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Abstract:

We study a flow network model for vehicular traffic that captures congestion effects at diverging
junctions. Standard approaches which rely on monotonicity of the flow dynamics do not
immediately apply to such first-in-first-out models. The network model nonetheless exhibits a
mized monotonicity property. Mixed monotonicity enables the original system to be embedded
in a system of twice the dimension that is monotone and symmetric. The dynamics of the original
system are recovered on a subspace of the embedding system, and we prove global asymptotic
stability for a class of networks by considering convergence properties of the embedding system.

1. INTRODUCTION

We study the dynamical behavior of a model for vehicular
traffic flow. The flow of vehicles from a link to downstream
links is governed by a local flow demand as well as down-
stream supply of capacity available to accommodate in-
coming flow. Such an approach is well suited for modeling
flow of vehicles on a freeway, Daganzo (1994, 1995), Gomes
and Horowitz (2006), Gomes et al. (2008).

This paper builds on recent results in Gomes and Horowitz
(2006), Gomes et al. (2008), Como et al. (2015), Coogan
and Arcak (2014), Lovisari et al. (2014), and Coogan
and Arcak (2015a) to analyze the dynamical behavior
of transportation networks. In these prior works, the
strongest results rely on the system dynamics being mono-
tone whereby trajectories of the system preserve a partial
ordering; see Hirsch (1985), Smith (1995). Yet, as detailed
in Section 3.1, vehicular traffic networks with diverging
junctions and fixed routing policies are not monotone,
as noted in Coogan and Arcak (2014), Kurzhanskiy and
Varaiya (2012). This is due to a first-in-first-out property
where downstream congestion on one outgoing link blocks
incoming flow to neighboring outgoing links, Munoz and
Daganzo (2002).

In this paper, we first note that traffic dynamics possess
a mized monotonicity property which is much weaker
than monotonicity. Despite the lack of monotonicity in
the standard form of the dynamics, such systems can
be embedded into a higher dimensional monotone system
as in Enciso et al. (2006), Gouzé and Hadeler (1994),
Kulenovic and Merino (2006), Smith (2008).

Next, we identify a certain class of polytree networks for
which, using this embedding, we prove global asymptotic
convergence to a unique equilibrium. In exchange for
the generality offered by mixed monotonicity, we obtain
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only a sufficient condition that requires equilibria of the
embedding system to be unique.

In Coogan and Arcak (2015b) and Coogan et al. (2015),
we have noted that a similar discrete-time model of queue
evolution in a network of signalized intersections is mixed
monotone, but our focus was on finite state abstraction of
the dynamics for automatic synthesis of control strategies
rather than stability analysis. Furthermore, the model we
consider for signalized intersections satisfies a sufficient
condition for mixed monotonicity which is not generally
satisfied by the freeway model considered here.

The remainder of the paper is organized as follows: In
Section 2, we define the network model. In Section 3, we
show that the dynamics are not monotone but are mixed
monotone, which allows the system to be embedded in
a higher dimensional monotone system. In Section 4, we
apply these results to establish global stability for a class
of networks. Concluding remarks are in provided Section
5.

2. TRAFFIC FLOW MODEL
2.1 Notation

All inequalities are interpreted elementwise, e.g., for x,y €
R™ x < y if and only if x; < y; for ¢ = 1,...n where
x;, y; denote the ith element of z, y. We denote the
vector of all zeros by 0 when its dimension is clear from
context. We denote the set of nonnegative real numbers
by R>o ={z € R |z > 0}.

2.2 Network Topology

We summarize the network model adopted here, which
is based on the model developed in Coogan and Arcak
(2014). A traffic network consists of a directed graph
G = (V,0) with junctions V and ordinary links O along



with a set of entry links R which are entry points into
the network. Let £ £ O UR. Physically, a link represents
a segment of roadway, and we assume G is a connected
graph. Let o(¢) and 7(¢) denote the head and tail junction
of link ¢ € L, respectively, where we assume o(¥) # 7(¢),
i.e., no self-loops. Traffic flows from 7(¢) to o(£). By
convention, 7(¢) = () for all £ € R.

For each v € V, we denote by £ C L the set of input
links to node v and by £3"* C L the set of output links,
ie. LM = {{ : 0o(f) = v} and LS = {¢ : 7({) = v}.
We assume £ = () for all v € V, thus the network flow

starts at entry links. Furthermore, we assume E’;"EE) £ 0

for all £ € R, i.e. entry links always flow into at least one
ordinary link downstream. If |£"| > 1, then v is a merging
Junction, and if |£L9%| > 1, then v is a diverging junction.

v

Define Vsitk £ {4 € V' | L9 = @} to be the set of junctions
that have no outgoing links and

L2l e L] a(e) e VN (1)

the corresponding set of input links to these junctions.

2.8 Link Supply and Demand

Each link ¢ € £ has state x,(t) € [0, T¢] which is the mass
of vehicles on link ¢ where T, € (0,00) is the maximum
number of vehicles that link ¢ can accommodate. Let
Z = {Zp}tocr. Furthermore, each link possesses a state-
dependent demand function ®9"*(z,) and supply function
i (z,) satisfying:

Assumption 1. For each ¢ € L:

e The demand function ®9"* : [0,Z¢] — R is strictly
increasing and Lipschitz continuous with ®3"*(0) = 0.

e The supply function ®* : [0,/ — Rsq is strictly
decreasing and Lipschitz continuous with ®i(z,) = 0.

Assumption 1 implies that for each ¢ € L, there exists
unique z§"* such that

q)?ut(x(érit) _ (I)ién(xzrit) = (I)grit. (2)
The demand of a link is interpreted as the maximum

outflow of the link, and the supply of a link is interpreted
as the maximum inflow of the link.

2.4 Dynamic Model

At each junction v € V, there exists a collection of fixed
split ratios {B_¢}eeccon With each 3., > 0 describing how
incoming flow is split among outgoing links. Conservation
of flow implies

Y Bl WeV, (3)

teLout

where strict inequality in (3) implies that a fraction of
the flow is routed off the network via, e.g., an unmodeled
off-ramp.

Note that we associate a single split ratio with each output
link rather than with each input/output link pair as in
Coogan and Arcak (2014).Thus split ratios cannot differ
for different incoming links, and, as we will see in Section
3, this leads to a mixed monotonicity property.

The flow dynamics of the network are as follows:
o= fi" (@) = [ (2) Viel (4)
=: Fy(x) (5)
a’(z) &
. . D () } }
min< 1, min ¢ Yv eV
{ L2 {m 5 pecm D0 ()

[ () = 7O () D" () (7)
min{d,, ®(2,)} ifteR
D) =SB0 > M) ifLeO. (8)
keL‘;‘w

Above, a”(z) € [0,1] defined in (6) is a factor that scales
the outgoing flow of each input link at the junction v
such that the incoming flow to each output link is less
than its supply. Thus, the model (4)—(8) maximizes the
flow through links while ensuring that the outgoing flow
at each link does not exceed the link’s demand and the
incoming flow does not exceed the link’s supply. For entry
link ¢ € R, the incoming flow is additionally restricted to
not exceed the exogenous demand dy. The model further
requires that, at each junction, the collection of outgoing
flows for the input links is proportional to the collection
of flow demand from the input links. This condition is
referred to as proportional-priority in Kurzhanskiy and
Varaiya (2010, 2012), and differs from the constant priority
model employed in Coogan and Arcak (2015b), Coogan
et al. (2015). From (4)—(8), we have forward invariance of

the domain

x £ ]l z). (9)
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The model (4)—(8) is modified from the model proposed
in Coogan and Arcak (2014) so that entry links have
finite capacity. This is reasonable for traffic networks where
entry links correspond to onramps with finite storage
capacity.

Define the routing matrices Rp € R®*© and R € RO*R
elementwise as follows:

By if ke Lo

ol = {Oﬁk otherwisefe) ke O (10)
if ke Lo

[Rrlre = {g% Otherwi;'éf) VkeO,vieR. (11)

Assumption 2. The matrix (I — Rp) is invertible.

Assumption 2 is equivalent to the assertion that eventually
all vehicles will leave the network and is thus a natural
assumption on the split ratios, Varaiya (2013). Let

P=(I-Ro) 'Rg, (12)
that is, P describes how the flow from entry links is routed

through the network. As (I — Ro)™! =I+Ro+R5+...,
we have P > 0. Let

o d ifeR
i = {[zid]g if £ e 0. (13)
where [Pd], is the fth entry of Pd.
Assumption 3. The input flow d = {d;}scr satisfies
fo< @ Vel (14)



Assumption 3 states that the network has adequate capac-
ity to accommodate the input flow d, that is, d is strictly
feasible according to Gomes et al. (2008). It follows from
Assumption 3 that

w2 (@) () < (15)
for all ¢ € L constitutes an equilibrium of the traffic
network dynamics (4)—(8). Indeed, for this case, o (z°) =
1 for all v where we define 2° = {xj}sc., that is, the
outgoing flow on every link is equal to demand. A key
result of this paper is that this equilibrium is unique
and globally asymptotically stable for a class of networks
defined subsequently.

3. NONMONOTONE BEHAVIOR OF TRAFFIC
NETWORKS

3.1 Lack of Monotonicity

Consider the system & = G(z), € X C R™ where X is
forward invariant and has convex interior. Suppose G(-) is
locally Lipschitz and satisfies

0G;
3xj
whenever the derivative exists. Then the system & = G(z)

is order-preserving with respect to the positive orthant
R, that is,

z(0) < y(0) implies z(t) < y(t) VE>0 (17)
where x(t), y(t) are solutions of the system with initial
conditions z(0), y(0). A dynamical system & = G(z)
satisfying (16) is said to be monotone with respect to the

positive orthant, or simply monotone, Hirsch (1985), Smith
(1995).

Traffic flow networks with no diverging junctions are
monotone, as has been noted and studied in Coogan and
Arcak (2014), Gomes et al. (2008). However, networks with
diverging junctions are not monotone. To see this, consider
a diverging junction v and assume some link ¢ € £ is
the unique minimizer in (6) for some « so that, for all y in
a neighborhood of z,

o (y) = O (ye) (B0 Sperm 00" () ) (18)
It follows that, for all k € LU, k # ¢ with o(k) # o(¢),

OF afi? 0 ko
a—x’;(x) = aJ;Z )= 5o (%@;ﬂ(@) <0, (19)
and thus the system is not monotone. We interpret (19) as
follows: We assume the supply of downstream link 2 is less
than upstream demand due to congestion, and thus link /¢
inhibits flow through the junction. Therefore, an increase
in the number of vehicles on link ¢ would worsen the
congestion (decrease supply), and vehicles destined for link
£ would further block flow to other outgoing links, causing
a reduction in the incoming flow to these links. That is,
the derivative of incoming flow to a downstream link k # ¢
with respect to link ¢ is nonzero and, in particular, is
negative since ®1*(x,) is a decreasing function. Thus, lack
of monotonicity is indeed expected for traffic networks.

(x) >0 VreX,Vi#j (16)

Remark 1. Tt is standard to generalize the condition (16)
to partial orders with respect to arbitrary orthants as
in Hirsch and Smith (2005), and one may wonder if

the traffic dynamics are monotone with respect to some
alternative orthant order. The answer is negative; indeed,
the relationship (19) holds for any pair of output links,
and for a junction with at least three output links, this
implies that the system is not monotone with respect to
any orthant via the graphical condition in, e.g., (Angeli
and Sontag, 2004, Proposition 2).

The phenomenon of downstream traffic blocking flow to
other downstream links at a diverging junction is re-
ferred to as the first-in-first-out (FIFO) property, Da-
ganzo (1995), Kurzhanskiy and Varaiya (2010), and it
is a feature of traffic flow that has been observed even
on wide freeways with many lanes, Cassidy et al. (2002),
Munoz and Daganzo (2002). Some of the recent literature
in dynamical flow models proposes alternative modeling
choices for diverging junctions, e.g., Como et al. (2015),
Lovisari et al. (2014), which ensures that the resulting
dynamics are monotone and therefore do not exhibit this
FIFO property.

3.2 A Weaker Property: Mized Monotonicity

The main result of this paper is that, while vehicular
traffic networks are not monotone, they possess a weaker
mixed monotonicity property. This property allows the
traffic network dynamics to be embedded within a larger
monotone system amenable to techniques for stability
analysis of such systems.

We begin with a general characterization of mixed mono-
tone systems which is a continuous-time analogue of the
characterization in Smith (2008) and is closely related to
recent results for nonmonotone interconnections of mono-
tone systems, e.g., Angeli et al. (2014).

Definition 1. (Mixed Monotone). The system & = G(z),
r € X C R"™ where X has convex interior and G is
locally Lipschitz is mized monotone if there exists a locally
Lipshitz continuous function g(z,y) satisfying:

(1) g(z,2) = G(z) for all x € X

(2) 291‘ (z,y) >0 for all z,y € X and all i # j whenever
Lj

the derivative exists

(3) ggi (z,y) <0 for all z,y € X and all ¢,j whenever
Yj

the derivative exists.

The function g(z,y) is called a decomposition function for
the system.

For a mixed monotone system with decomposition func-
tion g(x,y), it follows that the symmetric system

i =g(z,y) (20)
J =gy =) (21)
is order-preserving with respect to the orthant R x RZ.
The following proposition, adapted from Enciso et al.
(2006) and Smith (2006), makes use of this property to
analyze the asymptotic behavior of
= g(x,z) = G(x), (22)
whose trajectories coincide with (20)—(21) restricted to the
diagonal {(z,z) |z € X}.



Proposition 4. If there exist 2° < °, [29,4°] C X, such

that

g(y’,2") <0 < g(z",y") (23)
then [2°,9°] is forward invariant for (22). Moreover, there
exist #* < y* for which [z*,y*] C [2°,4°] and, let-
ting (x(t),y(t)) denote the solution to (20)-(21) with
initial condition (z°,y°), we have (x(t),y(t)) — (z*,y*),
g(z*,y*) = g(y*,2*) = 0, and the w-limit set of [z°,y°] is
nonempty and is contained within [z*, y*].

Proof. Let <c be the order relation with respect to
C £ RY, x RYy, that is, (z,y) <c¢ (,9) if and only if
r < 7 and § < y. By hypothesis, (z0,%0) <c¢ (yo,%0)-
Equation (23) implies

(9y°,2°),9(z°,9")) <c (0,0) <c¢ (9(2°,1°), 9(3°, 27)).

(24)
Since the symmetric system (20)—(21) is order-preserving
with respect to C, (24) implies that the set {(z,y) |
(zo,y0) <c¢ (z,9) <¢ (yo,x0)} is forward invariant for
(20)—(21) (Smith, 1995, Ch. 3, Prop. 2.1). Furthermore,
the solution (z(t),y(t)) is monotonically increasing with
respect to <. Symmetrically, (y(t),z(t)) is the solution
o (20)—(21) with initial condition (y°,2") and is mono-
tonically decreasing. It follows that (z (t),y(t)) — (z*,y*)
and both (z*,y*), (y*,2*) are equilibria of (20)-(21).
Furthermore, (z*,y*) <¢ (y*,z*) since (20)—(21) is order
preserving with respect to <, thus z* < y*.

Consider a trajectory z(t) of (22) with initial condition
2% € [29,9°]. This induces the corresponding trajectory
(2(t), 2(t)) of the symmetric system (20)—(21) with ini-
tial condition (2°,2°) satisfying (2°,1°) <¢ (29,2%) <¢
(y°,2%). Tt follows that (z(t),y(t)) <c (2(t),2(t)) <¢
(y(t), z(t)) for all time, that is, 2(t) < z(t) and z(t) < y(t)
for all time. We thus have z* < lim;, o 2(t) < y*. All
claims of the Proposition then follow readily. O

Theorem 5. The traffic network model (4)—(8) is mixed
monotone with decomposition function
ge(x,y) = "€ (x,y) — [ ().

Before providing the proof, we define notation that is used
in the sequel. For all £,k € L, let

(25)

s = {(1) i;‘g(k) =7(0) and k £/ (26)

and for each £ € £ and z,y € R”, let
i@, k) = sy + (1 — se)ze Yk € L, (27)
&, y) = {&(wr, y) Yrec- (28)

Proof. We first note that Fy(x) is Lipschitz continuous
for each ¢/ € L; in the following, statements involving
derivatives are interpreted to hold whenever the derivative

exists. For ease of notation, we interpret fi*(z,y) =
fin(¢4(x,y)). It holds trivially that g¢(z,z) = Fi(z) for
all £ € L. We now show that
3 out
f () <0 VoeX VI+£k (29)
T,
£ (x,y>zo Yo,y € X,V #k (30)
8$k
(x,y) <0 Vz,ye X,Vk (31)

3Z/k

which implies that gs(x,y) is indeed a valid decomposition
function for the system and the system is mixed monotone,
completing the proof.

To this end, first consider k € Eg‘(l;). We have
afout aaa(é)
x) =
8wk 8l‘k
clo P (20) doir
Zjec:'m B*kq)?ut(xj) dxy,
If £ € Ei“ (¢ then (32) still holds and whenever
2a°Y) [9x), # 0, there exists m € CO“ (¢) such that

07O (w) = (yegn, Bom®(r)  Biaan) (34)

90" W (k) B2 (1) <o, @)
B (Secn, 5" ()

and thus (29) holds. Next, we have

afout

() @5 () (32)

(xk)} <0. (33)

aaﬁk

. B Y (@)
L ST (36)
al'k lf :ZC S ;CT([)
0 else
by (26)—(28). For k € EiT“(e), we have
afout 30[ (é) o
Z D —I— (& (x,y)) = T ¢ (x Z @3 “(x;)
IELT Jec'f“u)
out

+af<f><s€<x,y>>dd;k (w). (37)

If o7 £ 1 on some neighborhood of &(z,y), then there
exists m € EO‘&) such that

a™ (e, y)) =
-1 .
(Syeen, Bom® (@) Binehlwy)),  (33)
: e (1) P11 (66 (2, )
(' (a,y) = — ne
e (S, #77)
Then (37) evaluates to zero for this case. Therefore,
out

0
I e e {05 G w0} 20, o)
and thus (30) holds. Finally, we have

da™®)
8.23k

(39)

da” (f)
Ji (2,y) = Je”r"(o (41
Ik if 7(k) = 7(¢) and k # ¢
0 else.

If 8g;i)(§z(m,y)) # 0 for some k # £ with 7(k) = 7(¢),

then it must be that

da™®

axk (g@(x’y)) _ (Zjeﬂ“‘ Bﬂk out( j))_l dq)}ﬁn

dxk

(Yr)-
(42)

We conclude that (31) holds because



OI (4 ) {0 qu’m(yk)} <0 (43)

Oy Bk dxy, N

4. GLOBAL STABILITY OF POLYTREE
NETWORKS

We now use Theorem 5 and the order-preserving properties
of (20)—(21) to prove global stability of a particular class
of traffic networks.

Definition 2. The connected graph G is said to be a poly-
tree graph if the underlying undirected graph is acyclic.

The “underlying undirected graph” is the undirected
graph that results from replacing each directed edge with
an undirected edge between the same two nodes.

The class of networks that constitutes polytree graphs
is somewhat restrictive, as it does not allow cycles or
multiple paths between two locations. However, polytrees
still encompass a large class of relevant networks, such
as a stretch of freeway with onramps and offramps, or a
portion of a freeway network leading into (resp. out from)
a large metropolitan area, which is useful for modeling
the morning (resp. evening) commute patterns in the area.
Furthermore, it is not difficult to construct a counterex-
ample to demonstrate that the polytree assumption for
the network topology is necessary for the results presented
here.

Theorem 6. The equilibrium z°¢ identified in (15) is glob-
ally asymptotically stable for polytree networks.

Proof. We have

_ de ifleR
< =
0<a0n) = {3 H1EE (44
_ 0 if ¢ € £\ L5k
> = : 4
0= gg(a:,O) {_@2Ut(f£) ifre L:smk. ( 5)

Let (z(t),y(t)) be the solution to (20)—(21) with initial
condition (0,z). Taking (z°,y°) = (0, %), it follows from

the proof of Proposition 4 that (x(t ) y(t)) — (z*,y*)
for some (z*,y*) an equilibrium of (20)—(21). Because
(x°,2°) is terlally also an equilibrium of (20)—(21) and
since 20 < 2° < 9%, we have that

rf <zt <y* (46)
by the order preserving property of (20)—(21). By sym-
metry, (y*,z*) is also an equilibrium of (20)-(21). That
is, fin(ef(az*,y*)) = fou(y*) for all ¢ € L, and

Pyt ar) = (e
that z* = y* = 2°.

*) for all £ € L. We now show

Suppose y* # z°. Recalling that y* > z°, this implies there
exists £ € L such that y; > xj. By acyclicity of polytree
networks, we assume, without loss of generality, that there
does not exists k£ € Eg‘(‘g) such that y; > xz§ (otherwise

we could choose link k instead of 6) This implies that
D (yr) = ®P(zf) for all k € L£9% . Without loss of

4O

generality, we further assume that fP"*(y*) > f¢. Indeed,
if this were not the case, then there must exist some
downstream link with inadequate supply since ®9"(y;) >
P (2f) = fi. That is, there exists k € L3(}, for which

y; = x,, such that

D M) = (1/8-) > > fn (4D
JEEG([) jGL’;‘([)

for which there must exist some j € E;(é), j # £ with
f;-’“t (y*) > f5, and we could choose j instead of /.

We thus have fi*(&f(y*, 2%)) = f2"(y*) > f5. Define £y £
¢ and, starting from /¢y, choose inductively ¢1, {5, ..., ¢, to
satisfy ¢; € £i7“(21_ ) for all ¢ (that is, link ¢; is upstream
of link ¢; 1) such that f"(y*) > f7 , until no additional
upstream link satisfying this condition exists. Note it is
possible that ¢,, = £y = £. Thus,

€yt at) = [ > S, (48)
Since fy = di for all k¥ € R by Assumption 3 and
fin(gk(y*,2*)) < d, for all k € R, we have £, # R.
Thus f{"*(y*) < f§ for all j € [ZiTn(é”), which implies
Bty Sjeen, [P(") = JE ) < Jf,. With (43), this
implies that f{ (¢ (y*,2*)) > fi*(y*). Thus there must
exist k with 7(k) = 7(¢,) and k # £,, such that the supply
of link k£ at state y* limits the outflow of the upstream
links, that is, link k is such that g8 Zje[:i;’(k) F(y) =
@} (y7) for which B2(yj) < Jf.
Define ky = k and construct another sequence k1, ks, . .., k,
satisfying k; € L‘;‘(‘Ziil) for all ¢ (that is, link k; is
downstream of link k;_1) such that ®(y;; ) < fg, until
no additional downstream link satisfying this condition
exists. Note it is possible that k, = ko = k. It thus
holds that @i 'y ) < fi, and @‘n(y;‘) > f; for all j €
L’O“,Z ) Recall fout( *) < O (v ) < DM(y; ), where
the second inequality follows because <I>i“ (yz,) < fr, and

thus y; > 2. Therefore there exists j € L7} | such

that (.; Zme%n(kn) o (y*) = ®(y;), but then there
must exist m € Ei,n(k") such that fo't(y*) > f° since
@1 (y7) > f5, for which yy, > x7,. However, m # {; for any
L; € {lo, ..., L} chosen previously, as this would imply the
graph is not a polytree. Taking ¢ = m, we could begin the
process again, continuing indefinitely; since the graph is
finite, we arrive at a contradiction, and thus we must have
Yy =2a°.

Now suppose x* # x°, that is, there exists ¢ such that
x; < xj. Without loss of generality, assume there does not
exist k € L “(e) such that x}, < zf. This implies

fet (@) < @ (ap) < 7. (49)
Since fit(¢4(x*,y*)) = fPu(z*) and
Bue > () =Bar Y, B(aR) = f7, (50)
keLi,, keLl,,
there must exist j € Ei‘(l;) , J # £, such that

. (56( *)) = (B-¢/B-;)®"(y;), for which we must
have yj > zj, a contradiction since we have shown y* = z°.
As z* = y* = z°, we apply Proposition 4 and conclude
that the equilibrium z° is globally attractive.

Finally, suppose the links are indexed 1,...,|L£| such that
the index of link ¢ is less than the index of each k €
L";‘(IE) (such an indexing is always possible for polytree



graphs). Then the Jacobian evaluated at the equilibrium,
(0F /0x)(x°), is lower triangular with respect to this in-
dexing since f9"'(z°) = ®9"(z9) for all £ € L. Addi-
tionally, the Jacobian contains strictly negative entries
along the diagonal since ®9"(-) is strictly increasing, and
it is therefore Hurwitz. Thus the equilibrium is locally
asymptotically stable by, e.g., (Khalil, 2002, Thereom 4.7)
and therefore globally asymptotically stable since it is also
globally attractive. O

5. CONCLUSIONS

We have characterized a mized monotonicity property
exhibited by traffic flow networks. This property has po-
tential to be a key tool in overcoming hurdles towards a
full understanding of the dynamics of various physically-
motivated flow networks, particularly related to trans-
portation systems. We have shown that mixed monotone
systems are able to be embedded in a higher dimensional
system with twice the statespace dimension. Within this
embedding system, the dynamics are monotone.

By studying the behavior of the embedding system, we
established convergence properties of the original mixed
monotone system. By exploiting this result, we proved
global stability of traffic flow networks for a class of
networks in which the graph topology is a polytree, that
is, the undirected underlying graph does not contain any
cycles. Future work will seek to extend these analysis
techniques to broader classes of systems.
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