓ(xℓ) > βℓdk(xk).
In this case, since fF

k�ℓ(x) ≤
∑

ϕ∈Φ(τ(ℓ)) ηℓ,ϕβℓdk(xk), we have that

sℓ(xℓ)− fF
k�ℓ(x) ≥ η̄ℓβℓdk(xk), (50)

i.e., η̄ℓβℓdk(xk) is the minimizer in (37) and thus (13) holds.
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• (Condition (14)). Suppose v ∈ V is such that |Lout
v | = 1 and let Lout

v =
{k}. Consider ℓ ∈ Lin

v . Then

∑

j∈L

fℓ�j(x) = fF
ℓ�k = αF

v (x)βkdℓ(xℓ) (51)

= min

{

βkdℓ(xℓ),
dℓ(xℓ)

∑

j∈Lin
v
dj(xj)

sk(xk)

}

. (52)

Since ∂
∂xm

dℓ(xℓ)∑
j∈Lin

v
dj(xj)

≤ 0 for all m ∈ Lin
v with m 6= ℓ, and dsk

dxk
(xk) ≤ 0

(14) holds.

Now suppose |Lout
v | > 1 so that |Lin

v | = 1, and let Lin
v = {ℓ}. From

(35)–(37), for all j ∈ Lout
v we have

fℓ�j(x) = fF
ℓ�j(x) + fNF

ℓ�j(x) ∈
{

fF
ℓ�j(x) + η̄ℓβℓdk(xk), sj(xj)

}

. (53)

Consider some ϕ ∈ Φ(v). Then

αϕ(x)dℓ(xℓ) = min

{

dℓ(xℓ),min
i∈ϕ

{

si(xi)

βi

}}

(54)

so that ∂
∂xm

(αϕ(x)dℓ(xℓ)) ≤ 0 for all m ∈ Lout
v . Therefore,

∂fF
ℓ�j

∂xm

(x) =
∂

∂xm





∑

ϕ∈Φ(v)

ηj,ϕαϕ(x)βjdℓ(xℓ)



 ≤ 0 (55)

for all m ∈ Lout
v . From (53), we have that

∂fℓ�j

∂xm
(x) ≤ 0 for all m ∈ Lout

v

so that (14) holds. Finally, Condition (14) holds trivially when Lout
v = ∅

for all ℓ ∈ Lin
v .

• (Condition (15)). Follows from Condition (16) below and (37).

• (Condition (16)). Follows from (35), (54), and the fact that dsi
dxi

(xi) ≤ 0
for all i ∈ L.

4 Mixed Monotonicity of Traffic Flow

Definition 1 (Mixed Monotone). The system ẋ = G(x), x ∈ X ⊆ R
n where X

has convex interior and G is locally Lipschitz is mixed monotone if there exists
a locally Lipschitz continuous function g(x, y) satisfying:

1. g(x, x) = G(x) for all x ∈ X

10



2.
∂gi
∂xj

(x, y) ≥ 0 for all x, y ∈ X and all i 6= j whenever the derivative exists

3.
∂gi
∂yj

(x, y) ≤ 0 for all x, y ∈ X and all i, j whenever the derivative exists.

The function g(x, y) is called a decomposition function for the system.

Theorem 1. The traffic flow network model (6) satisfying Assumption 1 is
mixed monotone.

Proof. We construct an appropriate decomposition function g(x, y). For each
ℓ ∈ L, let

zℓ(x, y) : X × X → X (56)

be defined elementwise as

zℓk(x, y) =

{

yk if k ∈ Ladj
ℓ

xk else
∀ℓ ∈ L. (57)

Define

gℓ(x, y) =
∑

k∈L

(

fF
k�ℓ(z

ℓ(x, y)) + fNF
k�ℓ(x)

)

−
∑

j∈L

(

fF
ℓ�j(x) + fNF

ℓ�j(x)
)

+ f�ℓ(x)− fℓ�(x) (58)

and let g(x, y) = {gℓ(x, y)}ℓ∈L. It is immediate that gℓ(x, x) = Fℓ(x) given in
(6) for all ℓ ∈ L.

We first show

∂gℓ
xm

(x, y) ≥ 0 for all m 6= ℓ. (59)

To this end, we show

∂

∂xm

(

∑

k∈L

(

fF
k�ℓ(z

ℓ(x, y)) + fNF
k�ℓ(x)

)

)

≥ 0 ∀m 6= ℓ (60)

∂

∂xm





∑

j∈L

(

fF
ℓ�j(x) + fNF

ℓ�j(x)
)



 ≤ 0 ∀m 6= ℓ (61)

which, combined with (8) and (9) of Assumption 1, proves (59). We have that
(61) holds for all m ∈ Lin

σ(ℓ) ∪ Lout
σ(ℓ) with m 6= ℓ by (14), and (10)–(11) ensures

that (61) holds with equality for all m 6∈ Lin
σ(ℓ) ∪Lout

σ(ℓ). For m ∈ Lup
ℓ , (60) holds

from (12) and (13). For m ∈ Ladj
ℓ , we have ∂

∂xm
(fF

k→ℓ(z
ℓ(x, y)) = 0 for all k by

(57), and ∂
∂xm

(fNF
k→ℓ(x)) ≥ 0 by (15), satisfying (60). For m 6∈ Ladj

ℓ ∪ Lup
ℓ , we

have (60) holds with equality by (10)–(11).
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We now show

∂gℓ
ym

(x, y) ≤ 0 for all m 6= ℓ. (62)

We have that (62) holds trivially for all m 6∈ Ladj
ℓ . For m ∈ Ladj

ℓ , we have

∂gℓ
∂ym

(x, y) =
∂

∂ym





∑

j∈L

fF
j�ℓ(z

ℓ(x, y))



 (63)

≤ 0 (64)

where the inequality follows by (16).

We remark that a sufficient condition for mixed monotonicity of ẋ = G(x) is
for each off-diagonal entry of the Jacobian matrix ∂G

∂x
to be sign-stable over the

domain X , that is, either ∂Gi

∂xj
(x) ≥ 0 for all x ∈ X or ∂Gi

∂xj
(x) ≤ 0 for all x ∈ X

for all i 6= j. This condition is proved for the discrete-time case in [8] and the
proof for the continuous-time case is similar. In general, partially FIFO models
do not satisfy this condition; this is attributable to the different sign conditions
in (15) and (16) whereby an increase on some link k ∈ Ladj

ℓ may increase the
non-FIFO flow to link ℓ and decrease the FIFO flow to link ℓ. Thus we require
a different construction for the decomposition function as shown in the proof of
Theorem 1.
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