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Abstract

The operation of most signalized intersections is governed by predefined timing plans that are applied during
specified times of the day. These plans are designed to accommodate average conditions and are unable to
respond to large deviations in traffic flow. We propose a control approach that adjusts time-of-day signaling
plans based on a prediction of future traffic flow. The prediction algorithm identifies correlated, low rank
structure in historical measurement data and predicts future traffic flow from real-time measurements by
determining which structural trends are prominent in the measurements. From this prediction, the controller
then determines the optimal time of day to apply new timing plans. We demonstrate the potential benefits
of this approach using eight months of high resolution data collected at an intersection in Beaufort, South
Carolina.

1. Introduction

The advent of ubiquitous traffic sensing provides unprecedented real-time, high-resolution data that
elucidate historical trends and current traffic conditions. However, traditional signal timing approaches
have yet to take full advantage of these data [1]. Surveys of practitioners suggest that only sixty percent of
the 300,000 signalized intersections in the United States are retimed at intervals less than five years [2], and
the National Transportation Operations Coalition has given a grade of “C−” to signal timing practices and
a grade of “F” to traffic monitoring and data collection in the United States. These deficiencies contributed
to the 6.9 billion hours of additional travel time caused by inefficient traffic management in 2015 [3].

Increased urbanization demands more efficient use of this transportation infrastructure, which in turn
requires full use of measured data. At signalized intersections, standard actuated signal timing plans are
designed to make limited use of real-time measurements to, e.g., extend green time for approaching vehicles
or enable actuation phases to be skipped if no waiting vehicles are present [4]. However, actuated traffic
signal timing only accommodates modest deviations from the nominal traffic conditions and is thus unable
to respond to systematic changes in the traffic flow.

This paper proposes a traffic predictive control strategy for signalized intersections that predicts future
traffic flow based on real-time measurements and adjusts the intersection’s signal timing accordingly. The
prediction algorithm first identifies trends in historical traffic flow and then uses real-time measurements to
determine the degree to which these historical trends are exhibited by the current traffic conditions. For
example, historical trends may indicate that increased flow in one commute direction during the morning
correlates with increased flow in the opposite direction in the evening. Traffic predictive control identifies
this relationship and uses it to adjust signal timing parameters in the afternoon using measurements of
traffic flow in the morning.
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The present work thus lies within the extensive literature on traffic prediction and forecasting. See, for
example, [5] for a survey of the literature. The majority of the forecasting literature focuses on freeways
rather than urban street traffic [5]. For example, [6] and [7] develop a stochastic traffic flow model for
freeways, and it is shown that this model is amenable to Kalman filtering techniques to estimate traffic
conditions. Kalman filtering is also used in [8] to estimate traffic flow as the result of a random walk biased
by historical increments in measured flow over time. In [9], k-means clustering is used to divide historical
data, and an ARMAX prediction is computed for each possible cluster. The most likely cluster is used to
provide a forecast of future traffic flow.

A large body of literature focuses on estimating flows throughout a network using flow measurements and
conservation laws. For example, in [10], real-time link flow data is used to predict origin-destination and link
flows by modeling a traffic network as a Gaussian Bayesian network, which provides conditional distributions
and probability intervals for link flow. In [11], structural deviations from regular traffic patterns, modeled
using polynomial trend filters, are used to estimate origin-destination flows. In contrast to these approaches,
we focus on predicting traffic flow at a higher resolution for a single intersection.

A variety of model-based and statistical approaches exist for estimating travel times on arterial roads,
which is closely associated with the problem of estimating traffic flows and volumes. A flow model is
combined with GPS probe data in [12] to predict arterial travel times using a Bayesian network learning
approach. Each link is modeled as being in a state of congestion or undersaturation, and the Bayesian
network models the transition between these states. A similar approach is considered in [13] for using GPS
probe data to estimate travel time where additional explanatory variables such as speed limits and number
of lanes per link are used to reduce the number of parameters in the model. In [14], an approach for short-
term travel time estimation that fuses past and real-time data is presented. These data are weighted based
on their quality, which incorporates properties of the data including sensor accuracy and delay. A queuing
theory approach is used to provide probability distributions on queue lengths in traffic networks in [15], and
the model accounts for finite-capacity queues and captures spatial correlations. While the above approaches
focus on aggregate estimates for larger networks, the focus of this paper is on high-resolution estimates of
traffic flow for all movements at a single intersection.

In [16], aggregate daily traffic flow patterns are studied, and a functional principal component decom-
position is used reduce the dimensionality of the data. This approach is similar to the analysis proposed
in Section 3 of the present paper, however, [16] focuses on identifying changes in daily traffic patterns for
long term traffic monitoring, whereas, in the present paper, we use a principal component decomposition to
lay the foundation for our traffic prediction approach. Moreover, [16] focuses on freeway networks and not
signalized networks.

When prediction is applied to signalized intersections for adaptive control, prediction horizons are short,
e.g., seconds or minutes [17]. In contrast, the present work focuses on longer prediction horizons on the
order of hours for use in conjunction with more traditional traffic signal timing methods such as pre-defined
timing plans.

In this paper, we develop a principal-component based prediction scheme for signalized intersections
using the projection to latent structures (PLS) algorithm [18]. Abstractly, this algorithm decomposes two
sets of data to find low-rank, correlated structure between the data sets. For example, in the case of traffic,
suppose the objective is to predict traffic flow from 2pm to 8pm using traffic flow measurements up to time
10am. First, historical measurements of traffic flow up to 10am and of traffic flow between 2pm and 8pm
are collected. Next, the PLS algorithm decomposes the data into a set of pairs of latent structures which
provide low-rank approximations of the data sets with the additional requirement that each pair of latent
structures is highly correlated. Then, given real-time measurements of traffic flow for a particular day up
to 10am, future traffic from 2pm to 8pm is predicted by computing weights for the latent structures.

An important property of this approach is that the proposed traffic predictive control builds on existing
standard practices for traffic signal timing. In particular, we consider the common practice of signal timing
based on time-of-day plans which are preprogrammed to apply during certain periods of the day [4, Chapter
5]. Each plan is designed to accommodate a certain level of traffic flow at the intersection. Traditionally,
this level of traffic flow is determined based on averaged historical measurements; often, these measurements
span only a limited time window over several days and may have been collected years ago. Critically,
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averaged historical flow is unable to capture anomalous traffic patterns. In [19], a genetic algorithm selects
from among a set of predefined plans based on current conditions.

The primary contribution of this paper is a traffic predictive control scheme that uses a prediction of
future traffic flow to adjust the time periods for which the time-of-day plans are active and, additionally,
suggests predicted levels of traffic around which the timing plans should be designed. Our approach thus
does not depend on the exact algorithm that is used to determine timing plans (i.e., green splits) from traffic
flow, however, in our case study we employ a delay minimization policy. By ensuring that the proposed
control approach is well-aligned with existing practices, the proposed controller integrates well with existing
traffic control hardware which universally accommodate time-of-day timing plans and are often capable of
remote changes to these plans. Additionally, practitioners familiar with standard practices are likely to be
more receptive to the proposed traffic predictive control.

This paper is organized as follows: Section 2 describes the problem setup, available data, and details
of the case study. Section 3 analyzes structural trends in the traffic flow data using a principal component
analysis, which establishes the foundation for the prediction algorithm presented in Section 4. Section 5
proposes a traffic predictive control scheme that uses predictions of future traffic flow to adjust signal timing
plans. Section 6 provides concluding remarks, future directions of research, and plans for implementation.

2. Preliminaries

We first characterize the requirements and assumptions generally and then specialize to a specific test
site as our case study throughout the paper.

2.1. Available Data

We consider a single traffic intersection consisting of a set of M turn movements indexed 1 through M .
For example, a prototypical intersection consists of four approaches, each approach consisting of a left turn
movement, a right turn movement, and a through movement so that M = 12, as in the case below.

The flow rate of vehicles along each turn movement is measured and recorded once per interval of time
∆. Thus, T , (24 hours)/∆ measurements of the flow are made per movement per day. We assume
measurements are available for a total of D days.

For day d ∈ {1, . . . , D} and movement m ∈ {1, . . . ,M}, let xdm(t) denote the flow rate of vehicles
executing the m-th turn movement on day d during time interval t ∈ {1, . . . , T} in vehicles per hour (vph).
From this notation, we aggregate the measurements into vectors and matrices as follows:

xdm =
[
xdm(1) xdm(2) · · · xdm(T )

]ᵀ
, d = 1, . . . , D, m = 1, . . . ,M (1)

xd =
[
(xd1)ᵀ (xd2)ᵀ · · · (xdM )ᵀ

]
d = 1, . . . , D (2)

where (·)ᵀ denotes vector transpose. That is, xdm ∈ RT is the vector of flow measurements along the m-th
movement on day d and xd ∈ RTM is the vector of flow measurements along all M movements on day d.

We define the aggregated data measurement matrix as

X =

 (x1)ᵀ

...
(xD)ᵀ

 ∈ RD×(TM). (3)

Typically, TM � D so that X is a wide matrix. Table 1 contains a summary of the notation.
We consider measured turn movements to represent the exogenous demand on the system from the

external environment. In particular, it is assumed that measured turn movements are negligibly affected by
the choice of control action:

Assumption. Turn movement flows originate from an exogenous process and, in particular, are not influ-
enced by the choice of control actions at the intersection.
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Value (val) or
Dimension (dim)

Notation Meaning for Case Study

M Number of turn movements at the intersection 12 (val)
∆ Interval of time between subsequent measurement of turn move-

ment flows
15 min (val)

D Number of days 132 (val)
T Number of measurements per movement per day 96 (val)

xdm(t) Flow rate of the m-th turn movement on day d at time t in vehicles
per hour

1 (dim)

xdm Vector of T measurements of the flow rate of the m-th turn move-
ment on day d

96 (dim)

xd Vector of (TM) measurements of the flow rate on all movements
on day d

1152 (dim)

X Matrix of dimension D × (TM) containing measures of the flow
rate on all movements for all days

132× 1152 (dim)

Table 1: Summary of notation.

For this assumption to be reasonable, we must have the sampling period ∆ long enough so that the
impact of the control signal is negligible (e.g., if ∆ is 5 minutes and the cycle time of the signal actuation
at the intersection is 2 minutes, then a measurement xdm(t) may include between two and three periods of
actuation for movement m. Thus, ∆ is too short since xdm will exhibit undesired oscillations caused by the
control signal). Empirical evidence suggests that ∆ ≈ 15 minutes is reasonable for minimizing such effects.
Additionally, implicit in Assumption 2.1 is that vehicles do not reroute in response to changes in signal
actuation. The test site presented below is a large intersection for which few alternative routes exist. Thus,
the assumption that vehicles do not reroute is reasonable for our study.

2.2. Case Study Test Site

In this paper, we focus on a test site in Beaufort, South Carolina consisting of one intersection with four
approaches. Each approach consists of a left turn movement, a right turn movement, and a through turn
movement for a total of M = 12 movements. On the left of Figure 1 is a satellite image of the intersection
and on the right of Figure 1 is a schematic depiction of the lane configuration and sensor placements at
the intersection. A total of 44 magnetometer sensors provide real-time measurements of the movement of
vehicles through the intersection; the sensors are manufactured by Sensys Networks, Inc. [20]. By measuring
changes in magnetic field, the sensors are able to detect the presence of each vehicle at the intersection.
Detection events from sensors on approaching lanes with subsequent detection events on departure lanes
together with the signal phase are then used to determine the turn movement of each vehicle. These data
are aggregated every ∆ = 15 minutes to provide a measurement of the number of vehicles executing each
turn movement at the intersection. These data are reported in vehicles per hour. There are therefore a
total of T = 96 measurements of flow per movement per day. This high-resolution data acquisition system
provides a rich dataset for managing traffic at intersections [21].

The intersection consists of four approaches and four departures. A physically adjacent approach/departure
pair is referred to as a leg of the intersection. As is labeled in Figure 1b, the left leg is the Eastbound (EB)
leg, the right leg is the Westbound (WB) leg, the top leg is the Southbound (SB) leg, and the bottom leg is
the Northbound leg (NB). Each approach consists of a left turn (LT) movement, a through (T) movement,
and a right turn (RT) movement. We sometimes use, e.g., the notation “m = EB LT” to indicate the
movement index corresponding to the Eastbound left turn movement.

Traffic at the case study intersection throughout the week has similar profiles each Monday through
Thursday, and a different profile on Fridays, on Saturdays, and on Sundays. Figure 2 shows the average
flow at the intersection for each of these groups for data spanning December 2014 to July 2015. Eleven
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(a) (b)

Figure 1: Test site in Beaufort, South Carolina. (a) Image of the test site which consists of one intersection with four
approaches. Each approach consists of a left turn movement, a right turn movement, and a through turn movement. (b)
Schematic depiction of the lane configuration and placement of sensors at the intersection. Stopbar sensors are indicated with
red blocks, and departure lane sensors are indicated with blue blocks, and advance sensors placed upstream are indicated with
green block. The sensors are manufactured by Sensys Networks, Inc. and their measurements are fused to determine the turn
movement of each vehicle that transits the intersection.

days from this period are omitted due to missing measurements on these days. To ensure the figures are
legible, the plots do not include traffic flows originating from or bound for the leftmost (that is, EB) leg
(i.e., movements WB T, NB LT, SB RT, and all EB movements) because these movements contribute much
lower flow than the remaining movements (approximately 50–100 vph during peak periods).

The grouping depicted in Figure 2 is verified via standard k-means clustering for which, when sufficiently
many clusters are computed, the clusters tend to contain days from only one of these four groups, but for
more than four clusters, no meaningful division of the Monday–Thursday group is discernible.

3. Principal Components of Traffic Flow

In this section, we consider a low-rank decomposition of the measured traffic flow. This decomposition
is obtained via a principal component (PC) analysis of the data, and we will see that this simple approach
reveals much about the data. Furthermore, a PC analysis establishes the foundation for the PLS-based
traffic prediction strategy that is the focus of Section 4 and is the main contribution of this paper.

3.1. Computation of Principal Components

Recall our data matrix X constructed in (3) from the vectors xd, d = 1, . . . , D containing the turn
movement flow measurements for each movement over the course of each day d. Throughout the remainder
of the paper, we focus exclusively on data from December 2014 to July 2015, Monday–Thursday for a total
of D = 132 days. Define

x̄m =
1

D

D∑
d=1

xdm ∈ RT (4)

to be the mean measured flow along movement m over the course of a day, and define

x̄ =
[
x̄ᵀ1 . . . x̄ᵀM

]ᵀ
. (5)
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Figure 2: Average flow rates over a 7 month period from December 2014 to July 2015 for Monday–Thursday (132 days), Friday
(32 days), Saturday (34 days), and Sunday (34 days). Traffic originating from and bound for the West (i.e., EB LT, EB T, EB
RT, NB LT, SB RT, and WB T movements) are not shown since traffic volumes for these movements are much lower than the
remaining movements. Eleven days in this period contain missing measurements and are omitted from the analysis.
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Figure 3: Plots of mean flow for six turn movements along with the envelope containing all measured data for all days
Monday–Thursday.
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The top-left image of Figure 2 plots x̄m for the six indicated movements. Figure 3 shows separately
the mean measured flow for each of these six movements and additionally displays a shaded region that
represents the envelope containing xdm for all d = 1, . . . , D. Clearly, there is a large variation in measured
flow rate around the mean. Our first objective is to find a low-rank decomposition of the data to characterize
this variation. Specifically, given the rank parameter N ≥ 1, we wish to find a collection of N principal
components q1, q2, . . . , qN with each qi ∈ RTM and for each d = 1, . . . , D a vector of weights w(d) ∈ RN
with

w(d) =
[
w1(d) w2(d) . . . wN (d)

]ᵀ
(6)

such that

xd ≈ x̄+

N∑
i=1

wi(d)qi, (7)

that is, each of the 132 daily mean-centered measurement vectors xd − x̄ is approximately represented by
a linear combination of the principal components. If (7) holds, then we may effectively replace xd by its
weight vector w(d). As will be evident below, much of the day-to-day variation can be captured by a few
(three to five) principal components.

To make our search for principal components precise, let x̃d = xd − x̄ for all d = 1, . . . , D and define

X̃ =

 (x̃1)ᵀ

...
(x̃D)ᵀ

 = X − 1Dx̄
ᵀ (8)

where 1n denotes the all-ones vector of length n, and let

Q =
[
q1 · · · qN

]
∈ R(TM)×N (9)

W =

w
ᵀ(1)
...

wᵀ(D)

 ∈ RD×N (10)

where wᵀ(d) denotes the transpose of the weight vector w(d).
We reformulate (7) and specifically seek Q and W to minimize

||X̃ −WQᵀ||F (11)

where || · ||F denotes the Frobenius matrix norm. It is well known that a pair (W,Q) minimizing (11)
is obtained via the singular value decomposition of X̃. This decomposition results in q1, . . . , qN that are
orthonormal and are assumed ordered with respect to the (descending) order of the singular values of X̃.
In this way, q1 is the principal component that lies in the direction maximizing the explained variance of
the data, i.e., maximizes

∑D
d=1(q1)ᵀx̃d, q2 is the principal component that lies in the direction maximizing

the explained variance subject to the constraint that (q1)ᵀq2 = 0, etc. It is standard to assume without loss
of generality that each qi is of unit norm; here, we multiply each qi by a factor of 100 and therefore divide
each wi(d) by a factor of 100 to make the plots more intuitive and legible.

3.2. Case Study

In Figure 4, we plot the first four principal components of our dataset. Each qi is TM -dimensional,
however, for ease of comprehension, each principal component is plotted as M traces of length T , each
trace corresponding to one turn movement. From the figure, we observe identifiable trends in each of the
principal components, which are discussed next. We also note that the principal components exhibit some
high-frequency oscillation, especially in the AM peak period. This oscillation is generally of lower magnitude
than the main trends in the components and would likely be ameliorated with more data.
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Figure 4: The first four principal components of the traffic data. Each component is TM -dimensional but is plotted as M
traces of length T in the figures, each trace corresponding to one turn movement over 24 hours.
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Figure 5: Relative weight of the singular values obtained from a singular value decomposition of X̃. The singular values are
ordered by magnitude and the relative weight is a percent of the sum of all singular values. The plot indicates that a significant
portion of the variation in traffic flow is explained by the first few principal components of the decomposition.
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Figure 6: Scatter plots of weights for pairs of principal components. Each day is indicated by a small marker and the centroid
average for each label category is indicated with a large hatched marker. (a) The weight of component 1 versus the weight of
component 2 for each day, labeled by day of week. The centroid points for all four days are close, supporting the notion that
no further clustering by day-of-week is necessary. (b) The weight of component 1 versus the weight of component 2, labeled by
month. A large negative weight for component 1 indicates days when work/business traffic is low. (c) The weight of component
2 versus the weight of component 3 labeled by day. There is a relationship between day of week and the weight of component
3 but it is small compared to the spread of weights. (d) The weight of component 2 versus the weight of component 3 labeled
by month. Positive weights for component 3 indicate days when school is not in session.
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Figure 5 plots the singular values of X̃ normalized by the sum of all singular values. From the plot,
we see that a significant portion of the variation in the traffic flow is explained by the first few principal
components of the decomposition.

In Figure 6, we present scatter plots of the weights for pairs of components. In Figure 6a we plot the
weight of component 1 versus the weight of component 2 for each day where the data is labeled by the day
of the week. In Figure 6b we again plot the weight of component 1 versus the weight of component 2 but
now label the data by month. Similarly, Figure 6c and Figure 6d plot the weight of component 3 versus the
weight of component 2 and label the data by day and by month, respectively. Each marker corresponds to
one day and the centroid average for each label category is indicated with a large hatched marker.

We now discuss some clear trends that emerge from these plots. In Figure 6b, it is apparent that a
large negative weight for component 1 indicates a nonbusiness day; all of the labeled days are on or near
holidays in the U.S. except February 24 for which there were school and business closings due to weather
conditions, i.e., it was a snow day. This observation is congruous with the plot of principal component 1
in Figure 4 which corresponds to overall higher traffic volume, especially during the morning and afternoon
periods. Thus, a negative score for component 1 indicates lower traffic during these periods. Furthermore,
the morning and afternoon peaks for component 1 in Figure 4 correspond to reversed commute directions,
i.e., the morning peak for WB LT corresponds with the afternoon peak of NB RT, likewise for the NB T
peak in the morning and the SB T peak in the afternoon.

Approximately one mile to the north of the intersection is a school. In Figure 6d, we see that a positive
score for component 2 indicates days when school is not in session, which includes the entire months of June
and July except June 1–4, which are labeled. We additionally label dates when school is not in session due to
holidays or weather conditions; April 13–16 is the Spring Break holiday. Again, this observation is congruous
with the plot of principal component 2 in Figure 4, which exhibits two particularly telling features. First,
this component has narrow spikes around 7:30 and 15:30, corresponding to the school session. Second, the
WB LT movement clearly differs from the others; this is the only movement that is not going to or coming
from the north (i.e., Southbound leg) where the school is located.

Figure 6c indicates that the weight of component 3 generally increases from Monday to Thursday,
although the increase is modest compared to the spread of the weights for this component, and the centroids
in Figure 6a are closely clustered. Thus these plots generally support our decision to cluster Monday–
Thursday together.

Lastly, we observe longer term trends in the data. In Figure 6d, the score of component three generally
increases from December to May, the months when school is in session. This may correspond with seasonal
variations; as the plot of principal component 3 in Figure 4 suggests, a larger score for component 3 indicates
more traffic in the evening. The days get longer from December to May, which may explain higher evening
traffic. In Figure 6b, there is also an increase in the score of component 1 per month for all months December
to July, although this trend is somewhat obscured by the axis scaling. This suggests that for the entire data
set, there is a general increase in business-related traffic, which may be seasonal or may reflect improving
economic conditions from December 2014 to July 2015.

3.3. Discussion

By its nature, a PC-based approach offers a more nuanced interpretation of the data than cluster-based
approaches, as we saw above, since it indicates the degree to which a set of measurements exhibits a particular
component. For example, rather than simply identifying that traffic patterns are different in the Winter
season than in the Spring season (which clustering may reveal), we are able to quantify this difference.
Furthermore, a PC-based approach retains the ability to identify categorical differences in the data. For
example, our analysis indicates that traffic patterns for days when school is in session are qualitatively
different than when school is not in session.

We also note that in a PC-based approach the components frequently offer an interpretation or expla-
nation for the observed trends. For example, we could associate each of the observed trends in the scatter
plots of Figure 6 with an intuitive hypothesis regarding the variation in traffic movement flows based on
the principal components in Figure 4. We note that the trends observed above are unique for the avail-
able dataset. This means that the principal components and corresponding interpretations are unlikely to
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transfer to other datasets obtained from other traffic intersections or networks. An interesting direction for
future research is to study the transferability of prediction and learning algorithms to other datasets.

4. Traffic Prediction from Low-Rank Structure

Suppose it were possible to obtain an estimate of the weight vector w(d) for some day d ∈ D by using
measurements only up to some time T ∗ < T , that is, from the vector

zd =
[
(zd1)ᵀ . . . (zdM )ᵀ

]ᵀ ∈ RT
∗M (12)

where

zdm =
[
xdm(1) . . . xdm(T ∗)

]ᵀ ∈ RT
∗

m = 1, . . . ,M. (13)

Then it would be possible to predict traffic flow for times t > T ∗ by constructing an estimate of xd as
x̂d = Qŵ(d) (see (7)) where x̂d is our estimate of the traffic flow for the entire day and ŵ(d) is our estimate
of the weight vector w(d).

A naive approach to estimating w(d) using measurements up to time T ∗ is to project the vector zd

onto the corresponding truncation of each qi. However, this approach is unreliable because the PC-based
decomposition uses data for the whole day and does not consider that we wish to make a prediction after time
T ∗. For example, consider principal component 3 in Figure 4 which, as argued in Section 3.2, corresponds
with increased/decreased traffic in the evening. This component lies largely in the direction corresponding
to flow measurements later in the day and thus it is difficult to predict w3(d) given zd for T ∗ early in the
day.

To overcome this limitation, we propose computing a set of components that simultaneously explains the
variation in the measured data before time T ∗ and correlates with a second set of components that explains
the variation in the traffic flow data measured after time T ∗. To make this precise, we define the following
vector of flow measurements after time T ∗, complementary to zd defined in (12)–(13):

yd =
[
(yd1)ᵀ . . . (ydM )ᵀ

]ᵀ ∈ R(T−T∗)M (14)

where

ydm =
[
xdm(T ∗ + 1) . . . xdm(T )

]ᵀ ∈ R(T−T∗), m = 1, . . . ,M. (15)

Let

z̄ =
1

D

D∑
d=1

zd, ȳ =
1

D

D∑
d=1

yd (16)

and define

Z =

 (z1)ᵀ

...
(zD)ᵀ

 , Y =

 (y1)ᵀ

...
(yD)ᵀ

 (17)

Z̃ = Z − 1D z̄
ᵀ, Ỹ = Y − 1Dȳ

ᵀ. (18)

The matrix Z collects all flow measurements up to time T ∗ and the matrix Y collects all flow measure-
ments after time T ∗ onward to the final time T . The matrices Z̃ and Ỹ are mean-centered versions of Z
and Y . Note that Z and Y partition X, and, similarly, Z̃ and Ỹ partition X̃.

Our objective is to find a collection of predictor components p1, p2, . . . , pN with each pi ∈ RT∗M ; a
collection of predicted components c1, c2, . . . , cN with each ci ∈ R(T−T∗)M ; and, for each d = 1, . . . , D, a
vector of weights ω(d) ∈ RN with

ω(d) =
[
ω1(d) ω2(d) . . . ωN (d)

]ᵀ
(19)
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such that

zd ≈ z̄ +

N∑
i=1

ωi(d)pi (20)

yd ≈ ȳ +

N∑
i=1

ωi(d)ci. (21)

Let

ωi =
[
ωi(1) ωi(2) . . . ωi(D)

]ᵀ ∈ RD for all i = 1, . . . , N. (22)

The use of (20)–(21) for prediction is immediately apparent: if we are able to determine the weights
ω(d) using only zd, that is, measurements up to time T ∗, then we are able to predict traffic flow after time
T ∗ using the same weights and the collection of predicted components ci, i = 1, . . . , N . We formalize this
prediction procedure in Section 4.2.

4.1. The Projection to Latent Structures Algorithm

To compute the collection of predictor and predicted components, we use a statistical technique called
projection to latent structures (PLS), also known as partial least squares. Given two sets of measured
variables (e.g., measured traffic flow over two time intervals) Z and Y , the PLS algorithm identifies low-
rank approximations of both sets as in (20)–(21) in such a way that the low-rank components are highly
correlated. The low-rank approximations are then used for prediction. While the PLS algorithm is a
general statistical tool, it has particularly been developed in the domain of chemometrics beginning with
the work of Wold et. al. [22] and has since been applied to a wide range of chemical data analysis problems.
References [23], [24], and [25] provide early overviews of the PLS algorithm with emphasis on applications
to chemometrics, and references [18] and [26] provide more recent tutorials on the PLS algorithm.

The PLS technique is iterative; it first computes a pair of components (p1, c1) from the data matrices Z̃
and Ỹ , then the algorithm deflates the data matrices by removing the contribution of this pair of components.
Next, a new pair (p2, c2) is computed from the updated data matrices, etc. To determine the first pair (p1, c1),
we solve the following optimization problem:

(r∗, s∗) = arg max
r,s

(Z̃r)ᵀ(Ỹ s) (23)

such that ||r||2 = 1 (24)

||s||2 = 1. (25)

The interpretation of (23) is as follows: we wish to find directions r∗ ∈ RT∗M and s∗ ∈ R(T−T∗)M to
maximize the empirical covariance of the score vectors u = Z̃r∗ ∈ RD and v = Ỹ s∗ ∈ RD. These score
vectors contain the projection of each day’s data zd and yd onto the directions r∗ and s∗. We define the
first score component vector

ω1 ,
1

||Z̃r∗||2
Z̃r∗. (26)

Note that r∗ and s∗ are the first left and right, respectively, singular vectors of Z̃ᵀỸ . To obtain p1 we
project Z̃ onto ω1, and, similarly, to obtain c1 we project Ỹ onto ω1:

p1 = Z̃ᵀω1 (27)

c1 = Ỹ ᵀω1. (28)
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Note that our treatment of the data matrices Z̃ and Ỹ is asymmetric, that is, ω1 is obtained from Z̃ and r∗.
This asymmetry is because we ultimately wish to use the scores and components for prediction. We next
deflate the data matrices Z̃ and Ỹ using the first score vector ω1 and the computed components:

Z̃+ = Z̃ − ω1p1 (29)

Ỹ + = Ỹ − ω1p1. (30)

Above, Z̃+ and Ỹ + are the updated data matrices. To compute ω2, p2, and c2 we repeat the above procedure,
replacing Z̃ and Ỹ with their updated versions Z̃+ and Ỹ +. We repeat this process until we obtain N score
vectors and components where N is a design parameter. We gather the computed scores and components:

Ω =
[
ω1 . . . ωN

]
∈ RD×N (31)

P =
[
p1 . . . pN

]
∈ R(T∗M)×N (32)

C =
[
c1 . . . cN

]
∈ R((T−T∗)M)×N . (33)

We then have Z̃ ≈ ΩP ᵀ and Ỹ ≈ ΩCᵀ.
Above, to compute r∗ and s∗, one approach is to first multiply Z̃ᵀ and Ỹ and then compute the singular

value decomposition of the product, and this operation is performed for each iteration. For traffic flow
measurements, it is typically the case that D � min{T ∗M, (T − T ∗)M}, thus Z̃ᵀỸ is a large matrix of
dimension T ∗M × (T −T ∗)M and computing its singular value decomposition is computationally expensive.
There exists efficient implementations of the PLS algorithm that use the kernel matrices Z̃Z̃ᵀ and Ỹ Ỹ ᵀ to
compute the predictor and prediction components by finding the principal eigenvector and eigenvalue pair
of a (much smaller) D ×D matrix instead [27]. The PLS algorithm is described by (23)–(33).

4.2. Prediction From Latent Structures

Once the predictor and predicted components have been computed, we are able to construction a pre-
diction of future traffic flow given sample measurements. To this end, let

zs ∈ RT
∗M (34)

denote measured traffic flow for the M turn movements up to time T ∗. Our objective is to use zs along
with the predictor and predicted components calculated from historical data to predict traffic flow for our
sample day for time periods after T ∗. To do so, we first calculate ω̂, a vector of scores for the sample day.
As above, let z̄ and ȳ denote means of historical traffic flow up to time T ∗ and after T ∗, respectively. The
score vector is computed as

ω̂ =
(
(zs − z̄)ᵀ(P ᵀ)†

)ᵀ ∈ RN (35)

where (P ᵀ)† denotes the Moore-Penrose pseudoinverse of P ᵀ. Then

ŷs = ω̂ᵀCᵀ + ȳ ∈ R(T−T∗)M (36)

is the prediction of traffic flow after time T ∗. Combining (35) and (36), we obtain one succinct equation for
prediction:

ŷs = (zs − z̄)ᵀ(P ᵀ)†Cᵀ + ȳ. (37)

Notice that after P ᵀ and Cᵀ are computed via the PLS algorithm and the pseudoinverse of P ᵀ is computed
and stored, predicting traffic flow given a sample vector of measurements requires only matrix multiply
operations and is thus computationally easy.
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4.3. Extensions and Case Study

We now discuss a few immediate extensions to the PLS prediction algorithm presented above that we
utilize in Section 5. Firstly, we assume above that our objective is to predict flow measurements for all
time periods beyond time T ∗ up to the end of the day, T . However, our objective may be to predict traffic
flow for a shorter horizon or for a period not immediately subsequent to the measurement period. For
example, we may wish to predict traffic during the evening from observed traffic flow in the morning. We
can accommodate this scenario by appropriately truncating the matrices Z and Y above.

Secondly, we assume above that the interval of time between subsequent flow measurements, ∆, is the
same for the measured data as well as the prediction. However, it is straightforward to accommodate
differences in these intervals, or even nonuniform intervals so long as the measurement times are the same
for each day. For example, we may wish to use flow measurements at 15 minutes intervals up to time T ∗ to
predict traffic flow at one hour intervals subsequently.

To demonstrate the PLS prediction algorithm as well as these extensions, we return to our case study.
We let T ∗ correspond to 10:00 and consider the case when flow measurements are available up to T ∗ in
15-minute increments and available thereafter in 1-hour increments. Figure 7 shows the first three predictor
and predicted components generated from the dataset. To emphasize the different measurement intervals,
individual data points are indicated with a solid marker point. Comparing Figure 7 to Figure 4, we see that
each predictor/predicted component pair of Figure 7 resembles the corresponding principal component of
Figure 4. The differences reflect that the predictor and predicted components are calculated to maximize
their correlation.

Figure 8 illustrates the use of the PLS algorithm for predicting traffic flow. We consider three unusual
days from our data set: February 24, which, as described above, experienced winter weather resulting in
school closures; July 2, which is a Thursday and preceded a long holiday weekend in the U.S.; and January
1, which is a significant holiday and resulted in dramatically different traffic patterns. As a demonstration,
we only plot results for two of the twelve movements; the first (respectively, second) row of Figure 8 plots
flow measurements and predictions for the SB through movement (respectively, NB right turn movement).

The blue trace shows the average flow over the fourteen one-hour periods from 10:00 to midnight, the
gold trace shows the actual flow on the given days, and the green trace shows the flow as predicted using
(37) with four predictor/predicted component pairs (three of which are shown in Figure 7). To compute the
prediction, we employ leave-one-out cross validation whereby, for each unusual day, the predictor/predicted
components are computed from the dataset excluding the sample day of interest. From the plots, we see
that the PLS algorithm correctly predicts the below-average flow on February 24 and the above-average flow
on July 2 where the algorithm nearly exactly predicts the peak flow for both movements between 17:00 and
18:00. In addition, the algorithm adeptly predicts the well below-average flow on January 1 for which traffic
conditions greatly differ from the norm. Thus, while the PLS algorithm is ultimately a linear prediction
scheme as is apparent in (37), the technique ably accommodates significant variation in the traffic flow.

To quantitatively assess the quality of the prediction, we compute a prediction for each of 132 days in
the dataset using leave-one-out cross validation and compute the one-norm distance from the prediction to
the actual flow measurements. That is, for each day d = 1, . . . , D, we compute the prediction error Edpred as

Edpred = ||yd − ŷd||1 =

M∑
m=1

∑T
t=T∗+1

|ydm(t)− ŷdm(t)| (38)

where ŷd is the predicted traffic flow on day d computed as in Section 4.2. We use the one-norm as our
distance metric because it corresponds to the absolute total difference of the number of vehicles that are
measured versus predicted at the intersection along each movement. Likewise, we define the baseline error
to be the difference between the average flow measurements and the actual flow measurements1:

Edbase = ||yd − ȳ||1. (39)

1Since we employ a cross validation scheme, ȳ will change slightly for each day because we remove a different set of
measurements from the dataset in each case.
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Figure 7: Projection to latent structures algorithm. We take T ∗ corresponding to 10:00 and consider the case for which
flow measurements are available in 15-minute increments up to 10:00 and available in 1-hour increments thereafter. The left
column of plots contains the first three predictor components, the right column of plots contains the corresponding prediction
components.

Figure 9 is a scatter plot of the normalized error decrease (Edbase−Edpred)/Edbase versus the baseline error

with no prediction Edbase, for each day d = 1, . . . , D. Excluded are December 24 and January 1 which both
have baseline errors exceeding 14 000 with prediction errors less than 5 500, an error decrease of over 60%.
Nearly all of the points (113 out of 132) correspond to positive error decreases indicating that the prediction
almost always is an improvement over the baseline average. The circles (respectively, crosses) are those days
for which the total flow volume throughout the day is below (respectively, above) average. We see that the
PLS algorithm performs well in both cases. For most days, the improvement in error is approximately 10%
to 20%. However, for those days for which the baseline error is high, the improvement is higher and can
be as high as 50% to 60%, and this holds for both those days for which traffic is below average and those
days for which traffic is above average. Thus for days that differ significantly from the average, the PLS
prediction is especially accurate.

There is one particularly anomalous point for which the baseline error is high, approximately 7 000, but
the normalized error decrease is not significant and is in fact slightly negative. It appears that, on this
day, total traffic volume was only moderately higher than normal but traffic flow was significantly above
average for some movements and below average for other movements, although the cause is unclear. While
the PLS algorithm was unable to predict this difference, we observe that the PLS algorithm did not result
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Figure 8: Example prediction results on three unusual days for two movements. On February 24, the algorithm correctly
predicts below average flow caused by winter weather and closed schools. On July 2, the algorithm correctly predicts above
average flow caused by the subsequent holiday weekend. The algorithm additionally predicts the well below average traffic on
the holiday January 1 which deviates substantially from the average flow.

in a prediction error that was significantly worse than the baseline error.

5. Traffic Predictive Control

How do we utilize traffic flow predictions based on low-rank structure to improve traffic control? We
first review a common technique for programming traffic signal controllers and describe an approach for
optimizing this technique using only the average flow measurements. We will then use traffic predictions
from the PLS algorithm to improve upon this approach. A primary goal is to ensure the algorithm is easily
applied to existing hardware and well-aligned with conventional traffic control practices.

5.1. Time-of-Day Signal Operation

A common approach to traffic control supported by nearly all traffic control hardware is time-of-day
(TOD) scheduling [4, Chapter 5] whereby a pre-defined control plan is applied during specified periods of
the day. For example, a pre-defined plan may be specified for 6:00 to 9:00, and a different plan may be
specified for 9:00 to 13:00, etc. Typically, the TOD periods are obtained via limited data collection at the
intersection or simply by prior experience.

Once the TOD periods have been selected, timing parameters are designed for each period and applied to
the controller, constituting a TOD plan. Typical timing parameters include the cycle time of the intersection
and green time allocations for the turn movements. A TOD plan may be completely fixed or it may be
actuated in which case the presence or absence of queued vehicles extends green time allocations by a certain
amount or leads to early termination of a phase actuation.

The timing parameters for a given TOD period are determined by expected turn movement flows at
the intersection. Since the TOD plan is applied at fixed periods and the parameters are fixed, the plan
is designed around a set of nominal turn movement flows, for example, average turn movement flows over

16



0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Baseline error with no prediction, Ed
base [veh]

−20%

−10%

0%

10%

20%

30%

40%

50%

60%

70%
E

rr
or

de
cr

ea
se

,(
E
d ba

se
−
E
d pr

ed
)/
E
d ba

se

Below average flow
Above average flow

Figure 9: Scatter plot of prediction error. The plot shows baseline error Ed
base versus the normalized error decrease (Ed

base −
Ed

pred)/Ed
base for each day d = 1, . . . , D. Days with below average (respectively, above average) flow are indicated with circles

(respectively, crosses). For clarity, the plot excludes December 25 and January 1 which experience error decreases exceeding
60% with baseline errors exceeding 14 000.

the TOD period. Methods for determining desirable timing parameters given nominal turn movement flows
have a long history going back at least to the seminal work of [28] and is not the focus of this paper.
Instead, we assume that what is required for signal timing is only an estimation of the turn movement flows
during a TOD period, for which any signal timing optimization scheme may be employed. This approach is
reasonable if traffic flow does not deviate excessively from these estimated flows during a TOD period. In
the following section, we suggest an algorithm for identifying TOD periods that minimize such deviations.

5.2. Optimal Time-of-Day Segmentation

We focus on the problem of determining TOD periods and representative turn movement flows for each
period. In the sequel, we will consider adjusting the TOD periods and representative turn movement flows
based on predictions using the PLS algorithm.

To this end, we now present an algorithm for optimally segmenting the 24-hour day into TOD periods.
The intuitive idea is to identify segmentation times that minimize the variability in turn movement flows
within each TOD period so that a particular fixed TOD plan works well throughout the period. For example,
turn movement flows may remain relatively steady through the morning period but change substantially in
the afternoon, requiring a different TOD plan. Increasing the number of TOD periods reduces variability
in any given period, but there are practical limitations to the number of TOD periods that may employed
at an intersection. For example, it typically takes several cycles totaling up to ten minutes to fully switch
from one TOD plan to another; during this intermediate time, mobility at the intersection may be reduced.
Furthermore, excessive changes to timing plans may confuse drivers. Traffic intersections commonly employ
up to seven TOD plans throughout the day.

Approaches for TOD segmentation proposed in the literature include randomized clustering algorithms
[29, 30], heuristic genetic algorithms [31], and simulation based algorithms [32]. To improve performance,
the paper [30] suggests explicitly incorporating time as a variable in determining the clusters. Here, we
consider an optimal segmentation approach suggested for generic data sets in [33] and adapt it to the
context of traffic flow measurements. Like [30], this approach explicitly accounts for time when identifying
clusters. However, our approach is not based on k-means clustering and is able to identify optimal clusters
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in computational time quadratic in the number of time steps. In contrast, k-means clustering requires
exponential computational time, although efficient heuristics exist.

Suppose we wish to obtain S TOD periods for some S > 1. We consider the equivalent problem of
choosing S − 1 segmentation times τ1, τ2, . . . , τS−1 with each τi ∈ {1, 2, . . . , T − 1} satisfying

τ1 < τ2 < . . . < τS−1 (40)

so that

{τi−1 + 1, τi−1 + 2, . . . , τi} (41)

defines the ith TOD period for i ∈ {1, . . . , S}, with τ0 := 0 and τS := T .
To assess the quality of a given segmentation (τ1, . . . , τS−1), we consider a vector of turn movement flows

x ∈ RTM throughout the day and define the cost of a time segment (ta, ta + 1, . . . , tb) given these flows for
some ta ≤ tb as follows:

Cost = min
µ∈RP

F (ta, tb, x, µ) (42)

where µ ∈ RP is a parameter vector of dimension P ≥ 1 and F (ta, tb, x, µ) is a positive function that is
convex in µ. We call F (ta, tb, x, µ) the fit of x with the parameter vector µ on time segment (ta, ta+1, . . . , tb).
In this way, F (τi−1 + 1, τi, x, µ) is the fit of x with µ on TOD period i. For tb < ta, we define the fit F to
be 0. To make this concrete, in this paper, we assume P = M so that µ ∈ RM and take

F (ta, tb, x, µ) =

tb∑
t=ta

Φ(x(t), µ) (43)

for Φ : RM ×RM → RM≥0 a positive function that is convex in its second argument where RM≥0 = {x ∈ RM |
xm ≥ 0 for all m = 1, . . . ,M}.

For period i, let µi ∈ RM denote the minimizer of (42) with ta := τi−1 + 1 and tb := τi. We interpret µi
as a vector of flows that suitably represents the turn movement flows throughout the ith period and is used
to determine the signal timing parameters. For example, if

Φ(x, µ) = (x− µ)ᵀ(x− µ), (44)

then the minimizing µi is given by µi = 1
τi−τi−1

∑τi
t=τi−1+1 x(t), that is, µi is the average flow for the

movements during period i.
Choosing Φ(x, µ) as in (44) penalizes the difference between the turn movement flow and the correspond-

ing value in the parameter vector. This choice equally penalizes turn movement flows that are above and
below the parameter vector flow. However, it is often case that flows which exceed the parameter vector
result in worse performance degradation at the intersection than flows which are less than the parameter
vector. For this reason, we propose an asymmetric function

Φ(x(t), µ) =

M∑
m=1

ϕ(xm(t), µm) (45)

ϕ(a, b) =

{
C(a− b)2 if a > b

(a− b)2 else
m = 1, . . . ,M (46)

for some choice C ≥ 1 where µm denotes the mth entry of µ. For C = 1, we recover (44).
Finally, we choose segmentation times to minimize the sum of costs for all TOD periods:

(τ1, . . . , τS−1) = arg min
t1,...,tS−1

S∑
i=1

min
µ
F (τi−1 + 1, τi, x, µ). (47)
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Figure 10: Optimal segmentation of average traffic flow over the day. (a) Optimal segmentation allowing for four time-of-day
periods. (b) Optimal segmentation allowing for seven time-of-day periods.

Convexity of Φ ensures that (42) is a convex optimization problem. Assuming that solving (42) requires
computational time of Γ(M), then (47) is solved in time O(M2Γ(M)) [33]. We note that our segmentation
approach prevents oscillations in implemented timing plans since TOD periods are required to be contiguous
intervals of time, in contrast to some clustering-based segmentation algorithms in the literature that do not
account for contiguity in the TOD periods and for which the implemented signal timing plans have been
observed to oscillate.

We return to our case study dataset and apply the TOD segmentation algorithm above where we take ϕ
as defined in (46) with C = 2. We first take x to be the mean flow across the dataset as defined in (4)–(5),
that is, we first consider x := x̄ in (42)–(47). This constitutes the nominal TOD periods. In Figure 10, we
plot the results of the optimal segmentation problem (47) with S = 4 and S = 7 for this nominal case. In
general, we see that the segmentation algorithm chooses segmentation times corresponding to when turn
movement flows are changing rapidly, resulting in intuitive divisions of the day. For example, with seven
TOD periods, we clearly obtain the morning peak period from 7:00 to 9:00 and an afternoon peak period
from 14:45 to 18:15.

5.3. Predictive Time-of-Day Plans

The segmentation algorithm presented in Section 5.2 where we use the mean flow x̄ is a method for
optimally determining nominal TOD periods, an important component of conventional traffic control. Thus
this is a useful innovation in itself that can be immediately implemented with existing hardware, but it does
not leverage the traffic prediction algorithm developed in Section 4. Here we propose a method for extending
this idea to allow real-time adjustments to TOD periods and TOD plans based on predicted traffic flow. The
key idea is to enable limited and intuitive modifications to the standard TOD scheduling paradigm so that
these methods can be implemented with modest modification to existing hardware, and traffic engineers are
able to easily envision the benefits of traffic predictive control and therefore more easily adopt this approach.

To this end, we assume a set of nominal segmentation times τ1, . . . , τS−1 have been chosen according
to (47), defining a set of S TOD periods. Additionally, a set of parameter vectors µ1, . . . , µS are obtained
for each TOD period as the minimizers of (42). These TOD periods and parameter vectors constitute the
nominal intersection timing plans.

We now suggest the following intuitive predictive traffic control scheme: throughout the day, online mea-
surements are used to predict future traffic flow. When the current time approaches a nominal segmentation
time, the predicted traffic flow is used to decide if the intersection controller should switch to a new TOD
plan earlier or later than the nominal segmentation time.

To formalize this idea, let xs ∈ RTM denote the traffic flow for a particular sample day and suppose that
the current time is t so that

xmeas :=
[
xs(1) xs(2) . . . xs(t)

]
∈ RtM (48)
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is the vector of currently available time measurements. We let

SegmentWindow(τ) ⊆ {1, 2, . . . , T} (49)

denote the window of times around a nominal segmentation time τ for which it is acceptable to switch early
or late to a new TOD period. That is, the signal controller has the flexibility to switch from TOD period
i to TOD period i + 1 at any time within SegmentWindow(τi) and the switch must occur within this
window. The acceptable window is a design parameter, e.g., it may be chosen by a traffic engineer to meet
other system requirements. As an example, if the user-selected criterion allows for switching to a new TOD
plan up to 45 minutes before or after the nominal segmentation time, we have SegmentWindow(τ) =
{τ − 3, τ − 2, . . . , τ + 2, τ + 3} when ∆ = 15 minutes.

Now suppose that the current TOD period is i, the currently active parameter vector is µ∗i ∈ RM , and
that t ∈ SegmentWindow(τi) so that it is allowable to switch to the (i+ 1)-th TOD period at the current
time t. To determine if switching is desirable, we use a prediction of future traffic flow to determine if it is
possible to achieve a lower segment cost by choosing a different segmentation time. To this end, let

ŷ =
[
ŷ(t+ 1) ŷ(t+ 2) . . . ŷ(τi+1)

]
∈ R(τi+1−t)M (50)

be a prediction of traffic flow from time t+1 to time τi+1, the nominal ending time for the next TOD period.
We wish to find the segmentation time which minimizes the predicted remaining segment cost for the i-th
TOD period and the predicted segment cost for the (i+ 1)-th TOD period. We thus compute

topt = arg min
u∈SegmentWindow(τi)

s.t. u≥t

(
F (t+ 1, u, ŷ, µ∗i ) + min

µ
F (u+ 1, τi+1, ŷ, µ)

)
. (51)

We interpret topt as the optimal time to switch from TOD period i to TOD period i + 1 (recall that for
u < t+ 1, we have F (t+ 1, u, ŷ, µ∗i ) = 0). If topt = t, then it is best to switch to the (i+ 1)-th TOD period
immediately. In this case, we define

τ∗i = topt (52)

µ∗i+1 = min
µ
F (u+ 1, τi+1, ŷ, µ) (53)

as the predictive segmentation time for the i-th period and the predictive parameter vector for the (i+ 1)-th
TOD period. We then repeat the process for the next TOD segmentation time. However, if topt > t, then
it is optimal to continue with the current TOD period, delaying the switch to the (i + 1)-th period. Time
advances to t + 1 and the process repeats, where we update the measurement vector and recompute the
predicted flow measurements. In particular, this recomputation implies that topt updates based on the latest
measurements. To initialize this approach, we define µ∗1 := µ1, that is, the parameter vector for the first
TOD period is assumed to be the nominal parameter vector µ1 since no measurements are available yet that
would alter this prediction.

Finally, we highlight one particularly important possible modification to the above procedure. In com-
puting topt in (51), we assumed that we are able to establish a new parameter vector for the (i+ 1)-th TOD
period, however due to constraints on the traffic signaling hardware or the preference of practitioners, this
may not be possible. For example, the traffic signal controller may allow variability in the segmentation
times defining TOD periods but not allow the timing plans themselves to be altered. In this case, we choose
a new segmentation time assuming that the parameter vector remains fixed. We modify (51) as

topt = arg min
u∈SegmentWindow(τi)

s.t. u≥t

(F (t+ 1, u, ŷ, µi) + F (u+ 1, τi+1, ŷ, µi+1)) . (51b)

Algorithm 1 summarizes this traffic predictive approach. We now prove a desirable consistency property
of this algorithm. In particular, we show that, for the fit function given in (46), if the predicted traffic
flow is equal to the nominal traffic flow, then the segmentation times and parameter vectors obtained via
Algorithm 1 are equal to the nominal segmentation times and parameter vectors. Below, we assume for
simplicity that minimizing arguments are unique.
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Proposition 1. Consider times τa < τb < τc defining two TOD periods {τa+1, . . . , τb} and {τb+1, . . . , τc},
and consider the fit function given in (46). Assume that τb is the optimal time to switch from the first
TOD period to the second TOD period when the flow is x ∈ RTM , and suppose µ1 and µ2 are the optimal
parameter vectors for these periods, that is,

(τb, µ1, µ2) = arg min
τ̃b,µ̃1,µ̃2

F (τa + 1, τ̃b, x, µ̃1) + F (τ̃b + 1, τc, x, µ̃2). (54)

Then, for all t ∈ {τa, . . . , τb},

(τb, µ2) = arg min
τ̃b,µ̃2

F (t+ 1, τ̃b, x, µ1) + F (τ̃b + 1, τc, x, µ̃2). (55)

Proposition 1 states that, if the measured data coincides with x, τb remains the optimal time to switch
TOD periods even if the segmentation time and parameter vector of the second TOD is recomputed at time
t ≥ τa.

Proof. Consider t ∈ {τa, . . . , τb}. Let

(τ ′b, µ
′
2) = arg min

τ̃b,µ̃2

F (t+ 1, τ̃b, x, µ1) + F (τ̃b + 1, τc, x, µ̃2). (56)

Observe that

F (t1, t2, x, µ) = F (t1, t3, x, µ) + F (t3 + 1, t2, x, µ) for all t1, t2, t3 (57)

for any x, µ. Thus, by (54), we have that

F (τa + 1, τb, x, µ1) + F (τb + 1, τc, x, µ2) = F (τa + 1, t, x, µ1) + F (t+ 1, τb, x, µ1) + F (τb + 1, τc, x, µ2) (58)

≤ min
µ̃1,µ̃2

F (τa + 1, τ ′b, x, µ̃1) + F (τ ′b + 1, τc, x, µ̃2). (59)

It follows that

F (t+ 1, τb, x, µ1) + F (τb + 1,τc, x, µ2) (60)

≤ min
µ̃1,µ̃2

F (τa + 1, τ ′b, x, µ̃1) + F (τ ′b + 1, τc, x, µ̃2)− F (τa + 1, t, x, µ1) (61)

= min
µ̃1

F (τa + 1, τ ′b, x, µ̃1)− F (τa + 1, t, x, µ1) + min
µ̃2

F (τ ′b + 1, τc, x, µ̃2) (62)

≤ F (t+ 1, τ ′b, x, µ1) + min
µ̃2

F (τ ′b + 1, τc, x, µ̃2) (63)

where the last inequality follows because

min
µ̃1

F (τa + 1, τ ′b, x, µ̃1) ≤ F (τa + 1, t, x, µ1) + F (t+ 1, τ ′b, x, µ1). (64)

Then (55) follows from (56) and (60)–(63).

The form of the fit function given in (46) ensures (57) in the proof of Proposition 1. Thus, the proposition
may fail to hold for alternative choices of fit functions.

Corollary 1. If ŷ =
[
xs(t+ 1) xs(t+ 2) . . . xs(τi+1)

]
, that is, the predicted traffic flow is equal to the

measured traffic flow, then τi = τ∗i and µi = µ∗i for all i = 1, . . . , S, that is, the predictive segmentation
times and predictive parameter vectors are equal to the nominal segmentation times and parameter vectors.
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1: function PredictiveTrafficControl((τ1, . . . , τS−1), (µ1, . . . , µS), xs)
2: inputs: (τ1, . . . , τS−1), nominal segmentation times defining S TOD periods
3: (µ1, . . . , µS), parameter vectors for the TOD periods
4: xs ∈ RTM , measured traffic flow, available in real-time

5: outputs: (τ∗1 , . . . , τ
∗
S−1), predictive segmentation times

6: (µ∗1, . . . , µ
∗
S), predictive parameter vectors

7: µ∗1 := µ1

8: i := 1 . Current TOD period
9: for t = 1, 2, . . . , T do . Current time

10: xmeas :=
[
xs(1) xs(2) . . . xs(t)

]
∈ RtM . Flow measurements up to current time

11: if t ∈ SegmentWindow(τi) then
12: ŷ = Predict(xmeas, t+ 1, τi+1) . Predicted traffic flow up to end of next TOD period
13: topt := according to (51) or (51b) . Best time to switch according to current prediction
14: if topt = t then
15: τ∗i := topt

16: µ∗i+1 :=

{
arg minµ F (τ∗i + 1, τi+1, ŷ, µ) if using (51)

µi+1 if using (51b)

17: i := i+ 1
18: end if
19: end if
20: end for
21: return ((τ∗1 , . . . , τ

∗
S−1), (µ∗1, . . . , µ

∗
S))

22: end function

23: function Predict(xmeas, ta, tb)
24: inputs: xmeas ∈ RtM , measured traffic flow up to time t
25: ta and tb, start and end times for traffic flow prediction

26: output: ŷ ∈ R(tb−ta+1)M , traffic flow prediction from time ta to time tb
27: summary: Using historical data and the prediction scheme developed in Section 4, predict traffic
28: flow from time ta to time tb using real-time measurements xmeas.

29: end function

Algorithm 1: Algorithm for determining predictive segmentation times and predictive parameter vectors
given a set of nominal segmentation times and vectors as well as a vector of current flow measurements.
The algorithm runs online as time progress from t = 1 to t = T .

From a computational perspective, Algorithm 1 consists of an online component which computes the
optimal predictive segmentation time for each TOD period as well as an offline component which processes
historical data to obtain the PLS components for the predictions required in line 12. For the offline compo-
nent, we compute PLS predictor/predicted components for each possible segmentation time. Thus, suppose
|SegmentWindow(τ)| = W for all τ for some W > 0, that is, there are W allowable segmentation times
around each nominal segmentation time. Then we execute the PLS algorithm a total of SW times. While
this process is potentially computationally taxing, it can be accomplished offline by processing historical
data. To obtain ŷ in line 12 of Algorithm 1 requires only matrix multiplication using the PLS components
that are computed offline and stored. Next, computing topt requires solving at most W convex optimization
problems if using (51), or W evaluations of the fit function F if using (51b). Solving the convex optimization
problem is typically fast, as are evaluations of F , thus topt is easily computed within any practically sized
time step ∆, affording ample time to decide predictive segmentation times and parameter vectors online.
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Figure 11: Example of traffic predictive control for two unusual days. The traffic predictive controller computes predictive
segmentation times and adjusts the TOD periods to accommodate the predicted traffic flow, which deviates from the nominal
average computed over the dataset. For clarity, the plots show total traffic flow through the intersection, summed over the
twelve movements, however the prediction algorithm considers separate flow measurements for each movement.

5.4. Case Study

We assume nominal segmentation times for seven TOD plans as shown in Figure 10b. Now consider a
traffic predictive controller as developed in Section 5.3 that is able to adjust in real-time the TOD periods
so that the segmentation times are up to 45 mins earlier or later than the nominal segmentation times.

We first consider the case for which the traffic predictive controller is only able to establish predictive
segmentation times and not predictive parameters. Figure 11 plots the results of executing the traffic
predictive controller on the unusual dates February 24 (below average traffic due to weather conditions)
and July 2 (above average flow due to holiday). The solid line in the figure depicts the mean nominal total
traffic flow over the dataset (excluding the unusual date), summed over the 12 movements, in 15 minute
intervals. Here, we plot total traffic flow only for clarity; the analysis considers separate flow measurements
for all 12 movements as above. The dashed line is the total predicted traffic flow for the next TOD period
as predicted at the start of each TOD period. The vertical dashed blue lines are the nominal segmentation
times, the lightly shaded bars represent the segmentation windows during which a change to a new TOD
period is allowed, and the solid vertical lines are the actual segmentation times as determined using the
traffic predictive controller.

From the figure, it is evident that the traffic predictive controller behaves in a reasonable way. For
example, on July 2, the nominal TOD period between 7:00 and 9:00 corresponds to the morning peak
period. Since traffic is predicted to be above average at this time, this TOD period is extended by 45 minutes.
Likewise, since traffic in the afternoon peak period is predicted to be above average, the corresponding TOD
period is extended, beginning 45 minutes earlier and ending 30 minutes later. On February 24, we see
the reverse phenomenon due to the prediction that traffic will be below average; the TOD periods for the
morning and afternoon peak are correspondingly shortened.
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A key feature of the traffic predictive controller as developed in Section 5.3 is that the scheme is agnostic
regarding the specific green split algorithm utilized, that is, the algorithm seeks to predict flows and seg-
mentation times, not green splits directly. However, to estimate the gain in performance, we must choose a
particular green split algorithm. We employ a classical delay minimizing green split optimization algorithm
as developed in [34], where we substitute modified delay formulas from the Highway Capacity Manual (HCM)
[35]. These delay formulas account for queue buildup when the green splits are too short to accommodate
queued vehicles. It is assumed that a fixed time control strategy is used within each TOD period calculated
using the parameter vector, which is inflated by a factor to accommodate random fluctuations that would
occur if vehicles arrive according to a Poisson process, a reasonable assumption.

In Figure 12, we plot the result of using this delay minimizing green split optimization with our traffic
predictive controller. In each subplot, the solid trace is the rate of delay for the intersection plotted over time
for the case where the green splits are designed to minimize delay using the nominal segmentation times and
nominal parameter vectors. The rate of delay is calculated using the analytical formulas found in the HCM.
The dashed trace is the rate of delay obtained using the traffic predictive controller. The top plots consider
a traffic predictive controller that uses predictive segmentation times but nominal parameter vectors, that
is, the green splits are not allowed to differ from nominal during each TOD period, however, the duration
and starting point of the TOD period is adjusted based on the predicted flow. The bottom plots consider
the case when the traffic predictive controller uses predictive segmentation times and predictive parameter
vectors, thereby adjusting the green splits based on predicted traffic flow. The dotted trace indicates a lower
bound on the rate of delay that is computed assuming that the optimal green splits for each fifteen minute
interval are applied at each time step.

Suboptimality of green splits occurs due to two reasons: either the splits are too short for some move-
ments, resulting in queued vehicles that must wait more than one cycle to clear the intersection; or the splits
are too long, resulting in wasted green time whereby vehicles at other movements must wait longer than
necessary to receive a green light. For the nominal control case, the former condition occurs on July 2 and
the latter condition occurs on February 24. Indeed, the large increase in the rate of delay between 10:00 and
11:00 on July 2 results from queued vehicles waiting multiple cycles to move through the intersection, so-
called cycle failures. These queued vehicles contribute substantially to the rate of delay at the intersection.
Allowing predictive segmentation mitigates the issue somewhat as the traffic predictive controller delays by
45 minutes the change to a new TOD period that nominally occurs at 9:00, which in turn delays the onset
of queued vehicles. However, since the nominal parameter vectors are used within each TOD period, the
issue returns between 10:00 and 14:00. However, when predictive parameter vectors are considered as in
the top right figure, leading to recomputed green splits for each TOD period, the rate of delay substantially
decreases and is nearly equal to the lower bound.

On February 24, cycle failures are not a concern due to the below average traffic, however the nominal
green splits lead to wasted green time. The rate of delay can be modestly improved by using predicted
parameter vectors. The two trends exhibited by the conditions on July 2 and February 24 are general: cycle
failures lead to large increases in the rate of delay while wasted green time typically affects delay by a lesser
degree.

Total delay is computed by integrating rate of delay over the course of the day. Table 2 collects the total
delay values for the four cases in Figure 12 as well as mean values taken over the entire data set. The traffic
predictive controller reduces total delay at the intersection by up to 113.3 veh·hr on July 2 by mitigating
excessive delay caused by cycle failures. This leads to a 22.1% decrease in total delay, a marked improvement
especially considering that a lower bound on the best achievable delay reduction is 26.4%. Approximately
45 400 vehicles transited the intersection on this day, resulting in average savings of 9.0s per vehicle. Over
the 132 days in the dataset, the traffic predictive controller that uses predictive segmentation and predictive
parameters results in a delay improvement of 7.8 veh·hr on average, and the delay improvement exceeds 25
veh·hr on 11 occasions.

24



0 2 4 6 8 10 12 14 16 18 20 22 24

Time [h]

0

20

40

60

80

100

R
at

e
of

D
el

ay
[v

eh
]

5:30 7:00 9:00 14:45 18:15 20:30

July 2, Predictive Segmentation

Delay from nominal control
Available segmentation times

Delay from predictive control
Planned segmentation

Delay lower bound
Predictive segementation

0 2 4 6 8 10 12 14 16 18 20 22 24

Time [h]

0

5

10

15

20

25

R
at

e
of

D
el

ay
[v

eh
]

5:30 7:00 9:00 14:45 18:15 20:30

February 24, Predictive Segmentation

Delay from nominal control
Available segmentation times

Delay from predictive control
Planned segmentation

Delay lower bound
Predictive segementation

0 2 4 6 8 10 12 14 16 18 20 22 24

Time [h]

0

20

40

60

80

100

R
at

e
of

D
el

ay
[v

eh
]

5:30 7:00 9:00 14:45 18:15 20:30

July 2, Predictive Segmentation and Parameters

Delay from nominal control
Available segmentation times

Delay from predictive control
Planned segmentation

Delay lower bound
Predictive segementation

0 2 4 6 8 10 12 14 16 18 20 22 24

Time [h]

0

5

10

15

20

25

R
at

e
of

D
el

ay
[v

eh
]

5:30 7:00 9:00 14:45 18:15 20:30

February 24, Predictive Segmentation and Parameters

Delay from nominal control
Available segmentation times

Delay from predictive control
Planned segmentation

Delay lower bound
Predictive segementation

0 2 4 6 8 10 12 14 16 18 20 22 24

Time [h]

0

5

10

15

20

25

R
at

e
of

D
el

ay
[v

eh
]

5:30 7:00 9:00 14:45 18:15 20:30

February 24, Predictive Segmentation and Parameters

Delay from nominal control
Available segmentation times

Delay from predictive control
Planned segmentation

Delay lower bound
Predictive segementation

Figure 12: Rate of delay induced by the traffic predictive controller that adjusts TOD periods and TOD plans based on real-
time traffic data as compared to the nominal controller that does not adjust TOD periods or plans. It is assumed that the
green splits are computed to minimize delay using the parameter vectors for each TOD period. The top plots are the case when
only predictive segmentation is considered while the bottom plots consider predictive segmentation and predictive parameter
vectors. Traffic predictive control eliminates excessive delay caused by queued vehicles that require multiple cycles to clear the
intersection and reduces wasted green time. Table 2 quantifies these delay improvements.

Feb 24 July 2 Dataset Mean

Delay, nominal control [veh·hr] 209.1 512.1 305.7
Delay, predictive segmentation [veh·hr] 207.5 490.5 303.1
Delay, predictive segmentation and parameters [veh·hr] 204.2 398.8 297.9
Delay lower bd. [veh·hr] 192.5 377.5 276.4
Delay improvement, predictive segmentation [veh·hr] 1.7 21.6 2.6
Delay improvement, predictive seg. and param. [veh·hr] 5.0 113.3 7.8

Table 2: Illustrative delay savings from using traffic predictive control to adjust TOD periods and plans. The traffic predictive
controller reduces total delay at the intersection by 113.3 veh·hr on July 2 by mitigating excessive delay caused by queued
vehicles that wait multiple cycles to clear the intersection, so-called cycle failures. On average, the traffic predictive controller
improves total delay by 7.8 veh·hr per day by preventing cycle failures and reducing wasted green time.
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6. Conclusions

We have proposed a traffic predictive control scheme that identifies trends in historical traffic flow data
and uses real-time measurements to predict future traffic flow. These trends manifest as low-rank structure
in the data which are identified using decomposition techniques akin to principal component analysis and
particularly suited for prediction. Using a rich dataset of traffic flow measurements over the course of eight
months, we provide evidence that much of the day-to-day variation in traffic flow consists of these low-rank,
latent structures.

The traffic predictive control adjusts the time periods and parameters for time-of-day traffic signal
scheduling based on predictions of traffic flow using real-time measurements. This scheme is particularly
well-suited for implementation on existing traffic control hardware, which universally support time-of-day
plans and often are capable of remote updating of signal timing parameters. Furthermore, this approach
is well-aligned with standard signal timing practices, increasing the likelihood of successful adoption by
practitioners. Additionally, the traffic predictive control requires minimal tuning and accommodates any
green split optimization scheme that requires expected traffic flow as input.

The savings in delay for the case study intersection is found to be 7.8 veh·hr per day. Valuing a
driver’s time at $20 per hour and conservatively assuming that each vehicle carries only one occupant,
this suggests annual savings of around $57 000. In addition, this metric is compared to a well-timed but
pre-specified controller that does not account for real-time measurements; the savings are likely to be higher
for intersections that are currently poorly timed. If these calculations are even only approximately correct,
the savings are likely to be well worth the relatively small implementation costs.

An important future direction of research is to consider the case of an arterial corridor. In this case,
a straightforward extension of the proposed approach is to consider all movements along the corridor in
aggregate. However, there is high correlation between the traffic flows for some sets of movements as
vehicles progress along the corridor. This suggests an approach that explicitly accounts for these spatial
correlations as is done in [36].

Additionally, future research will investigate confidence bounds on the predictions. For example, can low-
rank structure be used to predict the 90th or the 99th percentile traffic flow? Furthermore, traffic prediction
from historical trends captures phenomena that have occurred previously in the historical data, and thus
may not be well-suited for events that are truly one-off events such as lane closures due to construction.
However, it may be that lane closures in one direction over an interval of time affects traffic in a similar
manner as lane closures on a different leg at a different time. Learning these more universal trends is
another future direction of research. Finally, these questions will be pursued alongside an implementation
pilot planned in collaboration with Sensys Networks, Inc.

Acknowledgements

The authors acknowledge Beaufort County, SC for use of the intersection data and thank Montasir
Abbas for discussions regarding technical capabilities of common traffic control hardware and best practices
for signal timing and plan selection.

References

References

[1] A. A. Kurzhanskiy and P. Varaiya, “Traffic management: An outlook,” Economics of Transportation, vol. 4, no. 3,
pp. 135–146, 2015.

[2] R. Dowling and S. Ashiabor, “Traffic signal analysis with varying demands and capacities, draft final report,” Tech. Rep.
NCHRP 03-97, Transportation Research Board, 2012.

[3] D. Schrank, B. Eisele, T. Lomax, and J. Bak, “2015 annual urban mobility scorecard,” 2015.
http://mobility.tamu.edu/ums/report/.

[4] P. Koonce, L. Rodegerdts, K. Lee, S. Quayle, S. Beaird, C. Braud, J. Bonneson, P. Tarnoff, and T. Urbanik, “Traffic
signal timing manual,” tech. rep., U.S. Department of Transportation, Federal Highway Administration, 2008.

26



[5] E. I. Vlahogianni, J. C. Golias, and M. G. Karlaftis, “Short-term traffic forecasting: Overview of objectives and methods,”
Transport reviews, vol. 24, no. 5, pp. 533–557, 2004.

[6] S. E. Jabari and H. X. Liu, “A stochastic model of traffic flow: Theoretical foundations,” Transportation Research Part
B: Methodological, vol. 46, no. 1, pp. 156–174, 2012.

[7] S. E. Jabari and H. X. Liu, “A stochastic model of traffic flow: Gaussian approximation and estimation,” Transportation
Research Part B: Methodological, vol. 47, pp. 15–41, 2013.

[8] L. L. Ojeda, A. Y. Kibangou, and C. C. De Wit, “Adaptive Kalman filtering for multi-step ahead traffic flow prediction,”
in American Control Conference (ACC), 2013, pp. 4724–4729, IEEE, 2013.

[9] C.-J. Wu, T. Schreiter, and R. Horowitz, “Multiple-clustering ARMAX-based predictor and its application to freeway
traffic flow prediction,” in American Control Conference (ACC), 2014, pp. 4397–4403, IEEE, 2014.

[10] E. Castillo, J. M. Menéndez, and S. Sánchez-Cambronero, “Predicting traffic flow using Bayesian networks,” Transportation
Research Part B: Methodological, vol. 42, no. 5, pp. 482–509, 2008.

[11] X. Zhou and H. S. Mahmassani, “A structural state space model for real-time traffic origin–destination demand estimation
and prediction in a day-to-day learning framework,” Transportation Research Part B: Methodological, vol. 41, no. 8,
pp. 823–840, 2007.

[12] A. Hofleitner, R. Herring, and A. Bayen, “Arterial travel time forecast with streaming data: A hybrid approach of flow
modeling and machine learning,” Transportation Research Part B: Methodological, vol. 46, no. 9, pp. 1097–1122, 2012.

[13] E. Jenelius and H. N. Koutsopoulos, “Travel time estimation for urban road networks using low frequency probe vehicle
data,” Transportation Research Part B: Methodological, vol. 53, pp. 64–81, 2013.

[14] L. Du, S. Peeta, and Y. H. Kim, “An adaptive information fusion model to predict the short-term link travel time
distribution in dynamic traffic networks,” Transportation Research Part B: Methodological, vol. 46, no. 1, pp. 235–252,
2012.

[15] C. Osorio, G. Flötteröd, and M. Bierlaire, “Dynamic network loading: a stochastic differentiable model that derives link
state distributions,” Transportation Research Part B: Methodological, vol. 45, no. 9, pp. 1410–1423, 2011.

[16] I. Guardiola, T. Leon, and F. Mallor, “A functional approach to monitor and recognize patterns of daily traffic profiles,”
Transportation Research Part B: Methodological, vol. 65, pp. 119–136, 2014.

[17] P. Mirchandani and L. Head, “A real-time traffic signal control system: architecture, algorithms, and analysis,” Trans-
portation Research Part C: Emerging Technologies, vol. 9, no. 6, pp. 415–432, 2001.
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