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Abstract— We consider the problem of coordinating the
traffic signals in a network of signalized intersections to reduce
accumulated queues of vehicles throughout the network. We
assume that all signals have a common cycle time and a fixed
actuation plan, and we propose an approach for optimizing the
relative phase offsets. Unlike existing techniques, our approach
accommodates networks with arbitrary topology and scales
well. This is accomplished by proposing a sinusoidal approxi-
mation of the queueing processes in the network, which enables
a semidefinite relaxation of the offset optimization problem that
is easily solved. We demonstrate the result in a case study of a
traffic network in Arcadia, California.

I. INTRODUCTION

Systematic approaches to selecting the parameters of
traffic signal controllers—cycle time, green times, and
intersection-to-intersection offsets—have been a subject of
research in the transportation community for several decades.
Here we focus on the problem of selecting offsets for a
network of signalized intersections to allow platoons of
vehicles to move through the network with the least hin-
drance by red lights. Many existing algorithms for offset
optimization focus on one- or two-way arterial roads [1], [2].
Perhaps the first algorithm developed for general networks
was the Generalized Combination Method of [3], in which
link delay functions were combined into a network delay
function using a set of network reduction rules. The mixed-
integer formulation of [1] was generalized to grid networks
in [4] by adding a “loop constraint” and further extended
in [5] to provide computational advantages via a network
decomposition technique. These methods suffer from the
computational burden of mixed-integer programs and there-
fore are not scalable.

In this paper, we formulate the offset optimization problem
as a semidefinite program. We approximate platoons of
vehicles arriving at and departing from traffic signals as sinu-
soidal functions of time and consider minimizing the average
queue lengths at intersections. The resulting optimization
problem is a non-convex, quadratically constrained quadratic
program (QCQP) that is well-known to be amenable to
semidefinite relaxation [6]. This QCQP formulation and its
relaxation is especially analogous to recent approaches to
the optimal power flow problem [7], [8] and the angular
synchronization problem [9], [10].
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Fig. 1. A standard network of signalized intersections along with the
notation used. The nodes denote the intersections. For a link ` ∈ L, σ(`)
denotes the signal that actuates ` and τ(`) denotes the signal immediately
upstream of link `. Entry links E are shown as dashed links. For all ` ∈ E ,
τ(`) = ε where the symbol ε denotes the absence of an upstream signal.
There is no need to model links that exit the network.

We apply our technique to a case study arterial network in
Arcadia, California which is part of the Connected Corridors
project at UC Berkeley [11]. The network contains thirteen
signalized intersections, and simulation results show that our
offset optimization technique reduces queue lengths by 27%
and travel time by 8.9%. While this case study is of mod-
est size, the semidefinite formulation proposed here easily
accommodates networks with hundreds of intersections.

The paper is organized as follows. Section II introduces
notational preliminaries. Section III presents the problem
formulation and Section IV proposes an approach to mod-
eling traffic flow and queue evolution using sinusoids. This
approach leads to the offset optimization problem studied
in Section V. We consider a case study in Section VI and
provide concluding remarks in Section VII.

II. PRELIMINARIES

We define R≥0 = {x ∈ R | x ≥ 0}. For a periodic func-
tion x(t) with period T ,

∫
T
x(t)dt denotes integration over

any time interval of length T . For a, b ∈ R, arctan(b/a) ∈
[0, 2π] is understood to be the four-quadrant arctangent of
b/a, that is, arctan(b/a) is equal to the angle θ such that
sin(θ) = b/

√
b2 + a2 and cos(θ) = a/

√
b2 + a2. For a real,

square matrix M ∈ Rn×n, Tr(M) denotes the trace of M ,
rank(M) denotes the rank of M , MT denotes the transpose
of M , and M is said to be positive semidefinite, denoted by
M � 0, if zTMz ≥ 0 for all z ∈ Rn. M [i, j] denotes the
(i, j)-th entry of M .

III. PROBLEM FORMULATION

We consider a traffic network consisting of a set S of
signalized intersections and a set L of links. A subset E ⊂ L
of links are entry links and direct exogenous traffic onto the



Parameter In Seconds In Radians
Cycle time T 2π
Offset of arrival on ` ∈ L Φ` ϕ`
Phase offset of s ∈ S Θs θs
Green split offset of ` ∈ L Γ` γ`
Actuation offset of ` ∈ L Θσ(`) + Γ` θσ(`) + γ`
Queueing offset of ` ∈ L Ξ` ξ`
Travel time of ` ∈ L Λ` λ`

TABLE I
PARAMETERS FOR THE PERIODIC, SINUSOIDAL APPROXIMATION OF

ARRIVALS, DEPARTURES, AND QUEUES.

network. Let σ : L → S map each link to the signal that
actuates the queue on that link, that is, σ(`) = s ∈ S if and
only if signal s actuates the queue on link `. Symmetrically,
let τ : L → S ∪ ε map each link to the signal immediately
upstream of the link where the symbol ε denotes that no
upstream signal exists; that is, signal τ(`) controls the flow of
vehicles to link ` and we have ` ∈ E if and only if τ(`) = ε.
See Fig. 1 for an illustration of the notation.

Each signal at an intersection employs a fixed time control
strategy whereby a repeating sequence of nonconflicting
links are actuated for a fixed amount of time. The length
of time, in seconds, of this sequence is the cycle time of the
intersection.

Assumption 1 (Common Cycle Time). The signals at all
intersections have common cycle time T , i.e., a common
frequency ω = 2π/T .

Table I collects notation for parameters introduced subse-
quently that arise from this fixed cycle time.

Each link ` ∈ L possesses a queue with length q`(t) ∈
R≥0 that evolves over time. We adopt a fluid queue model
so that the queue length, arrivals, and departures are real-
valued functions. Specifically, vehicles arrive at a queue
from upstream links or from outside the network according
to an arrival process a`(t) and depart the queue according
to a departure process d`(t) which depends on the signal
actuation. We describe how these processes are approximated
under certain periodicity assumptions in Section IV. The
queue length q`(t) then obeys the dynamics

q̇`(t) = a`(t)− d`(t). (1)

During a cycle, we assume that each link is actuated for
one contiguous interval of time (modulo a cycle length)
during which vehicles depart the queue. For a signal s ∈ S,
the actuation durations for the upstream links {` | σ(`) = s}
and their sequencing are assumed to be fixed.

The phase offset Θs for signal s ∈ S is the offset,
measured in seconds, of the actuation sequence from some
global clock and is the design parameter considered here.
For each link ` ∈ L, let the green split Γ` ≤ T be the time
difference of the midpoint of the actuation time for link `
and the beginning of the offset Θσ(`). It follows that

t = nT + (Θs + Γ`), n = 0, 1, 2, . . . (2)

are the time instants of the midpoint of the actuation times
for each link ` with σ(`) = s. We let θs = Θsω and γ` =
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Fig. 2. (a) A standard four-way intersection s with incoming links
`1, `2, `3, `4. The cycle time is divided among the incoming links according
to the green splits at the intersection, which are assumed fixed. The phase
offset Θs for the intersection is a design parameter. (b) Green splits when
each link is actuated sequentially. The green/dark regions denote the time
intervals when a link is actuated and queued vehicles are able to move
through the intersection. (c) Green splits when links `1 and `2 are actuated
simultaneously, then links `3 and `4 are actuated simultaneously. Without
loss of generality, we take Γ`1 = Γ`2 = 0 and Γ`3 = Γ`4 = T/2.

Γ`ω denote the normalized phase offset at signal s and the
normalized green split at link `, respectively. Without loss
of generality, we interpret Θε = 0.
Example. Consider signal s ∈ S with four input links
`1, `2, `3, and `4 as in Fig. 2(a). A possible set of green
splits is shown in Fig. 2(b). The green bars indicate the
time interval, within one period, during which each link is
actuated. This signaling pattern may be found in, e.g., a four-
way signaling scheme in which only one link is actuated at
any given time.

Now suppose that links Lpri = {`1, `2} are actuated
simultaneously during the primary phase, and then links
Lsec = {`3, `4} are actuated simultaneously during the sec-
ondary phase as in Fig.2(c). This is a commonly encountered
situation in which the signal consists of two phases for the
two directions of travel. Without loss of generality, we assume
that Γ`1 = Γ`2 = 0. An important observation for this
common case is that, regardless of the length of the green
splits, we have Γ`3 = Γ`4 = T/2, and thus γ`3 = γ`4 = π.

For `, k ∈ L, let the split ratio β`k denote the fraction
of vehicles that are routed to link k upon exiting link `.
We assume the split ratios are given and fixed, a standard
modeling assumption since split ratios can be inferred from
measured traffic flow [12]. Clearly, β`k 6= 0 only if σ(`) =
τ(k), and ∑

k∈L

β`k ≤ 1 ∀` ∈ L (3)



where strict inequality in (3) implies that a fraction of
the vehicles departing link ` are routed off the network
via an unmodeled road. We remark that our formulation is
general enough to accommodate, e.g., turn pocket lanes by
introducing additional links for these lanes.

IV. SINUSOIDAL APPROXIMATION OF ARRIVALS,
DEPARTURES, AND QUEUES

To address the signal coordination problem discussed
above, we assume the arrival and departure processes satisfy
a periodicity assumption:

Assumption 2 (Periodicity Assumption). The network is in
periodic steady state so that all arrivals, departures, and
queues are periodic with period T .

When the green splits and turn ratios are able to accom-
modate the exogenous arrival rates, a natural condition, the
network converges to a periodic steady state and thus the
Periodicity Assumption is reasonable [13]. Under the Period-
icity Assumption, we propose approximating the arrival and
departure processes at a queue as sinusoids of appropriate
amplitude and phase shift, an idea we formalize next.

A. Entry Links
For each ` ∈ E , we assume that the arrival of vehicles to

the queue on link ` at signal σ(`) is approximated by the
function

â`(t) = A` + α` cos(ωt− ϕ`) (4)

for constants A`, α`, ϕ` ≥ 0 with A` ≥ α`. The constant A`
represents the average arrival rate of vehicles to the queue on
link `; α` allows for periodic fluctuation in the arrival rate;
Φ` = ϕ`/ω is the offset of the periodic arrival of vehicles
to the queue on link ` and includes the travel time of link `.
Throughout, we employ a vertical queueing model [14] such
that travel time of a link is constant and does not change with
queue length.

For A` = α`, â`(t) approximates a periodic pulse arrival,
denoted by a`(t) as in Fig. 3(a), which is often used to
model the arrival of vehicle platoons. If the periodic pulse
has amplitude h` and duration δ`, we take A` = h`δ`/T so
that

∫
T
â`(t)dt =

∫
T
a`(t)dt = h`δ`. In this case, Φ` is the

midpoint of the arrival pulse.
The departure process d`(t) for entry link ` ∈ E is

determined by the signal at intersection σ(`) ∈ S and must
satisfy ∫

T

d`(t) dt =

∫
T

a`(t) dt (5)

by the Periodicity Assumption. We approximate the depar-
ture process as a shifted sinusoid

d̂`(t) = A`
(
1 + cos(ωt− (θσ(`) + γ`))

)
∀` ∈ E , (6)

where, as defined above, (θσ(`) + γ`) denotes the actuation
offset of link ` as determined by the phase offset of signal
σ(`) and the green split of link `; see Figure 3(b). We assume
that all links have adequate capacity for upstream traffic
and thus do not consider blocking of traffic by downstream
congestion.
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Fig. 3. Sinusoidal approximations of arrivals and departures. (a) A
particular approximation of the arrival process on an entry link. The actual
arrival process for link ` ∈ E is a pulse train, which is approximated with
a sinusoid. (b) The sinusoidal approximation of the departure process at
any link ` ∈ L. The amplitude is required to match A` by the Periodicity
Assumption, and the phase offset Θσ(`) is a design parameter.

B. Nonentry Links

For each link ` ∈ L\E , the arrival process is defined as
follows. Let Λ` denote the travel time, in seconds, of link `,
and let λ` = ωΛ`. The approximate arrival process for the
queue on link ` ∈ L\E is then

â`(t) =
∑
k∈L

βk`Ak(1 + cos(ωt− (θσ(k) + γk)− λ`)) (7)

= A` + α` cos(ωt− (θτ(`) + ϕ`)) (8)

where A`, α`, and ϕ` are given by the following formulas:

A` =
∑
k∈L

β`kAk (9)

α2
` =

(∑
k∈L

βk`Ak cos(γk)

)2

+

(∑
k∈L

βk`Ak sin(γk)

)2

(10)

ϕ` = λ` + arctan

(∑
k∈L βk`Ak sin(γk)∑
k∈L βk`Ak cos(γk)

)
. (11)

In (7)–(8), we use the fact that σ(k) = τ(`) for any k, `
such that βk` 6= 0. The approximate departure process is as
described above for entry links, that is,

d̂`(t) = A`
(
1 + cos(ωt− (θσ(`) + γ`))

)
, ∀` ∈ L\E . (12)

Note that A`, α`, λ` and ϕ` do not depend on the offsets
{θk}k∈L.

C. Queueing Process

Let q̂(t) denote the approximate queueing process that
results from the sinusoidal approximation of arrivals and
departures. Then

˙̂q`(t) =â`(t)− d̂`(t) (13)
=α` cos(ωt− (θτ(`) + ϕ`))

−A` cos(ωt− (θσ(`) + γ`)) (14)
=Q` cos(ωt− ξ`) (15)



where

Q` =
√
A2
` + α2

` − 2A`α` cos((θτ(`) + ϕ`)− (θσ(`) + γ`))

(16)

ξ` = arctan

(
α` sin(θτ(`) + ϕ`)−A` sin(θσ(`) + γ`)

α` cos(θτ(`) + ϕ`)−A` cos(θσ(`) + γ`)

)
.

(17)

Thus, ξ` represents the normalized offset of the queueing
process and Ξ` = ξ`/ω is the offset of the queueing process
in seconds. It follows by integration that

q̂`(t) =
Q`
ω

sin(ωt− ξ`) + C` (18)

where C` is the average queue length on link `. Since q̂`(t) ≥
0 for all time, we have

C` ≥ (Q`/ω). (19)

Under the assumption that all queues are emptied in each
cycle, which is the case if the demand is strictly feasible
[12], [13], then (19) holds with equality.

D. Performance Metric

For link ` ∈ L, consider the performance metric

J` , (Q`/ω)
2
. (20)

When (19) holds with equality, J` is an approximate
measure of the squared average queue length on link ` and
(up to a constant factor) the maximum squared queue length
on link `. Note that A`, α` are functions only of the network
topology, split ratios, green splits, and {A`}`∈E , all of which
are assumed fixed. Thus, minimizing J` is equivalent to
maximizing the normalized reward function

R` = A`α` cos((θτ(`) + ϕ`)− (θσ(`) + γ`)). (21)

The interpretation of maximizing R` is clear: for each link,
we wish to minimize the difference between the arrival offset
(θτ(`) + ϕ`) and the departure offset (θσ(`) + γ`). Choosing

θσ(`) + γ` = θτ(`) + ϕ` (22)

optimizes the offset of signals σ(`) and τ(`) from the per-
spective of reducing the queue length on link `; the difficulty
arises in choosing the offsets for all signals simultaneously,
as it is generally not possible to satisfy (22) for all ` ∈ L.
Efficiently computing an optimal tradeoff is addressed in the
next section.

V. OPTIMIZING TRAFFIC SIGNAL OFFSETS

A. Offset optimization problem and a convex relaxation

We propose
∑
`∈LR` as the global objective function for

the network and thus pose the following by substituting (21):
Offset Optimization Problem:

maximize
{θs}s∈S

∑
`∈L

A`α` cos(θτ(`) − θσ(`) + ϕ` − γ`) (23)

where it is understood that θs ∈ [0, 2π] for each s ∈ S . In
Sections III and IV, we have assumed θε = 0. Here, we will

include θε as a decision variable in the optimization problem
for convenience; this is clearly acceptable since the objective
function in (23) is invariant to a shift of all θs, s ∈ S ∪ ε. In
particular, given a solution to (23), we may shift all phases
by the nonzero θε to obtain an alternative solution as is done
below in (43)–(44).

In general, the optimization problem (23) is not convex.
Here, we propose a semidefinite relaxation for approximately
solving (23). We first recast (23) to an equivalent quadrat-
ically constrained quadratic program that is amenable to
convex relaxation. For s, u ∈ S, define1

Ls�u = {` ∈ L | τ(`) = s and σ(`) = u}. (24)

Let Wi ∈ R(|S|+1)×(|S|+1) for i ∈ {1, 2} be given by

W1[s, u] =
∑

`∈Ls�u

A`α` cos(ϕ` − γ`) (25)

W2[s, u] =
∑

`∈Ls�u

A`α` sin(ϕ` − γ`) (26)

and let

W =

[
W1 W2

−W2 W1

]
, W =

1

2
(W +WT ). (27)

Define the following:

xs = cos θs ∀s ∈ S ∪ ε, x = {xs}s∈S∪ε (28)
ys = sin θs ∀s ∈ S ∪ ε, y = {ys}s∈S∪ε (29)
z = (x, y). (30)

By enumerating S ∪ ε, we interpret z ∈ R2|S|+2. We rewrite
the objective function in (23):∑

`∈L

A`α` cos(θτ(`) − θσ(`) + ϕ` − γ`) = zTWz. (31)

Furthermore, we have the constraint x2s + y2s = 1 for all
s ∈ S ∪ ε. Let Es ∈ R|S|+1 for s ∈ S ∪ ε be given by

Es[u, v] =

{
1 if u = v = s

0 otherwise
(32)

and define

Ms =

[
Es 0
0 Es

]
. (33)

Then the constraint x2s+y2s = 1 is equivalent to zTMsz = 1.
We formulate the following quadratically constrained

quadratic program (QCQP), which is equivalent to the opti-
mization problem (23):
Equivalent QCQP Formulation:

maximize
z∈R2|S|+2

zTWz (34)

subject to zTMsz = 1 ∀s ∈ S ∪ ε. (35)

Given a solution z∗ to (34)–(35), we may easily recover
the corresponding phase offsets θs, s ∈ S by partitioning
z∗ = (x∗, y∗) for which θs = arctan(y∗s/x

∗
s). Since W is

1Note that Ls�u may have cardinality greater than one if, e.g., we
model turn pocket lanes with additional links as remarked above.



not positive semidefinite and we have equality constraints in
(35), the equivalent QCQP formulation above is not convex.

Let Z = zzT , and recall that zTY z = Tr(zTY z) =
Tr(Y Z) for any square matrix Y . By optimizing over a rank-
one matrix Z instead of over a vector z, we equivalently
write (34)–(35) as the following rank-constrained semidefi-
nite program (SDP):
Equivalent Rank-Constrained SDP Formulation:

maximize
Z∈R(2|S|+2)×(2|S|+2)

Tr(WZ) (36)

subject to Tr(MsZ) = 1 ∀s ∈ S ∪ ε (37)
Z � 0 (38)

rank(Z) = 1 (39)

Note that Tr(MsZ) = 1 is equivalent to the condition
Z[i, i] + Z[j, j] = 1 for i = 1, . . . , |S| + 1 and j = i +
|S|+ 1. Furthermore, the rank constraint (39) is nonconvex,
rendering the equivalent rank-constrained SDP formulation a
nonconvex optimization problem. However, we may obtain
a convex relaxation by omitting this constraint:
Relaxed Convex SDP Formulation:

maximize
Z∈R(2|S|+2)×(2|S|+2)

Tr(WZ) (40)

subject to Tr(MsZ) = 1 ∀s ∈ S ∪ ε (41)
Z � 0. (42)

The feasible set defined by (41)–(42) contains the feasible
set defined by (37)–(39), and thus a solution to (40)–(42)
provides an upper bound on the achievable performance of
the optimization problem (23).

Interestingly, it has been observed that, for many prac-
tically motivated problems, solutions Z∗ to the relaxed
optimization problem are such that rank(Z∗) = 1 and
thus the true optimal solution z∗ to the Offset Optimization
Problem is obtained by factoring Z∗ = (z∗)(z∗)T , as is
the case in the example below. Understanding when the
relaxation returns the exactly optimal solution has been the
subject of recent research [9], [15].

For instances when rank(Z∗) > 1, we must approximate
a solution to the Offset Optimization Problem from Z∗, for
which a number of approaches exist [6]. For example, let
UΣUT = Z∗ be an eigenvalue decomposition of Z∗ where
Σ is a diagonal matrix with the (nonnegative) eigenvalues
of Z∗ along the diagonal, and U is an orthonormal matrix
with columns Ui, i = 1, . . . , 2|S|+ 2. Assume Σ is ordered
so that Σ[1, 1] is the largest eigenvalue of Z∗. Then we take
ẑ = U1 and partition ẑ = (x̂, ŷ). We may obtain an estimate
of the optimal offsets as follows:

θ̄s , arctan

(
ŷs
x̂s

)
∀s ∈ S ∪ ε (43)

θ̂s = θ̄s − θ̄ε ∀s ∈ S. (44)

Other techniques exist for recovering a feasible solution
from Z∗. In particular, [16], [17] propose randomized algo-
rithms that use the Cholesky factorization of Z∗ and provide

Fig. 4. Huntington Dr./Colorado Blvd. arterial corridor in Arcadia, Cali-
fornia. The case study consists of 50 links and 13 signalized intersections.

bounds (in expectation) on the suboptimality of the obtained
feasible solution.

Remark 1. If there exists s ∈ S ∪ ε such that W1[s, u] =
W2[s, u] = 0 for all u ∈ S , then θs does not appear in
the objective of (23) and the decision variables xs and ys
should be removed from the optimization problem prior to
the convex relaxation. For example, if α` = 0 for all ` ∈ E ,
as is in the case study where vehicles are assumed to arrive
at entry links as a steady stream, then xε and yε should be
removed from the optimization problem.

VI. CASE STUDY

We consider the Huntington Dr./Colorado Blvd. arterial
corridor in Arcadia, California shown in Fig. 4 that is
adjacent to Interstate 210. The network comprises 50 links
and 13 signalized intersections. Traffic demand and empirical
turn ratios were obtained from several sources as part of the
Connected Corridors project at UC Berkeley [11].

The signalized intersections operate with fixed-time poli-
cies and hence with fixed green splits. In actuality, 11 of the
13 signalized intersections possess a common cycle time of
120 seconds; the remaining two intersections operate with
cycle times of 90 seconds and 145 seconds. Our analysis
requires a common cycle time for all intersections, and
thus we have scaled the fixed green splits for these two
intersections so that all signalized intersections operate with
a common cycle time of 120 seconds for our study. We refer
to this scenario, where phase offsets are obtained from given
phase plans, as the baseline scenario in Table II.

Twenty-seven of the 50 links constitute the two-way
arterial along Huntington Dr. and Colorado Blvd. to the entry
ramp of I-210 along Michillinda Avenue. The remaining
links direct exogenous traffic onto the network at intersec-
tions and constitute E . We assume vehicles arrive as a steady
stream to all links ` ∈ E , that is, α` = 0 for all ` ∈ E . This
implies w` = 0 for all ` ∈ E , and thus the queues on all
entry links do not appear in the optimization formulation
(this reflects the fact that the phase offset policy only shifts,
in time, the queue length process on entry links and does not
affect the peak or average queues on these links). This further
implies that θε, the phase offset of the exogenous signals,
does not appear in the objective function of the optimization
procedure and is thus omitted as noted in Remark 1.

We employ the convex, relaxed optimization problem
(40)–(42) using the MATLAB-based CVX package [18],



Metric Baseline Optimized Improvement
Mean of Peak Queue Lengthsa ,b [veh] 17.14 12.47 27.2%
Mean of Avg. Queue Lengthsb [veh] 5.12 3.72 27.4%
Avg. Time in Network [s] 127.9 116.6 8.9%

aTo account for stochastic fluctuations in the simulation, the peak queue
is defined to be the queue length that is surpassed by the queue process only
one percent of the time.

bThe summation is over L\E as noted in Section VI.

TABLE II
CASE STUDY RESULTS

which returns an optimal Z∗ in 0.37 seconds on a stan-
dard laptop. For this problem, CVX returned Z∗ such that
rank(Z∗) = 1, that is, the approximate solution is in fact
a global solution to the problem. This is to be expected
since the underlying graph structure is acyclic for which the
relaxation has been shown to be exact [15]; when determin-
ing the “underlying graph structure”, we only consider the
existence of a link between a pair of signals and not the
direction of travel. In Table II, we refer to the scenario where
phase offsets are the optimized phase offsets as the optimized
scenario.

To evaluate the performance of the optimized phase off-
sets, we simulate the network using the PointQ simulator
[19], a mesoscopic simulation environment developed at
UC Berkeley. The simulator is event driven and models
individual vehicles in the network which travel along links,
join finite capacity queues at intersections, and execute turn
movements (which are randomly realized according to fixed
turn ratios) when queues are actuated. The interarrival time
for vehicles at entry links is exponentially distributed to
approximate the steady stream of arriving vehicles. The
simulation is run for a sufficiently long time period so that
stochastic fluctuations are negligible.

Results of this simulation are shown in Table II. We see
an improvement of approximately 27% for both the mean
peak queue lengths and the mean average queue lengths
on links L\E (recall that entry links are excluded from
the optimization procedure since vehicles join these links
according to a constant exogenous arrival process).

Reducing queue lengths is the explicit performance metric
employed in this paper and results in a number of direct
benefits (e.g., reduced emissions and likelihood of accidents
due to reduced speed oscillations, reduced “wasted green
time” caused by downstream congestion that blocks flow).
Reduced queue lengths also afford proximate improvement
in other metrics. For example, in this simulation, the offset
optimization procedure results in decreased travel time of
nearly 9% for all vehicles in the network. Future research
will further investigate the connection between offset opti-
mization and additional metrics, particularly as it relates to
the “bandwidth” maximization problem [2].

VII. CONCLUSIONS

We have developed a scalable approximation algorithm to
the offset optimization problem in arbitrary network topolo-
gies. Despite the simplifying assumptions in the problem

formulation, the case study based on real traffic data demon-
strated a reduction in the queue lengths and travel time.
Future work will further investigate under what conditions
the semidefinite relaxation is exact. In addition, a weighted
objective function may be used to, e.g., encourage short
queues on short links to prevent congestion and is another
direction for future research.

VIII. ACKNOWLEDGEMENTS

The authors thank John Maidens for suggesting the con-
nection between (23) and rank relaxations of QCQPs.

REFERENCES

[1] J. Little, M. Kelson, and N. Gartner, “MAXBAND: A versatile
program for setting signals on arteries and triangular networks,”
Transportation Research Record, vol. 795, 1981.

[2] G. Gomes, “Bandwidth maximization using vehicle arrival functions,”
IEEE Transactions on Intelligent Transportation Systems, vol. 16,
pp. 1977–1988, Aug 2015.

[3] N. Gartner and J. Little, “The generalized combination method for area
traffic control,” Transportation Research Record, pp. 58–69, 1975.

[4] N. Gartner and C. Stamatiadis, “Arterial-based control of traffic flow in
urban grid networks,” Mathematical and Computer Modelling, vol. 35,
pp. 657–671, 2002.

[5] N. Gartner and C. Stamatiadis, “Progression optimization featuring
arterial and route based priority signal networks,” Journal of Intelli-
gent Transportation Systems: Technology, Planning, and Operations,
vol. 8:2, pp. 77–86, 2004.

[6] Z.-Q. Luo, W.-K. Ma, A.-C. So, Y. Ye, and S. Zhang, “Semidefinite
relaxation of quadratic optimization problems,” Signal Processing
Magazine, IEEE, vol. 27, no. 3, pp. 20–34, 2010.

[7] S. Bose, D. Gayme, K. M. Chandy, and S. H. Low, “Quadratically
constrained quadratic programs on acyclic graphs with application to
power flow.” http://arxiv.org/abs/1203.5599, 2012.

[8] S. Low, “Convex relaxation of optimal power flow part I: Formulations
and equivalence,” IEEE Transactions on Control of Network Systems,
vol. 1, pp. 15–27, March 2014.

[9] A. S. Bandeira, N. Boumal, and A. Singer, “Tightness of the maxi-
mum likelihood semidefinite relaxation for angular synchronization.”
http://arxiv.org/abs/1411.3272, 2014.

[10] A. Singer, “Angular synchronization by eigenvectors and semidefi-
nite programming,” Applied and Computational Harmonic Analysis,
vol. 30, pp. 20–36, 2011.

[11] “Analysis, modeling, and simulation workshop at Caltrans D7.”
www.connected-corridors.berkeley.edu/analysis-
modeling-and-simulation-workshop-caltrans-d7-0.

[12] P. Varaiya, “The max-pressure controller for arbitrary networks of
signalized intersections,” in Advances in Dynamic Network Modeling
in Complex Transportation Systems, pp. 27–66, Springer, 2013.

[13] A. Muralidharan, R. Pedarsani, and P. Varaiya, “Analysis of fixed-time
control,” Transportation Research Part B: Methodological, vol. 73,
pp. 81–90, 2015.

[14] P. Varaiya, “Max pressure control of a network of signalized inter-
sections,” Transportation Research Part C: Emerging Technologies,
vol. 36, pp. 177–195, 2013.

[15] S. Sojoudi and J. Lavaei, “Exactness of semidefinite relaxations for
nonlinear optimization problems with underlying graph structure,”
SIAM Journal on Optimization, vol. 24, no. 4, pp. 1746–1778, 2014.

[16] A. Nemirovski, C. Roos, and T. Terlaky, “On maximization of
quadratic form over intersection of ellipsoids with common center,”
Mathematical Programming, vol. 86, no. 3, pp. 463–473, 1999.

[17] A. M.-C. So, J. Zhang, and Y. Ye, “On approximating complex
quadratic optimization problems via semidefinite programming re-
laxations,” Mathematical Programming, vol. 110, no. 1, pp. 93–110,
2007.

[18] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 2.1.” http://cvxr.com/cvx, Mar. 2014.

[19] J. Lioris, A. Kurzhanskiy, D. Triantafyllos, and P. Varaiya, “Control
experiments for a network of signalized intersections using the ‘.Q’,”
12th IFAC-IEEE Workshop on Discrete Event Systems, Ecole Normale
Superieure de Cachan, France, 2014.


