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Abstract— In vehicle traffic networks, congestion on one
outgoing link of a diverging junction often impedes flow to other
outgoing links, a phenomenon known as the first-in-first-out
(FIFO) property. Simplified traffic models that do not account
for the FIFO property result in monotone dynamics for which
powerful analysis techniques exist. FIFO models are in general
not monotone, but have been shown to be mixed monotone—a
generalization of monotonicity that enables similarly powerful
analysis techniques. In this paper, we study traffic flow models
for which the FIFO property is only partial, that is, flows at
diverging junctions exhibit a combination of FIFO and non-
FIFO phenomena. We show that mixed monotonicity extends
to this wider class of models and establish conditions that
guarantee convergence to an equilibrium.

I. INTRODUCTION

In models of vehicular traffic flow, if congestion on one
outgoing link of a diverging junction impedes the incoming
flow to other outgoing links, the diverging junction is said
to satisfy the first-in-first-out (FIFO) property. If complete
congestion on one outgoing link completely blocks access
to all other outgoing links, we say the model is a full FIFO
model.

Whether a node model of a diverging junction is FIFO
or non-FIFO affects the qualitative dynamical behavior of
traffic flow through the junction. An attractive feature of
non-FIFO node models is that the resulting traffic network
dynamics are monotone, as is shown in [1]. Trajectories
of a monotone dynamical system preserve a partial order
over the system’s state [2], [3]. Preservation of this partial
order imposes restrictions on the behavior exhibited by
such systems which is exploited for, e.g., characterization
of equilibria and stability analysis in [1].

In general, FIFO node models are not monotone. Nonethe-
less, in [4], it is shown that a particular full FIFO model is
mixed monotone, which significantly generalizes the class of
monotone systems [5], [6].

However, non-FIFO models and full FIFO models are
often inadequate. Non-FIFO models imply that, even if one
of the output links is jammed, the resulting traffic spillback
has no effect on those vehicles directed to the other output
links, an unreasonable assumption as the FIFO effect in
traffic flow networks has been observed even for multilane
diverging junctions [7], [8]. On the other hand, a full FIFO
model is often too restrictive [9]. To derive a class of partial
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Fig. 1. A diverging junction with one incoming link and two outgoing
links as on a freeway (left) and schematically (right). When traffic flow is
assumed to obey the first-in-first-out (FIFO) property, congestion on link
2 (resp. 3) impedes flow to link 3 (resp. 2) whereas in a non-FIFO flow
model, the flow from link 1 to link 2 (resp. link 3) is independent of the
congestion on link 3 (resp. 2). For the FIFO case, if complete congestion
on one outgoing link completely impedes the outgoing flow from link 1,
the node model at the diverging junction is said to be full FIFO, otherwise
it is a partial FIFO model.

FIFO models, [10] and [11] have suggested modeling lanes
of an input link as separate links. The main drawback of
this approach is that it greatly complicates the size and
dimensionality of the model since every node in the network
becomes a multi-input-multi-output junction.

Here, we propose a general class of partial FIFO junction
models where the full FIFO rule is relaxed; see Figure 1. We
show that the resulting dynamics are mixed monotone, and
we use mixed monotonicity to establish convergence to an
equilibrium point of the resulting dynamics. By considering
the dynamical properties of FIFO traffic flow models that
are not full FIFO, this paper bridges an important gap in the
literature.

In Section II, we present a general model of traffic
flow that encompasses many existing non-FIFO and full
FIFO models and allows for a large class of partial FIFO
models. In Section III, we show that our general model is
mixed monotone. In Section IV, we present several specific,
practically motivated instantiations of this general model. We
show how mixed monotonicity is used for analysis in Section
V and provide concluding remarks in Section VI.

II. NETWORK FLOW MODEL

A traffic flow network consists of a directed graph G =
(V,L) with junctions or nodes V and links L. Let σ(`)
and τ(`) denote the head and tail junction of link ` ∈ L,
respectively, where we assume σ(`) 6= τ(`), i.e., no self-
loops. Traffic flows from τ(`) to σ(`).

For each v ∈ V , we denote by Lin
v ⊂ L the set of input

links to node v and by Lout
v ⊂ L the set of output links, i.e.,

Lin
v , {` | σ(`) = v}, (1)

Lout
v , {` | τ(`) = v}. (2)

For each `, we denote by Lup
` ⊂ L the set of links

immediately upstream of link `, and by Ldown
` ⊂ L the set of



links immediately downstream of link `. We say that links `
and k are adjacent if τ(`) = τ(k) and ` 6= k and let Ladj

` ⊂ L
be the set of links adjacent to link `. Thus

Lup
` , {k ∈ L | σ(k) = τ(`)} = Lin

τ(`), (3)

Ldown
` , {k ∈ L | τ(k) = σ(`)} = Lout

σ(`), (4)

Ladj
` , {k ∈ L | τ(k) = τ(`), k 6= `} = Lout

τ(`)\{`}. (5)

Each link ` ∈ L has state x`(t) ≥ 0 evolving over time that
is the density of vehicles on link `. We denote the state of the
network by x(t) , {x`(t)}`∈L. Vehicles flow from link to
link over time; the state-dependent flow of vehicles from link
k to link ` is denoted by fk�`(x). We assume fk�`(x) ≡ 0
if σ(k) 6= τ(`) so that flow is allowed only between links
connected via a junction. Furthermore, vehicles flow to link
` from outside the network at rate f�`(x) and vehicles leave
the network from link ` at rate f`�(x) so that

ẋ` =
∑
k∈L

fk�`(x)−
∑
j∈L

f`�j(x) + f�`(x)− f`�(x) (6)

=: F`(x). (7)

In Section IV, we suggest specific forms for fk�`, f`�, and
f�` based on phenomenological properties of traffic flow.

We further assume that each fk�`(x) is decomposable as

fk�`(x) = fF
k�`(x) + fNF

k�`(x), (8)

where fF
k�`(x) is the flow from link k to link ` that is subject

to the FIFO phenomenon and fNF
k�`(x) is the flow from link

k to link ` that is not subject to the FIFO phenomenon.
The following captures the fundamental properties of

traffic flow networks.

Assumption 1. For all `, k ∈ L, the functions fk�`(x),
f`�(x), f�`(x) are locally Lipschitz continuous. For all
x ∈ X where the given derivative exists,
External flows:

(A1)
∂f�`

∂xm
(x) ≥ 0 for all `,m ∈ L such that m 6= `,

(A2)
∂f`�
∂xm

(x) ≤ 0 for all `,m ∈ L such that m 6= `.

Interpretation:
• (A1): For any m 6= `, increasing the density on link m can

only increase the exogenous flow into link `. For example,
congestion on link m of the network causes vehicles that
wish to enter the network to reroute and enter at link `.

• (A2): For any m 6= `, increasing the density on link m can
only decrease the flow that exits the network from link `.
For example, downstream congestion on link m impedes
the outflow of vehicles via an offramp on link `.

Local dependence:

(A3)
∂fNF

k�`
∂xm

(x) ≡ 0 for all `, k,m ∈ L such that

m 6∈ Lin
σ(k) ∪ Lout

σ(k),

(A4)
∂fF

k�`
∂xm

(x) ≡ 0 for all `, k,m ∈ L such that

m 6∈ Lin
σ(k) ∪ Lout

σ(k).

Interpretation:
• (A3) and (A4): The flow rate from link k to link ` through

some junction v = σ(k) = τ(`) ∈ V is instantaneously
affected by the change in density of vehicles on link m
only if m is incoming or outgoing of junction v.

Net incoming and outgoing flows:

(A5)
∂

∂xm

(∑
j∈L

fF
j�`

)
(x) ≥ 0 for all `,m ∈ L such that

m ∈ Lup
` ,

(A6)
∂

∂xm

(∑
j∈L

fNF
j�`

)
(x) ≥ 0 for all `,m ∈ L such that

m ∈ Lup
` ,

(A7)
∂

∂xm

(∑
j∈L

f`�j

)
(x) ≤ 0 for all `,m ∈ L such that

m ∈ Lin
σ(`) ∪ Lout

σ(`), m 6= `.
Interpretation:
• (A5) and (A6): For any link m immediately upstream of

link ` (that is, σ(m) = τ(`)), increasing the density of
vehicles on link m cannot decrease the net incoming FIFO
or non-FIFO flow to link `.

• (A7): For any link m 6= ` incoming or outgoing from
junction σ(`), increasing the density of vehicles on link
m cannot increase the net outgoing flow from link `.

FIFO and non-FIFO flows:

(A8)
∂fNF

k�`
∂xm

(x) ≥ 0 for all `, k,m ∈ L such that m ∈ Ladj
` ,

(A9)
∂fF

k�`
∂xm

(x) ≤ 0, for all `, k,m ∈ L such that m ∈ Ladj
` .

Interpretation:
• (A8): For any link m adjacent to link `, increasing the

density of link m can only increase the non-FIFO flow
from an upstream link k to `. This may occur if, e.g.,
vehicles reroute to avoid increased congestion on link m.

• (A9): For any link m adjacent to link `, increasing the
density of link m can only decrease the FIFO flow from
an upstream link k to link `. This captures the fundamental
feature of FIFO flow whereby congestion on link m blocks
access to link `.

Requirements (A1)–(A7) are standard for traffic flow net-
works. The requirement (A8) is found in, e.g., [12, Definition
2] where it is used to establish monotonicity for non-FIFO
policies. Requirement (A9) captures the FIFO phenomenon.

III. MIXED MONOTONICITY OF TRAFFIC FLOW

Definition 1 (Mixed Monotone). The system ẋ = G(x), x ∈
X ⊆ Rn where X has convex interior and G is locally
Lipschitz is mixed monotone if there exists a locally Lipschitz
continuous function g(x, y) satisfying:

1) g(x, x) = G(x) for all x ∈ X ,

2)
∂gi
∂xj

(x, y) ≥ 0 for all x, y ∈ X and all i 6= j whenever

the derivative exists,



3)
∂gi
∂yj

(x, y) ≤ 0 for all x, y ∈ X and all i, j whenever

the derivative exists.
The function g(x, y) is called a decomposition function for
the system.

Let ẋ = G(x) be mixed monotone with decomposition
function g(x, y) and consider the dynamical system

ẋ = g(x, y), (9)
ẏ = g(y, x). (10)

The symmetry implies that if (x(t), y(t)) is a trajectory of
(9)–(10), then (y(t), x(t)) is also a trajectory. Furthermore,
observe that {(x, y) | x = y} is an invariant subspace
of (9)–(10) and trajectories contained within this subspace
correspond to (two copies of) trajectories of the original
system ẋ = G(x), thus we refer to (9)–(10) as the embedding
system.

The importance of mixed monotonicity lies in the ob-
servation that the induced embedding system is monotone
with respect to the partial order induced by the orthant
Rn≥0 × Rn≤0, that is, (9)–(10) is monotone with respect to
the partial order � defined by (x, y) � (v, w) if and only
if x ≤ v and w ≤ y. This observation allows the powerful
tools available for monotone systems to be applied to mixed
monotone systems. For example, global convergence for (9)–
(10) implies global convergence of the mixed monotone
system ẋ = G(x). In Section V, we apply this technique
to prove asymptotic convergence of the example in Figure 1.

Theorem 1. The traffic flow network model (6) satisfying
Assumption 1 is mixed monotone.

Proof. We construct an appropriate decomposition function
g(x, y). For each ` ∈ L, let z`(x, y) : X×X → X be defined
elementwise as

z`k(x, y) =

{
yk if k ∈ Ladj

`

xk else
for all ` ∈ L. (11)

Define

g`(x, y) =
∑
k∈L

(
fF
k�`(z

`(x, y)) + fNF
k�`(x)

)
−
∑
j∈L

(
fF
`�j(x) + fNF

`�j(x)
)

+ f�`(x)− f`�(x)

(12)

and let g(x, y) = {g`(x, y)}`∈L. Then g`(x, x) = F`(x)
given in (6)–(7) for all ` ∈ L. We next show

∂g`
∂xm

(x, y) ≥ 0 for all m 6= `. (13)

To this end, we show

∂

∂xm

(∑
k∈L

(
fF
k�`(z

`(x, y)) + fNF
k�`(x)

))
≥ 0 ∀m 6= `,

(14)

∂

∂xm

∑
j∈L

(
fF
`�j(x) + fNF

`�j(x)
) ≤ 0 ∀m 6= `, (15)

which, combined with (A1) and (A2) of Assumption 1,
proves (13). We have that (15) holds for all m ∈ Lin

σ(`) ∪
Lout
σ(`) with m 6= ` by (A7), and (A3)–(A4) ensures that

(15) holds with equality for all m 6∈ Lin
σ(`) ∪ Lout

σ(`). For
m ∈ Lup

` , (14) holds from (A5) and (A6). For m ∈ Ladj
` ,

we have ∂
∂xm

(fF
k→`(z

`(x, y)) = 0 for all k by (11), and
∂

∂xm
(fNF
k→`(x)) ≥ 0 by (A8), satisfying (14). For m 6∈

Ladj
` ∪ L

up
` , we have (14) holds with equality by (A3)–(A4).

We now show

∂g`
∂ym

(x, y) ≤ 0 for all m 6= `. (16)

We have that (16) holds trivially for all m 6∈ Ladj
` by (11).

For m ∈ Ladj
` , we have

∂g`
∂ym

(x, y) =
∂

∂ym

∑
j∈L

fF
j�`(z

`(x, y))

 ≤ 0, (17)

where the inequality follows by (A9).

We remark that a sufficient condition for mixed mono-
tonicity of ẋ = G(x) is for each off-diagonal entry of the
Jacobian matrix ∂G

∂x to not change sign over the domain X ,
that is, either ∂Gi

∂xj
(x) ≥ 0 for all x ∈ X or ∂Gi

∂xj
(x) ≤ 0 for

all x ∈ X for all i 6= j. This condition is proved for the
discrete-time case in [6] and the proof for the continuous-
time case is similar. In general, partial FIFO models do not
satisfy this condition; this is attributable to the different sign
conditions in (A8) and (A9) whereby an increase on some
link k ∈ Ladj

` may increase the non-FIFO flow to link ` and
decrease the FIFO flow to link `. Thus we require a different
construction for the decomposition function as shown in the
proof of Theorem 1.

We further observe that standard monotonicity is often
generalized to partial orders induced by arbitrary orthants
of Rn [13], and one may wonder if mixed monotonicity
for traffic networks is equivalent to this generalization. As
observed in [4], it is not difficult to construct traffic network
topologies that are not monotone with respect to any orthant
order, thus mixed monotonicity is strictly more general.

IV. EXAMPLES OF MODELS SATISFYING ASSUMPTION 1

We now present several related examples satisfying (A1)–
(A9) based on the supply and demand concept of traffic
flow. We assume each link ` ∈ L possesses a jam density
x` such that x`(t) ∈ [0, x`] for all time and thus X =∏
`∈L[0, x`]. We further assume each link possesses a state-

dependent demand function d`(x`) and a state-dependent
supply function s`(x`) satisfying:

Assumption 2. For each ` ∈ L:

• The demand function d`(x`) : [0, x`] → R≥0 is strictly
increasing and Lipschitz continuous with d`(0) = 0.

• The supply function s`(x`) : [0, x`] → R≥0 is strictly
decreasing and Lipschitz continuous with s`(x`) = 0.



The demand of a link is interpreted as the maximum
outflow of the link, and the supply of a link is interpreted as
the maximum inflow of the link.

Let R = {` ∈ L | Lin
τ(`) = ∅}, that is, R is the set of links

for which there are no upstream links. We assume exogenous
traffic enters the network only through R so that

f�`(x) ≡ 0 for all ` 6∈ R. (18)

For each ` ∈ R, we assume there exists a constant
exogenous inflow demand δ` such that

f�`(x) = min{δ`, s`(x`)} for all ` ∈ R. (19)

We further assume that f`�(x) is a fixed fraction γ` of the
total outflow from link ` if there are any links downstream
of `, otherwise f`�(x) is equal to the demand of link `. That
is, for all ` ∈ L,

f`�(x) =

{
γ`
∑
j∈L f`�j(x) if Lout

σ(`) 6= ∅
d`(x`) otherwise,

(20)

where γ` ≥ 0 for each ` such that Lout
σ(`) 6= ∅.

Finally, we assume there exist fixed turn ratios β` > 0
for each ` with Lup

` 6= ∅ that describe how vehicles route
through the network. The role of these turn ratios is made
explicit subsequently, but the interpretation is that β` is the
fraction of the upstream demand that is bound for link `.

It remains to characterize fk�`(x) for all `, k ∈ L.

Example 1 (non-FIFO). For all ` ∈ L, let

αNF
` (x) = min

{
1,

s`(x`)

β`
∑
j∈Lup

`
dj(xj)

}
. (21)

Let fF
k�`(x) ≡ 0 for all k, ` ∈ L and let

fNF
k�`(x) = αNF

` (x)β`dk(xk) ∀` ∈ L, ∀k ∈ Lup
` . (22)

Example 2 (Full FIFO). For all v ∈ V , let

αF
v(x) = min

{
1, min
k∈Lout

v

{
sk(xk)

βk
∑
j∈Lin

v
dj(xj)

}}
. (23)

Let fNF
k�`(x) ≡ 0 for all k, ` ∈ L and let

fF
k�`(x) = αF

τ(`)(x)β`dk(xk) ∀` ∈ L, ∀k ∈ Lup
` . (24)

Example 3 (Convex combination of non-FIFO and full
FIFO). Let αNF

` (x) be given as in (21) and let αF
v(x) be

given as in (23). Suppose there exists η` ∈ [0, 1] for all
` ∈ L, and let

fF
k�`(x) = η`α

F
τ(`)(x)β`dk(xk) ∀` ∈ L, ∀k ∈ Lup

` , (25)

fNF
k�`(x) = (1− η`)αNF

` (x)β`dk(xk) ∀` ∈ L, ∀k ∈ Lup
` .

(26)

Example 3 is proposed in [1, Example 4] and is a natural
extension of the ideas in Examples 1 and 2, however it
exhibits the following property: it is possible for αNF

` (x) < 1
yet

∑
j∈L fj�`(x) < s`(x`), that is, the supply of link `

restricts the flow to link `, yet the total inflow of link `
is less than this supply. This property may be undesirable,

depending on the specific phenomena which the node model
is desired to capture. We now suggest an alternative partial
FIFO model. To fix ideas, we assume that each diverging
junction has exactly one incoming link, that is,

|Lout
v | > 1 =⇒ |Lin

v | = 1 ∀v ∈ V. (27)

This is not too restrictive as we can model a general diverging
junction as a merging node and a node satisfying (27).

Example 4 (Shared and exclusive lanes for a partial FIFO
model). Assume (27) holds. We consider η` ∈ [0, 1] for each
` ∈ L representing the degree of influence on link ` of the
FIFO restriction at the intersection so that η` is the fraction
of traffic bound for link ` that is subject to a FIFO restriction
and (1− η`) is the fraction of traffic bound for link ` that is
not subject to a FIFO restriction. For example, 1− η` is the
fraction of lanes at the diverging junction exclusively bound
for link ` and η` is the fraction of lanes that are shared
among all outgoing links.

Whenever Ladj
` = ∅, we assume η` = 1 without loss of

generality. Let αF
v(x) be given as in (23) for all v ∈ V . For

` ∈ L such that Ladj
` 6= ∅, let k be the unique link such that

Lup
` = {k} (uniqueness is guaranteed by (27)), and let

fF
k�`(x) = η`α

F
τ(`)(x)β`dk(xk), (28)

fNF
k�`(x) = min

{
(1− η`)β`dk(xk), s`(x`)− fF

k�`(x)
}
.

(29)

For ` ∈ L such that Ladj
` = ∅, we have that η` = 1 so that

fF
k�`(x) = αF

τ(`)(x)β`dk(xk) ∀k ∈ Lup
` , (30)

fNF
k�`(x) ≡ 0. (31)

We extend Example 4 to the case where there are multiple
sets of interacting outgoing links that result in a collection
of FIFO restrictions.

Example 5. Assume (27) holds. For each v ∈ V with Lin
v 6=

∅, let Φ(v) ⊂ 2L
in
v be a collection of subsets of Lin

v so that
each ϕ ∈ Φ(v), ϕ ⊆ Lin

v is a set links which are mutually
governed by a FIFO restriction. When |Lout

v | = 1, we assume
Φ(v) = {Lout

v }.
For ϕ ∈ Φ(v) and ` ∈ Lout

v , let η`,ϕ ∈ [0, 1] represent the
degree of influence on link ` of the FIFO restriction set ϕ.
We make the following assumptions:

` 6∈ ϕ =⇒ η`,ϕ = 0 ∀ϕ ∈ Φ(τ(`)), (32)∑
ϕ∈Φ(v)

η`,ϕ ≤ 1 ∀` ∈ Lin
v ∀v ∈ V. (33)

Define η̄` = 1 −∑ϕ∈Φ(v) η`,ϕ. For all v ∈ V such that
|Lout
v | > 1, define

αϕ(x) = min

{
1,min

j∈ϕ

{
sj(xj)

βjdk(xk)

}}
∀ϕ ∈ Φ(v) (34)

where k is the unique upstream link such that Lin
v = {k}.



For ` ∈ L such that Ladj
` 6= ∅, let k be the unique link

such that Lup
` = {k}, and let

fϕk�`(x) = η`,ϕαϕ(x)β`dk(xk) ∀ϕ ∈ Φ(τ(`)), (35)

fF
k�`(x) =

∑
ϕ∈Φ(τ(`))

fϕk�`(x), (36)

fNF
k�`(x) = min

{
η̄`β`dk(xk), s`(x`)− fF

k�`(x)
}
. (37)

For ` ∈ L such that Ladj
` = ∅, we again let

fF
k�`(x) = αF

τ(`)(x)β`dk(xk) ∀k ∈ Lup
` , (38)

fNF
k�`(x) ≡ 0, (39)

where αF
τ(`)(x) is as given in (23).

Taking Φ(v) = {Lout
v } for all v ∈ V , we see that Example

4 is a special case of Example 5.
All the examples above satisfy, for all x ∈ X ,

fk�`(x) ≤ β`dk(xk) ∀k ∈ L ∀` ∈ Ldown
k , (40)∑

k∈L

fk�`(x) ≤ s`(x`) ∀` ∈ L. (41)

If we further assume that
∑
k∈Ldown

`
βk ≤ 1 and (γ` +

1)
∑
k∈Ldown

`
βk ≤ 1 for all ` such that Lout

σ(`) 6= ∅, we have
that, for all x ∈ X ,∑

k∈L

f`�k(x) + f`�(x) ≤ d`(x`) ∀` ∈ L. (42)

Proposition 1. Examples 1–5 satisfy Assumption 1.

Proof. It follows straightforwardly from results in [1] that
the conditions of Assumption 1 hold for Example 1, and,
similarly, it follows from results in [4] that the assumption
holds for Example 2. From Example 1 and Example 2, the
assumption immediately holds for Example 3. We now show
that Example 5 satisfies Assumption 1, from which it follows
that also Example 4 satisfies Assumption 1 because Example
4 is a special case of Example 5. To that end, we now prove
each condition (A1)–(A9) for Example 5.

• (Condition (A1)). Follows trivially from (18) and (19).
• (Condition (A2)). Follows from (20) and Condition (A7),

proved below, as well as Conditions (A3) and (A4), proved
below.

• (Conditions (A3) and (A4)). Follows immediately from the
fact that for all v ∈ V and all ϕ ∈ Φ(v), αF

v(x) and αϕ(x)
are only functions of d`(x`) for ` ∈ Lin

v and s`(x`) for
` ∈ Lout

v and from (37).
• (Conditions (A5) and (A6)). Consider ` ∈ L. If |Lup

` | > 1,
then Ladj

` = ∅ by (27) and

∑
j∈L

fF
j�`(x) ∈

∑
j∈Lup

`

β`dj(xj), s`(x`)

 , (43)

∑
j∈L

fNF
j�`(x) ≡ 0, (44)

and thus (A5) and (A6) hold.

Now suppose |Lup
` | = 1 and let Lup

` = {k} so that∑
j∈L

fF
j�`(x) = fF

k�`(x) =
∑

ϕ∈Φ(τ(`))

fϕk�`(x), (45)

∑
j∈L

fNF
j�`(x) = fNF

k�`(x). (46)

We have

αϕ(x)dk(xk) = min

{
dk(xk),min

j∈ϕ

{
sj(xj)

βj

}}
, (47)

and thus (A5) holds by (35) and (45).
Still supposing |Lup

` | = 1 with Lup
` = {k}, consider now

Condition (A6). The only possibility for which this condi-
tion would not hold is if s`(x`)−fF

k�`(x) is the minimizer
in (37) and ∂

∂xk
fF
k�`(x) > 0. But ∂

∂xk
fF
k�`(x) > 0 only if

αϕ(x) = 1 for some ϕ for which ` ∈ ϕ on some neigh-
borhood of x so that, in particular, s`(x`) > β`dk(xk). In
this case, since fF

k�`(x) ≤ ∑ϕ∈Φ(τ(`)) η`,ϕβ`dk(xk), we
have that

s`(x`)− fF
k�`(x) ≥ η̄`β`dk(xk), (48)

i.e., η̄`β`dk(xk) is the minimizer in (37) and thus (A6)
holds.

• (Condition (A7)). Suppose v ∈ V is such that |Lout
v | = 1

and let Lout
v = {k}. Consider ` ∈ Lin

v . Then∑
j∈L

f`�j(x) = fF
`�k = αF

v(x)βkd`(x`) (49)

= min

{
βkd`(x`),

d`(x`)∑
j∈Lin

v
dj(xj)

sk(xk)

}
. (50)

Since ∂
∂xm

d`(x`)∑
j∈Lin

v
dj(xj) ≤ 0 for all m ∈ Lin

v with m 6= `,

and dsk
dxk

(xk) ≤ 0, (A7) holds.
Now suppose |Lout

v | > 1 so that |Lin
v | = 1, and let Lin

v =
{`}. From (35)–(37), for all j ∈ Lout

v we have

f`�j(x) = fF
`�j(x) + fNF

`�j(x) (51)

∈
{
fF
`�j(x) + η̄jβjd`(x`), sj(xj)

}
. (52)

Consider some ϕ ∈ Φ(v). Then

αϕ(x)d`(x`) = min

{
d`(x`),min

i∈ϕ

{
si(xi)

βi

}}
, (53)

so that ∂
∂xm

(αϕ(x)d`(x`)) ≤ 0 for all m ∈ Lout
v , and

∂fF
`�j

∂xm
(x) =

∂

∂xm

 ∑
ϕ∈Φ(v)

ηj,ϕαϕ(x)βjd`(x`)

 ≤ 0

(54)

for all m ∈ Lout
v . From (51), we have that ∂f`�j

∂xm
(x) ≤ 0 for

all m ∈ Lout
v so that (A7) holds. Finally, when Lout

v = ∅,
condition (A7) holds trivially for all ` ∈ Lin

v .
• (Condition (A8)). Follows from Condition (A9) below and

(37).
• (Condition (A9)). Follows from (35), (53), and the fact

that dsi
dxi

(xi) ≤ 0 for all i ∈ L.



V. ANALYSIS FROM MIXED MONOTONICITY: DIVERGING
JUNCTION

We return to the example of Figure 1 and suppose the
diverging junction obeys the dynamics given in Example 4
of Section IV. We assume for all ` ∈ {1, 2, 3}

d`(x`) = a`(1− exp(−0.5x`)), (55)
s`(x`) = b` − x` (56)

where (a1, a2, a3) = (4, 3, 2) corresponds to the lane con-
figuration in Figure 1, (b1, b2, b3) = (6, 4, 2), turn ratios
(β2, β3) = (0.8, 0.2) indicates that most of the traffic is
bound for link 2, and (η2, η3) = (0.1, 0.9) indicates that
link 3 is strongly affected by the FIFO restriction but link 2
is not. We assume δ1 = 4 is the desired inflow to link 1.

Let (x(t), y(t)) be the trajectory of the symmetric system
(9)–(10) with initial condition x0 = x(0) = (0, 0, 0) and
y0 = y(0) = (x̄1, x̄2, x̄3) = (6, 4, 2) where g(x, y) is
constructed as in the proof of Theorem 1. We have

g(x0, y0) = (δ1, 0, 0)T ≥ 0, (57)

g(y0, x0) = (0,−d2(x̄2),−d3(x̄3))T ≤ 0, (58)

that is, (g(x0, y0), g(y0, x0)T ) � 0 where we recall that � is
the partial order induced by the orthant R3

≥0×R3
≤0. It follows

that (x(t), y(t)) is increasing with respect to � [3, Ch. 3,
Prop. 2.1], and thus converges to an equilibrium (x∗, y∗).
By symmetry, we have that also (y(t), x(t)) is a trajectory
of (9)–(10) converging to (y∗, x∗). If x∗ = y∗ =: xe,
then we must have that xe is an equilibrium of the traffic
flow dynamics defined by (6)–(7). Furthermore, because the
symmetric system is monotone with respect to �, we must
have that all trajectories of (55)–(56) converge to (xe, xe),
which in turn implies that xe is globally attractive for the
traffic flow dynamics.

In the top row of Figure 2, we plot the demand and supply
curves given in (55)–(56). We establish global convergence
by verifying that an equilibrium (x∗, y∗) of (9)–(10) satisfies
x∗ = y∗. The particular form of the supply and demand
functions does not affect the qualitative behavior and (55)–
(56) is chosen to be illustrative. The bottom row of Figure 2
shows the trajectories (x(t), y(t)) and (y(t), x(t)) projected
to the x`y`-plane for each `.

VI. CONCLUSIONS

We have proposed a general model for traffic flow net-
works that encompasses existing models and allows for a
relaxed FIFO assumption at diverging junctions. We have
shown that this general model is mixed monotone and have
demonstrated how mixed monotonicity is used for system
analysis such as establishing global convergence. In future
work, we will use mixed monotonicity to characterize traffic
flow behavior for, e.g., cyclic networks, networks with excess
demand, or networks with time-varying demand.
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Fig. 2. (top) Supply and demand curves for each link ` ∈ {1, 2, 3}
of the diverging junction show in Figure 1 for the example in Section
V. (bottom) Trajectories of the corresponding embedding system (9)–
(10). Mixed monotonicity ensures the embedding system is monotone with
respect to the orthant Rn

≥0 ×Rn
≤0. Convergence of the symmetric extreme

trajectories (x(t), y(t)) and (y(t), x(t)) for x(0) = 0, y(0) = x̄ implies
global convergence. The traffic flow dynamics are captured on a lower
dimensional subspace of the embedding system, indicated by the dotted
line.
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