
Automatic Generation of Timing Plans with High-Resolution Data

Samuel Coogan, Department of Electrical Engineering,
University of California, Los Angeles, CA 90095, 678-978-7116, scoogan@ucla.edu

Christopher Flores, Sensys Networks, Inc,
1608 Fourth Street, Berkeley, CA. 94710 510-599-7353, cflores@sensysnetworks.com

Pravin Varaiya, Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley, CA 94720, 510-642-5270, varaiya@berkeley.edu ∗

March 7, 2016

Abstract

A high-resolution (HR) data system for an intersection collects the location (lane), speed, and turn
movement of every vehicle as it enters an intersection, together with the signal phase. The system
operates 24× 7. The data are available in real time and archived. The archived data are used in a
three-step automated procedure to optimize timing plans. In the first step, the data are clustered by
day-of-week. In the second step an intra-day segmentation is derived for each cluster. In the third step
the optimum green split is determined for each intra-day segment to minimize the delay or to equalize
VC ratios. Various intersection performance measures may also be derived. The procedure is illustrated
for an intersection in Beaufort, SC. HR systems can also be used to evaluate safety, e.g. red-light and
right-turn-on-red violations.
Keywords. High-resolution data, arterial data, timing plans, vehicle counts, turn ratios, red light viola-
tions
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1 Introduction

Poor management of intersections causes excessive delay and more frequent crashes. Conditions are worse
in cities experiencing rapid growth in automobile ownership, but mature cities also face challenges as road
capacity is taken away from vehicles to accommodate increasing bicycle and pedestrian traffic. Management
today is handicapped by insufficient data. It can be more effective if it is based on high-resolution (HR) real-
time and archived data about the movement of vehicles, bicycles, and pedestrians. “If you don’t know what’s
happening on your roads, don’t expect to manage them well” is a truism.

A basic HR system measures the location (lane) and speed of every vehicle as it approaches and enters
the intersection, together with the signal phase. The system operates 24× 7 and the measurements are
archived in a database. The database generates reports providing continuous monitoring of the intersection
performance in terms of delay, VC ratios and LOS, cycle failures, etc. This paper presents a three-step
automated procedure that uses the database to generate optimal timing plans whenever needed. The agency
can thus determine when the performance has degraded sufficiently to change the existing timing plans.

Continuous performance monitoring combined with automatic re-timing represents a paradigm shift in in-
tersection management. Urban traffic in the U.S. today is regulated by 300,000 signalized intersections,
whose performance is determined by their signal control algorithms. The performance is poor: the 2012
National Transportation Operations Coalition (NTOC) assessment of traffic signal control gives an overall
grade of D+ (National Traffic Operations Coalition (2012)). Ninety percent of the signalized intersections
use fixed time of day (TOD) plans, which are re-timed once in five years, based on three days of manual data
collection. These traffic snapshots and the timing plans based on them completely miss the variability in
the traffic to which the plans should adapt. Moreover, the infrequent snapshots do not permit the operating
agencies or the public to determine whether the road network is performing well or poorly.

Figure 1: Schematic for HR system at intersection in Beaufort, SC: each small white dot is vehicle detector.

The applications discussed below use data from an HR system at an intersection in Beaufort, SC, where
it has been operating for two years. We briefly describe the hardware architecture of the HR system. The
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system components are from Sensys Networks, Inc. The Beaufort intersection of Figure 1 is a standard
fully actuated four-way intersection with stop bar and advanced detectors. The system has in addition one
detector in each departure lane to permit accurate evaluation of turn movements. Each detector senses the
time when a vehicle crosses it. All detectors are wireless and communicate with the Access Point (AP)
located near the 2070/170 controller. Signal phase is obtained from the controller conflict monitoring card.
All measurements are time-stamped and synchronous to within 100ms or 0.1s. The data are sent to the HR
data server via a cellular modem. The data are organized in a database called APSAMS in Figure 2.

The rest of the paper is organized as follows. §2 discusses the flow chart of the three-step procedure. §3
describes the clustering by day-of-week. §4 describes how the intra-day segmentation and optimal timing
plans are calculated. §5 collects some conclusions.

2 Flowchart
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Figure 2: Flowchart for timing plan optimization.

Figure 2 summarizes the steps in the design of the timing plan. The optimization module collects information
about the sensor placement in the network. In this illustration the network is a single intersection defined by
lanes and turn movements, but more generally there would be a network of intersections. From Figure 1 we
see that there are 12 movements in all: left, through and right turn from each of the four legs.

The APSAMS database is part of the HR data server of Figure 1. The optimizer configuration file specifies
the range of days for which data is extracted from APSAMS and the parameters used in the optimization
algorithms. The raw data consists of detection events for each vehicle. The database aggregates the raw data
into 5-minute, 15-minute and hourly intervals.

The optimizer module carries out the three-step procedure: clustering, intra-day segmentation and green
split optimization. Each step is described below.
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3 Day of week clustering

The standard approach to designing TOD plans begins with manual measurement of counts over three days,
selecting days of the week that will have different plans (e.g. weekday and weekend) and, for each day,
selecting time intervals with different plans (e.g. AM and PM peak and off-peak periods). The selection of
the days and time intervals is based on judgment based on familiarity with the traffic patterns. However, if
we have continuous measurements for one year (say), we could cluster the daily data to reveal the days of
the week with significantly different traffic patterns, and then cluster the intra-day data to divide the day into
periods with significantly different traffic.

We illustrate the procedure using hourly data for the Beaufort intersection in Beaufort, S.C. for counts
of the 12 movements for 164 days, Dec 2014 to May 2015. The data represents each day’s traffic by a
24×12 vector of hourly counts, giving 164 (24×12)-dimensional vectors. Before describing the clusters,
we indicate the variability of traffic in Figure 3, which displays the measured percentile flows for each
movement,using 15-min counts.
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Figure 3: Empirically measured percentile flow for all 12 movements during 164 days.

The large variability suggests that there is a day-of-week structure that may be revealed by cluster analysis.
We take the 164 vectors of hourly counts and group them into clusters using a standard k-means clustering
of the 164 vectors. The result for k = 4 is displayed in Figure 4. The procedure divides the 164 vectors
into four groups, G1,G2,G3,G4. The four plots display the average of these groups. Each average is a
24× 12 vector, displayed as 12 separate movements over 24 hours. There is a pronounced day-of-week
effect: the four clusters correspond to Mon-Th, Fri, Sat and Sun. The actual traffic plan in the intersection
also groups the days of the week into these four classes. So the automatic clustering procedure agrees with
experience-based judgment.

4



Figure 4: The 4-means cluster for all 12 movements during 164 days.

4 Intra-day segmentation and optimum splits

The next step is to take each of the four ‘day’ clusters G1, · · · ,G4 and divide each 24-hour day into a number
of disjoint time intervals, T1, · · · ,Tm. The parameter m is the number of intra-day timing plans we want to
consider. Since we want a finer time resolution, we now take 15-minute rather than hourly count data. For
each m we select the intervals to minimize the sum of squares,

m

∑
i=1

∑
t∈Ti

|µi(t)− µ̄i|2.

Here µi(t) is the mean of a day cluster Gk for the 15-min period t and µ̄i is its average in the interval Ti.
Figure 5 shows the result of this procedure for the Mon-Th cluster. A good design is to select 7 TOD (time
of day) plans for M-Th (beginning at 0:00, 5:15, 6:45, 8:45, 14:30, 18:00 and 20:15). The figure shows the
corresponding time intervals, for each of which we must design an individual timing plan (splits and cycle
time). Applied to the other clusters this procedure suggests 8 plans for Fri, 4 plans for Sa, and 3 for Su.
These are not shown here.

We design the timing plan for interval Ti taking µ̄i to be the 12-dimensional vector of average volumes of
the 12 movements. We calculate the ‘optimum’ splits and cycle time. Two options are available in the
optimization.

In the first option the splits and cycle time are determined by solving a quadratic programming problem that
seeks to equalize the VC ratio for all 12 movements, constrained by a specified maximum VC ratio and min
and max green.

In the second option the splits and cycle time are determined by solving a convex programming problem that
minimizes the delay expressed by the HCM formula. We give the results of this minimization. In order to
obtain a robust design we take for the demand the 90th percentile (instead of the average) of all 12 flows (see
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Figure 5: Optimum intra-day segments for the Mon-Th cluster.

Figure 3). Figure 6 shows the minimum delay splits and its predicted performance for the 90th percentile
traffic. The predicted performance uses HCM formulas.

Figure 6: Minimum delay splits with 90th percentile traffic and predicted performance.

Figure 7 compares the existing timing plans with those produced by Synchro and the delay-minimizing plan
of Figure 6.

The existing cycle time of 130s is virtually the same as the delay-minimizing cycle time of 128.8s. Synchro
gives a cycle time of 60s which is too short. In the plans of Figure 7, Synchro is forced to use a cycle time
of 130s. The main difference between the three plans is the green time devoted to phase 4 which carries the
west bound left turn traffic (WBLT) which is by far the largest, as seen in Figure 3. The existing plan gives
the least green time to phase 4, Synchro gives the most, and the delay-minimizing plan has an intermediate
value.
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Figure 7: Splits from existing timing plans, Synchro and delay-minimizing plans.

We offer an educated guess as to why Synchro gives the most green time to phase 4. Synchro calculates
the 90th percentile traffic for WBLT by inflating the average rate λ vph to the 90th percentile, assuming the
arrivals are Poisson. By making a Gaussian approximation to the Poisson distribution, the 90th percentile
is λ+ 1.6

√
λ. Because we have event-by-event data we can actually obtain the inter-arrival distribution.

Figure 8 shows histograms of inter-arrival times for 11 out of 12 movements (the missing movement from
leg 3, lane 1 does not have an advanced detector and is not considered). Superimposed on each histogram
is the exponential distribution in red. The numbers below the x-axis is the average inter-arrival time λ−1 in
seconds. The histogram is close to the exponential for small values of λ, which is not surprising. However,
for the right-turn movement from lane 4 of leg 2 , which has the largest rate, the exponential is a poor fit and
suggests a much larger variance than what the data indicate. Hence for this movement the empirical 90th
percentile is much smaller than Synchro’s estimate of λ+1.6

√
λ. This is the reason we believe that Synchro

assigns a larger split to this movement (as well as a larger cycle length) than what the actual data indicate is
required.

Figure 8: Histogram of inter-arrival times.
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5 Discussion

The paper presented a procedure for automatically generating optimal TOD plans based on high-resolution
(HR) data. The procedure requires several months of 24×7 detector data to cluster days of week, to select
optimum intra-day intervals and to determine delay-minimizing splits. This way of automatic TOD plan
generation is a paradigm shift from the current practice of designing plans based on manual traffic counts
for three days once every few years. Using HR data to automatically produce timing plans is just one instance
of the dramatic impact that an HR system will have on intersection management. We briefly describe other
applications, grouping them into mobility and multi-modal traffic.

Mobility From individual event data we can determine such performance measures as cycle and split failures,
wasted green, queue estimation and waiting times, and progression quality (Muralidharan et al. (2016)). The
procedure described above to design the splits for time interval Ti uses only the average counts µ̄i in that
interval. But the HR system provides real time counts, which one could use to predict future volume. These
predictions could be used to adapt the splits to take the predicted traffic into account. This leads to proactive
timing plans that anticipate changes in traffic (Coogan (2015)). Queue estimation permits implementation
of sophisticated adaptive traffic control that maximize throughput in a network (Varaiya (2013)). Data for a
network of intersections can be used to optimize offsets (Coogan et al. (2015)).

Knowledge of the time and lane location when a vehicle enters the intersection can be combined with the
phase information to determine whether the vehicle is running a red light or whether it is making a right turn
on red. The HR system can automatically detect such hazardous events and one can analyze the frequency of
these event by phase movements and time periods to determine if corrective measures are needed to reduce
these hazards.

Multi-modal traffic In addition to vehicle detectors an HR system may have sensors that detect pedestrians
and bicycles and parked vehicles (Muralidharan et al. (2016)). As vehicles, bicycles and pedestrians com-
pete for the same roadway surface, conflicts are inevitable since these different modes of traffic move with
different speeds and occupy space with different shapes. The conflicts will be most severe in intersections
and so managing the movement of this multi-modal traffic will be of growing importance. We can see an
evolution in the way space is shared. Fixed time controllers provide “walk/don’t walk signals” for pedestri-
ans at marked crosswalks; but if crosswalk utilization is low, it may be more efficient to use push-buttons. If
the occupancy of parking spaces is sensed, the price for on-street parking may be adapted to keep occupancy
at a desired level, e.g. 80 percent (Pierce and Shoup (2013)). Similar to congestion pricing in HOT lanes,
such a pricing policy will reduce double-parking and the number of cars looking for an empty spot.

HR systems as described here collect microscopic data on individual vehicles at particular locations. This
data is naturally complemented by sensors that collect a sample of vehicle trajectories, e.g. using Bluetooth
or WiFi receivers or GPS traces. The trajectory data can be analyzed to reveal O-D patterns and preferred
paths. In case of incidents this patterns may be used to suggest alternative paths to drivers. It may be used
design incentives for travelers to change their trip times and other behavior in ways that improve traffic
(Pluntke and Prabhakar (2013)). The only practical way to accommodate the growing demands on the urban
road system is to change behavior, and motivating the appropriate change will require fine-grained and
extensive data.
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