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Separability of Lyapunov Functions for Contractive MonoSystems

Samuel Coogan

Abstract— We consider constructing Lyapunov functions for  classes of systems such as multiagent control systems or
systems that are both monotone and contractive with respect flow networks where it is often more practical to measure
to a weighted one norm or infinity norm. This class of systems velocity or flow rather than position or state. Additionatlye

admits separable Lyapunov functions that are either the sunor . . . ;
the maximum of a collection of functions of a single argument  Présent results of independent interest for proving asgtiept

In either case, two classes of separable Lyapunov functions Stability and obtaining Lyapunov functions of systems that
exist: the first class is separable along the system’s statand  are nonexpansivavith respect to a particular vector norm,

the second class is separable along components of the system j e, the distance between states along any pair of trajectories
vector field. The latter case is advantageous for many pradtally — 4qeg not increase. Finally, we draw connections between our

motivated systems for which it is difficult to measure the it d related it ticular] Il-qain ta
system’s state but easier to measure the system’s velocity o ESUILS and related results, particuiarly small-gain [8ete

rate of change. We provide several examples to demonstrate for interconnected, nonlinear systems.
our results. For linear monotone systems, also calfexbitivesystems,
scalable stability verification is possible by appealindite
. ) o o _ear Lyapunov functions or scaled componentwise-maximum
A dynamical system isnonotoneif it maintains a partial |yapunov functions [11]. We extend stability verification
ordering of states along trajectories of the system [1], [2}esults from [11] to nonlinear monotone systems by ap-
[3]. Monotone systems exhibit structure and ordered b«dnavipea”ng to contraction theory. Separable Lyapunov fumstio
that leads to techniques for analysis and conteod, [4],  for nonlinear monotone systems are also studied in [12],
[5], [6]. Examples of monotone systems include certaifowever, a contraction theoretic approach is not consitlere
biological networks [7] and transportation networks [&]}.[ e also introduce a novel notion of flow separable Lyapunov
[10], and monotone systems theory has been applied to larggpctions not considered in [12].
scale analysis and distributed control [11], [12]. This paper is organized as follows. Sectioh Il establishes
A dynamical system isontractiveif the distance between notation and Sectiofil provides the problem setup. Sactio
states along any pair of trajectories is exponentially @881 [y]reviews contraction theory and provides a novel approach
ing [13], [14], [15], [16]. When an equilibrium exists, con- for establishing asymptotic stability for nonexpansives-sy
traction implies global convergence and a Lyapunov fumctiogems, Sectiofi v provides the main results, and illustrative
is given by the distance to the equilibrium. The magnitude q;xamples are considered in Section VI. We provide discus-

the vector field provides an alternative Lyapunov function. gjon in Sectiofi VIl and concluding remarks in Section V11l
Certain classes of monotone systems have been shown to

be also contractive with respect to non-Euclidean norms. Fo Il. NOTATION

example, [17], [18], [19] study a model for gene translation A matrix A € R"*" is Metzlerif all of its off diagonal
which is monotone and contractive with respect to a weightegbmponents are nonnegative. All inequalities are intéepre
¢, norm. A closely related result is obtained for transportaglementwise. The vector of all ones is denoted lbyFor
tion flow networks in [20], [21]. In [20], a Lyapunov function scalar functions of one variable, we denote derivative with

defined as the magnitude of the vector field is used, while e prime notatiorf. The ¢, and ¢., norms are denote by
Lyapunov function based on the distance of the state to the |, and | . | respectively, that is|z|; = S || and

I. INTRODUCTION

equilibrium is used in [21]. 2|00 = maxj—1__, |a;] for z € R™.
In this paper, we study monotone systems that are con-
tractive with respect to a weighted norm or /., norm. IIl. PROBLEM SETUP

We first provide sufficient conditions establishing contiat We consider the nonlinear autonomous dynamical system
for monotone systems in terms of strict negativity of scaled

row or column sums of the Jacobian matrix for the system. &= f(z) 1)
These conditions follow naturally from sufficient condit® o ., ¢ ¥ ¢ R and continuously differentiable(-).

for monotonicity and for contraction. Next, we derive sumq ¢ fi(z) indicate theith component off and denote the

separable and max-separable Lyapunov functions based §{yqpian ad(z) = ﬂ(x)_
the contraction metric. In particular, we introduce theiomt Denote byg(t xojhthe solution to[{lL) at time when the

of Lyapunov functions that are separable along componen{gstem is initialized with state, at time0. We assume that
of the vector field. This is especially relevant for certaing) js forward complete and’ is forward invariant for[{IL)

S. Coogan is with the Electrical Engineering Departmentivémsity of thUSgb(t, .IO) € X forallt > 0 and allzg € X. In this paper,
California, Los Angelesscoogan@cl a. edu. we considetY = R™ or X = R% := {z € R" | z > 0}.
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Consider a forward invariant sét ¢ X with z* € K  Proof. A proof for condition [9) is found in [15] where it
an equilibrium for [1) for which the domain of attractionis assumed that < 0 although the proof holds without this
includesK. Let V : K — R>( be alLyapunov functiorfor assumption.

(1) on K that establishes asymptotic stability of, that is: Considering [(I0), letV (z) £ |f(z)]. V(z(t)) is then
V(z) is continuous and/(z) = 0 for z € K if and only absolutely continuous as a function ioéind therefore

if z =a*; V() is radially unbounded; an®f' (¢(t, o)) is _ Vit + 1) — V(a(t
a nonincreasing function of and lim;_, o, V (¢(t,z9)) = 0 V(z(t)) £ lim (( ) (z(t) (11)
. ; . . h—0+ h
for all zop € K. In this paper, we consider non-differentiable
Lyapunov functions, for which standard Lyapunov theory cafP" @lmost allz. Furthermore,
be extended using generalized derivatives [12]. ] |f(@(t 4+ h))| — |f(2) + hf(z)|
The Lyapunov functior/ (z) is state sum-separabié i W ‘ (12)
- | [+ h) - fl=)
V@zzyam @ < lim . - (@) (13)
=0 (14)

for a collection of functiond/;. It is state max-separablié¢
V()= max V(z:). (3) Where we use the definition ¢i(x) and the fac|z|—|y|| <
=1 |z —y|. Since alsof (x) = J(z)f(z), we combine[(T1)E(14)
Lyapunov functions decomposable @3 (2) lar (3) are comnd obtain

sidered in [12]. In this paper, we also consider Lyapunov . z) + hJ(z) f(z)] — | F(x
functions that are separable based on the dynamidg of (1). If V(z(t)) = lim /(=) ( )hf( )| = 1f(@) (15)
- LRI @) - [ f(@)] = |f(2)]
_ (f <
‘m>2mwm,w @) < lim, 2 (16)
~ max Wil g HERI@I 1
V(z) = LXK Wi(fi(2)) (5) = lim, N |f(2)] 17)
for some collection of functiondV;, we say thatV is, = u(J(2))V (z). (18)

respectivelyflow sum-separablandflow max-separable

Except in Section IV, we assumig (1) is monotone: By hypothesis, we then havé'(z) < cV(x), and [IDO)

follows by integration.
Definition 1. The systen(d) is monotoneif the dynamics

maintain a partial order on solutions, that is, It is also possible to obtaif (IL0) using Coppel’s inequality

see,e.g, [22, Section 2.5, Theorem 3] for a statement and
o <yo = ¢(t,w0) < (¢, %0) Vt=>0. (6) proof of the inequality.

In this paper, monotonicity is defined with respect tdDefinition 2. The systenfl)) is infinitesimally contractingn
the positive orthant, although it is common to considek with respect to the norm| if (8) holds for some: < 0.

monotonicity with respect to other cones [4]. e .
y P 4] If the system is infinitesimally contracting, thei(z)]

Proposition 1 ([3, Ch. 3.1]) The systenfd]) is monotone if decays to zero at an exponential rate byl (10), and there-
and only if the Jacobiaw/(x) is Metzler for allz € X' fore each trajectory converges to a finite equilibrium. 8inc
IV. I NFINITESIMAL CONTRACTION (@ precludes the existence of more than one equilibrium,

we conclude that there exists a unique equilibrium, it is
S.51symptotically stable, and the domain of attraction inekid

. Moreover, Proposition] 2 provides two possible Lyapunov
unctions defined in terms of the norpn. Namely, if z* is
the unique equilibrium, the (z) = |« — 2*| andV (z) =
|f(z)| are both Lyapunov functions foltl(1).

For the ¢; norm with induced matrix norm|Alj; =
(7) max; ;A the induced matrix measure is given by

We now review infinitesimal contraction for autonomou
dynamical systems. We again consider the system given
(@) but momentarily disregard the assumption that the Erystef
is monotone. Let-| be a vector norm ofR™ and let|| - || be
its induced matrix norm ofR™*™. The correspondinmatrix
measureof the matrix A € R™*™ is defined as

. I+ hAJ —1
A):= 1 - .
plA) =l

Proposition 2. Let K C X be convex and forward-invariant. p1(A) = max; (Ajj + Zi;ﬁj |Aij|) (19)

If, for somec € R, . ) _
€€ for any A € R™"*". Likewise, for the/,, norm with induced

u(J(x)) <c VzeK, (8)  matrix norm is||A||c = max; Y |A;;], the induced matrix

then for any two solutions:(t) = ¢(t,z) and y(t) = 'Measure is given by

o(t,y0) for zo,yo € K it holds that, for allt > 0, fioo(A) = max; (Aii I Zj;&i |Aij|) _ (20)

_ < Ct _
[#(t) = y(®)] < e“lzo = yol, and ©) See,e.g, [23, Section 1.8, Theorem 24], for a derivation

|f(z(0)] < €Ct|f(~’”0)|- (10) of the induced matrix measures for common vector norms.



The matrix measures given in_(19) arl[d](20) provide thaypotheses of the proposition, we have thdt) is therefore
connection to sum-separable and max-separable Lyapura\yapunov function. O
functions which are the focus of this paper. ’ .

: ; . . Note that a sequencE*(z) arising from a sequence of

We are particularly interested in vector norms and matrix . ! - ’ .
. . Weighted contraction metricge., V*(x) = |P;(x — «*)| or

measures that arise from a scaling of another norm] let _; . .

. L V'(z) = |P; f(z)| for P; converging to some nonsingul&y,
be some particular vector norm and }et(-) be its induced satisfies the conditions of Propositioh 3
matrix measure. I € R"*™ is nonsingular, then we define P '

a new vector norm byz|. p := | Px|. for which the induced V. CONTRACTIVE MONOTONE SYSTEMS

matrix measure satisfies In the remainder of this paper, we assufe (1) is monotone.
fe.p(A) = 1. (PAP™Y). (21) For A Metzler, sinceA;; > 0 for all ¢ # j,

When P = diag(v) for somev € R", we use the notation pa(A) = maxjzi,...n 5oy Aijy (23)

|-|«.» and . ,(-) instead, where didgg) denotes ther x n foo(A) = maxi=1,...n Y5y Aij, (24)

matrix with v on the diagonal and zeros elsewhere. that is, 11 (A) is the largest column sum of and s (A)

For some classes of systems, .it is only possiblg to e_Stab”@the largest row sum ofi. The following proposition is
u(J(z)) <0 for all z € K. In this case,[[8)E{9) implies a easily verified from the identity(21).
nonexpansion property. Furthermore, it may still be pdssib

to demonstrate asymptotic stability of an equilibrium gsin Proposition 4. For A Metzler andv € R™ with v > 0,

contraction theory. po(A) <c ifandonlyif vTA<c?.  (25)
Theorem 1. Let K C X be convex and forward-invariant Likewise, forw € R"
and letz* € K be an equilibrium of(@). If

u(J(x) <0Vre K and p(J(z")) <0 (22)
) _ i _ wherew' := (1/wy,1/wa, ..., 1/wy,).
then z* is asymptotically stable, the domain of attraction

with w > 0,
Poowt(A) < c ifandonly if Aw < cw (26)

includesk, and V(z) = |z — z*| and V(z) = |f(z)| are Propositions 11 and] 4 lead to the following theorems.
Lyapunov functions. Theorem 2. Let (@) be a monotone system. If there exists

Theorem[1 is closely related to existing results in the’ > 0, ¢ < 0, and convex, forward invariank’ C X' such
literature, although we believe the generality provided by“at
'_FheoremDL and the further generqlization tq periodically WTJ(x) <clT Vre K, 27)
time-varying systems in the appendix, for which we prove
convergence to a unique periodic trajectory, is novel. 1f1en there exists an asymptotically stable equilibriume
particular, [9, Lemma 6] provides a similar result fof-) K and the domain_ of attraction incIudeK._ Furthermore,
restricted to the matrix measure induced by theorm un-  €ither of the following are Lyapunov functions éf
der the assumption thafl (1) is monotone. A similar technique n
is applied to periodic trajectories of a class of monotone flo V(z) = Z vl — 2, (28)
networks in [24, Proposition 2], but a general formulatien i iil
not presented.

We conclude with a final technical result that will be V(z) = ;Uilfi(x)l' (29)

useful for constructing Lyapunov functions as the limit of ‘s hold h ) N h
a sequence of contraction metrics. Proof. Suppose[(27) holds. There exists some: 0 suc

that v7'J(z) < ¢év for all z € K, in particular, we take
Proposition 3. Let K C X be forward-invariant and let ¢ ¢ [¢/|v]s0,0). From [25), it follows thatu ., (J(z)) < é.
z* € K be an asymptotically stable equilibrium ¢f)) for  The theorem follows from Propositidn 2. O

which the domain of attraction includes. Suppose there .
exists a sequence of Lyapunov functidfis : K — R Theorem 3. Let (@) be a monotone_ syst_em. If there exists
for (@) on K that converges locally uniformly t& (z) := Iﬁ >0, ¢ <0, and convex, forward invariank’ C A" such
lim;_0e Vi(2). If V(z) is radially unbounded an# (z) =0 &

if and only ifz = z*, thenV (x) is also a Lyapunov function J(z)w<cl VzekK, (30)

for (). . . .
then there exists an asymptotically stable equilibriutne

Proof. Consider somez, € K. Asymptotic stability K and the domain of attraction includes. Furthermore,

of z* implies there exists a bounded s@t for which either of the following are Lyapunov functions éft

o(t,zg) €  C K for all ¢t > 0. For ¢ = 1

1,...,n, we haveVi(¢(t,z0)) is nonincreasing int and V(zr) = max {E|$i —$§‘|}, (31)

i=1,...,n

limy 0 V¥(¢(t,70)) = 0. Local uniform convergence es-

tablishesV (x) is continuous,V (¢(t,z¢)) is nonincreasing V(z) = max {i|fi(x)|}. (32)
in ¢, and lim;—,o V(¢(t,20)) = 0. Under the additional i=Ln (W4



Note that Theorefi2 and Theoréin 3 lead to global asympvolving on ¥ = R%, wherey : Ry — R is strictly
totic stability whenK = X. Moreover, Theoremis| 2 arid 3 increasing and satlsf|e$(0) =0, 7 = limyy(o) < 1,
can be considered nonlinear extensions of known stabilignd 7/(o) < (1+ gLl Consider the change of coordinates
verification results for linear monotone (that is, positive (n;,7,) = (log(1 + z1),x2) So that
systems. In particular, conditions {27) and](30) recover th 1

stability conditions (1.2) and (1.3) of [11, Proposition 1] N = (=21 + x122) (39)
when J(x) is replaced with the static matrid as detailed L4z

in Example[l below. where we substitutér,, z2) = (™ — 1,72). Then
Definition 3. The systen(T) is contractive monotoné it is i < —Be™ — 1)+, (40)

monotone and infinitesimally contracting.

The hypotheses of Theorefld 2 and Theorem 3 imply
that the system is contractive monotone. We now specialize £l =—B(ef — 1)+ & (41)

Theore to monotone systems. :
s y €y = —265 — €2 4 y(e —1)2 (42)
Corollary 1. Let () be a monotone system with equilibrium

2*. If there existsy > 0 and convex, forward invariank C  €volving onR2 . The comparison principle (see.g, [12])
X such that " ensures that asymptotic stability of the origin for the com-
T o parison systenl (41)=(#2) implies asymptotic stability hoe t
Jx)<O0vre K and v J(z") <0, (33) origin of the (in,7,) system, which in turn establishes
then z* is asymptotically stable, the domain of attraction@Symptotic stability of the origin fof (37)=(B8). The Jab

where3(o) = /(1 + o). Introduce the comparison system

includes K, and (28)-(29) are Lyapunov functions. of (41)-(42) is given by
Corollary 2. Let () be a monotone system with equilibrium J(€) = ( —ef13(efr — 1) 1 > (43)
z*. If there existav > 0 and convex, forward invariank C 2e81y(ef — 1)y (et —1) —2-2¢

X such that :
wheref’ (o) = ﬁ Letv = (29+¢,1) wheree is chosen

J@w<0Vzxe K and J(z")w <0, (34) small enough so that; := (25 + € —2) < 0. It follows that
then z* is asymptotically stable, the domain of attraction T -6
includes K, and (31)-(32) are Lyapunov functions. v s (e ) S0 W (44)
and v7J(0) < 0. Applying Corollary[1, the origin of
)-[38) and[(41)E(42) is globally asymptotically stable
urthermore, we have the following state and flow sum-
separable Lyapunov functions for the comparison system

VI. EXAMPLES

We now present several examples. First, we recover a we
known condition for stability of monotone linear systems

also called positive linear systems. @)-[22):
Example 1 (Linear systems) Consideri: = Ax for A -
Metzler. Theoremi]2 arid 3 imply that if one of the following V() =27+ 6)5 +& . (45)
conditions holds, then the system is globally asymptdtical V(&) = (29 + ¢)|&1] + &2 (46)
stable: . .
) Above, we understang; and & to be shorthand for the
There existe > 0 such thaw” A <0, or (35) equalities expressed iR (41)=[42). n
There existav > 0 such thatdw <0. (36) Example 3 (Multiagent system) Consider the following
If B5) holds thenV(z) = Y ", vi|lz;| and V(z) = system evolving on¥ = R3:
> vi|(Az);| are Lyapunov functions, and if[(B6) '
holds then V(z) = max;{|z;|/w;} and V(z) = &y = —a(z1) + pr(rs — 21) (47)
max;{|(Ax);|/w;} are Lyapunov functions wheréAx); T2 = pa(x1 — z2) + p3(xs — z2) (48)
denotes théth element ofAx. u ds = pa(z2 — x3) (49)

In fact, it is well known thatA is Hurwitz if and only
if th?gé (ﬂnﬁj therefotreblbcr)]thg of theliwop condlttIOI-1(35)Sat|sf|e5a( ) =0 and o (o) > ¢, for somec, > 0 for all
an Slntenoriviit roposition 1 and eaclyp; : R — R is strictly increasing and satisfies
and the corresponding state separable Lyapunov functions'c O—(O) 0. Furthermore, fori — 1.3, /(o) < & for some
Example[1 are also derived in [11]. pill) = , =1,3, pi(o) <5

The following example is inspired by [12, Example 3]. fcé)r>aI(: ];Or all o, and fori = 2,4, pj(o) = ¢; for somez; > 0

Example 2 (Comparison system)Consider the system For example, z2, andxs may be the position of three
vehicles, for which the dynamics (47)={49) are a rendezvous
) ) ) protocol whereby agent 1 moves towards agent 3 at a rate
Ty = —2xp — x5 + y(71) (38) dependent on the distaneg — z; as determined by, etc.

where we assume; : R — R is strictly increasing and

x'l = —21 +T122 (37)



Additionally, agent 1 navigates towards the origin acaogdi from segment to segment is restricted by upstream demand
to —as(z1). Computing the Jacobian, we obtain and downstream supply, and the change in density of a link
is governed by mass conservation:

J(z) =
—a/(z1) — pi(231) 0 P1(231) &1 = min{dy, S1(z1)} — i91 (z1,72) (56)
Ph(212) —p5(212) — p3(232)  p3(232) A
0 Py (223) —pi(z23) &y = gi—1(Tio1, 2;) — ﬂ—gi(iﬂz‘, Tit1), i=2,...,n—1

(50) (57)
wherez;; 1= z; —z;. Letw = (1, 14€, 1+6;+e2)T where G = gn-1(Zn_1,2n) — Dn(zy) (58)

€1 > 0 andes > 0 are chosen to satisfy

for somed; > 0 where, fori =1,...,n —1,
Cy > (61 + 62)61 and €1Co > €2C3. (51)

gi(xi, xip1) = min{B;Dy(x;), Sit1(2ig1)}- (59)

We then haveJ(z)w < ¢l for all = for ¢ = max{(e; + _
€2)T1 — Cy, €283 — €15, —€2¢,} < 0. Thus, the origin of Letd; £ 4, H;;ll Bifori=2,... nIf d7'(6;) <
(47)-[29) is globally asymptotically stable by Theorgim 3for all 4, thend; is said to befeasibleand z} :=
Furthermore, constitutes the unique equilibrium.
4 4 Let 0; denote differentiation with respect to tita compo-
V(@) = max{lz1], (1 +e) ool (L4 er+e2) " asl},  pent ofa, that is,0;9(x) := 2L () for a functiong(z). The

(52) dynamics [[56)£(88) define a systein= f (x) for which f
V(z) = max{|i1], (1 + e1) 2], (1 + €1 + €2) "5} is continuous but only piecewise differentiable. Nonetks|

(53) the results developed above apply for this case, and, in the

are state and flow max-seperable Lyapunov functions whepgduel, we interpret statements involving derivativesdiai h
we interpreti; as shorthand for the equalities expressed ifherever the derivative exists.

(@7)-[29). Since we can take ande, arbitrarily small sat- _ Notice thatd; gi(zs, zi1) = 0 and ;41 gi(zi, ziy1) < 0.
isfying (51), using Propositioll 3 we have also the followingP?€fin€ go(z1) := min{d,, S1(x1)}. The Jacobian, where it

s; ' (6:)
d; 1 (5:)

choices for Lyapunov functions: exists, is given by[(80) on the following page. Let
- _ _ _N\T
V(z) = max{|z1|, |z2], |z3|}, (54) o= (LA (BuB) ™ (BiBa- - Ban)™h) . (61)
V(z) = max{|Z1], |%2], [3]}. (55) Then#”.J(z) < 0 for all =. Moreover, there exists =

The flow max-separable Lyapunov functiofsl(53) (55()61’ €2,- -, €n—1,0) With €; > €4 for eachi such thaw =

are particularly useful for multiagent vehicular networks’ T € satisfies
where it often easier to measure each agent'’s velocity rathe v J(z) <0 Vz (62)
than absolute position. | oI J(z*) < 0. (63)

In Example[B, choosingy = 1, we haveJ(z)w < 0,
however this is not enough to establish asymptotic stgbili
using Theoreni]3. Informally, choosing as in the exam-

Such a vectore is constructed using a technique similar
tto that used in ExamplEl 3. In particular, the sum of the

ole distributes the extra negativity ofa/(z1) among the nth column of diagv).J(x) is strictly negative because

" o —0nDn(zn) < 0, and this excess negativity is used to
columns of J(x). Nonetheless, Propositidd 3 implies thatconstructv such that [[B2)(83) holds. A particular choice

choosingw = 1 indeed leads to a valid Lyapunov fu_nction.Olc ¢ such that [[B2)@3) holds depends on bounds on the

Thf Qbfve ?_xamp_le gebnterahzz_s tot Zystemi with rT(;"’"Ei\érivative of the demand function3;, but it is possible to
agents Interacting via arbitrary directed grapns, as 00¢qq,gq arbitrarily small. Corollar{ 1L establishes asymptotic
the principle of distributing extra negativity along diagd stability, and Propositioi 3 gives the following sum-seie
entries of the Jacobian as discussed in Se¢fioh VII. Lyapuné)v functions:

Example 4 (Traffic flow). A model of traffic flow along a N i1
freeway with no onramps is obtained by spatially partitiwni Viz) = Z (|Ii| H ﬁ') (64)
the freeway inton segments such that traffic flows from ; ]

segmenti to i + 1, z; € [0,;] is the density of vehicles

occupying linki, andz; is the capacity of linki. A fraction .

B; € (0,1] of the flow out of linki enters linki 4+ 1. The Vie)=>_ (lail I] 8
remaining1 — 3; fraction is assumed to exit the network
via, e.g, unmodeled offramps. Associated with each link isvhere we interpret; according to[(56)£(38).

a continuously differentiabldemandunction D; : [0, Z;] — In traffic networks, it is often easier to measure traffic flow
R>¢ that is strictly increasing and satisfié (0) = 0, and rather than traffic density. Thu$, (65) is a practical Lyapun
a continuously differentiablsupplyfunction S; : [0,z;] —  function indicating that the (weighted) total absolute fitai
R> that is strictly decreasing and satisfi§gz;) = 0. Flow throughout the network decreases over time. |

; (65)



0190 — %3191 —5—118291 0 0 e 0

0191 Oag1 — é@gz —éﬁng 0 e 0
J(z) = 0 0292 B392 — 70393 —3:0493 0 (60)
0 0 U 0 3n719n71 87197171 - anDn(xn)

In [10], a result similar to that of Examplg 4 is derivedtheory recently developed in [30], [31] where exponential
for possibly infeasible input flow and traffic flow network contraction between any two trajectories is required only
topologies where merging junctions with multiple incomingafter an arbitrarily small amount of time, an arbitrarilyain
links are allowed. The proof considers a flow sum-separabtevershoot, or both. In [31, Corollary 1], it is shown that if
Lyapunov function similar to[{85) and appeals to LaSalle’s system is contractive with respect to a sequence of norms
invariance principle rather than Propositign 3. convergent to some norm, then the system is generalized
contracting with respect to that norm, a result analogous to
VII. DISCUSSION - " .

_ o _ Proposition[B. In [31], conditions on the sign structure of

We first highlight the connection of the above resultshe jacobian are obtained that ensure the existence of such a
to small-gain conditions for interconnections of nonllneaSequence of weightef} or /., norms. These conditions are
systems. Considel interconnected systems with dynamicsy generalization of the technique in Examigle 3 and Example

&y = fi(x1,...,xn) for z; € R" and suppose they satisfy 7 ahove where smatlis used to distribute excess negativity.
an input-to-state stability (ISS) condition [25] wherebgpite Furthermore, it is shown in [17], [18] that a ribosome flow
exists ISS Lyapunov function; [26] satisfying model for gene translation is monotone and nonexpansive
oV; with respect to a weighted; norm, and additionally is
B, @i filw) < —ai(Vi(@i) + Z%-j(‘/}(x-j)) (66)  contracting on a subset of its domain. Entrainment of solu-
7 tions is proved by first showing that all trajectories redud t
where eacha; and v;; is a K« function. We obtain a region of exponential contraction. TheorEm 4 in the appendi
monotone comparison system provides a different approach for studying entrainment by

- _ observing that the distance to the periodic trajectoryctbyri
=9, 9i(v) = —eiv) + Z%j(yj) 67) decreases in each period due to a neighborhood of contrac-
_ _ e ~ tion along the periodic trajectory. Theordth 1 provides an

evolving onR?%,, for which asymptotic stability of the origin ana10gous result for stability analysis of an equilibrium.

implies asymptotic stability of the original system [27PrF  Finajly, we note that Metzler matrices with nonpositive

N = 2, it is noted in [28] that ify12(0) = r102(9)  column sums have also been calleaimpartmenta[32]. It

and yz1(0) = rzai(o) for k1 > 0, Ky > 0 such that pag heen shown that if the Jacobian matrix is compartmental

rike <1, thenviVi(z1) +vaV (22) is @ Lyapunov function for gif 4, thenV (z) = | f(z)| is a decreasing function along

for the original system for any = (v1 v2)" > 0 satisfying  trajectories of[{lL) [32], [33]; we recover this observation

UL < vz < v1/ko. Indeed, for such a choice, we see thakonsidering the Lyapunov function implied By {10) with-=

v'52(v) <0, and if additionallyc(0) > 0 for i = 1,2, and|-| taken to be the standarg norm.

thean%(O) < 0 so that Corollary 1L provides a contraction

theoretic interpretation of this result. VIIl. CONCLUSIONS

Alternatively, in [27], [29], it is shown that if there exgsh

functionp : R>¢ — R%, with each componery; belonging c

to clasdl K., such thatg(p(r)) < 0 for all » > 0, then the

origin is asymptotically stable and (v) := max;{p; *(vi)}

is a Lyapunov function. If condition[(34) of Corollafy 2

holds for the comparison system for somgwe may choose

p(r) = rw. Indeed, we have

We have investigated monotone systems that are also
ontracting with respect to a weightédnorm or/., norm.
In the case of the; (respectively(.,) norm, we provided
a condition on the weighted column (respectively, row)
sums of the Jacobian matrix for ensuring contraction. These
conditions lead to either sum-separable or max-separable
Lyapunov functions. In particular, we introduce a class of
Loy separable Lyapunov functions that depend on the value of
g(rw) _/O 5(0”‘1)”" do <0 ¥r>0. (68)  the vector field along trajectories of the system. These
, 1 flow separable Lyapunov functions are especially relevant
For this caseV(v) = maxi{p; ()} = maxi{vi/wi}, jn applications where it is easier to measure the derivative
recovering [(31). o of the system’s state rather than measure the state directly
Next, we comment on the relationship between Thedliem 1 o jjeling observations made in [11], verifyifg¥27) and
as well as Proposition] 3 and a generalization of contracuom) requires checking nonpositivity of a collection of
1A continuous functions : Rso — Rsg is of classK.. if it is stricty  functions. For polynomial or rational vector fields, this
increasing,(0) = 0, andlimy 00 (1) = oo. is done efficiently using sum-of-squares (SOS) techniques



[34]. Future work will consider scalable verification andwhered := (1 — e °")e > 0. Then

synthesis methods for contractive monotone systems using )

SOS techniques. P(E) | < {|§ — =6 if |€—vF|>¢ (79)
IX. ACKNOWLEDGEMENTS e TIE =] L <e

The author thanks Murat Arcak for providing valuablelt follows that for all &, |P*(¢) — v*| < e for some finite
feedback on an early draft of this paper. k (in particular, for anyk > |€ — ~v*|/§). The theorem then
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APPENDIX 0
To prove Theorerlll, we prove a more general result for
which Theoreni Il is a special case. Consider Theorem[1L follows by takingy(t) = =* and arbitrary
. T > 0, and we may take = T in the proof.
&= f(t ) (69) y P
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