Finite State Abstraction and Formal Methods for Traffic Flow Networks

Samuel Coogan, Murat Arcak, and Calin Belta

Abstract—Formal methods from computer science have
emerged as a powerful suite of tools that, under appropriate
modifications, are applicable to a wide range of physical control
systems. These methods promise automated algorithms for veri-
fication and synthesis of controllers to accomplish specifications
and objectives that are not accommodated by traditional ap-
proaches. However, formal methods require a finite abstraction
of the underlying physical process, and challenges in obtaining
scalable abstraction techniques have impeded the applicability
of these automated tools. This tutorial paper exploits structural
properties in a class of networked systems motivated by traffic
flow networks to overcome some of these challenges and points
towards new directions of research.

The first aim of this tutorial paper is to review a broad
technique for synthesizing correct-by-design controllers for
dynamical systems by first obtaining a finite state abstraction
and then applying a game-based algorithm for synthesizing a
control strategy to satisfy a linear temporal logic specification.
The second objective is to review vehicular traffic flow models
and to characterize a general model amenable to formal control
synthesis. This general model is shown to be mixed monotone, a
generalization of monotone dynamical systems. Using properties
of the mixed monotone dynamics, a finite state abstraction is
efficiently computed by overapproximating the set of states
that are one-step reachable under the traffic flow dynamics.
These results are demonstrated on a case study which leads to
a discussion of open problems and avenues for future research.

I. INTRODUCTION
A. Inefficient Traffic Management is Pervasive

Today’s increasingly populous cities require intelligent
transportation systems that make efficient use of exist-
ing transportation infrastructure. However, inefficient traf-
fic management is pervasive [1], [2], costing $160 billion
annually, including 6.9 billion hours of additional travel
time and 3.1 billion gallons of wasted fuel [3]. To mitigate
these costs, the next generation of transportation systems
will include connected vehicles, connected infrastructure,
and increased automation. In addition, these advances must
coexist with legacy technology into the foreseeable future.
This complexity makes the goal of improved mobility and
safety ever more daunting.

Addressing this complexity requires scalable and auto-
mated verification and synthesis techniques for transportation
systems. Methods from formal verification and synthesis
of control systems are highly promising for providing au-
tomated tools that guarantee safety and improve mobility.

This research was supported in part by the NSF under grants CNS-
1446145 and CNS-1446151. S. Coogan is with the Electrical Engineer-
ing Department, UCLA, scoogan@ucla.edu. M. Arcak is with the
Department of Electrical Engineering and Computer Sciences, Univer-
sity of California, Berkeley, arcak@eecs.berkeley.edu. C. Belta
is with the Department of Mechanical Engineering, Boston University,
cbeltalbu.edu.

Nonlinear Dynamics x[t + 1] = F(z[t], u[t], d[t])

A
YN NS> T AAA
VYN >TAAR
YNy NN>AAPTD
Yyysgfpn
Yytnan
VY VYkéESKAAR
LV Kk<&F®RKK
Y Y K&E<ERKRK|
4

4
ee =

I:é\:;& — | Edntse

Reach G; Avoid B;

Formal Synthesis
from Rabin Game

L4
Finite State Abstraction

Fig. 1. A schematic depiction of the traffic control synthesis procedure
presented in this paper. The traffic flow dynamics are modeled as a discrete-
time dynamical system which is approximated with a finite state abstraction
obtained by partitioning the original (continuous) domain. Transitions in the
abstraction are obtained from reachability computations and overapproxi-
mate the behavior of the system. A finite memory controller is obtained by
solving a Rabin game with a Rabin automaton generated by the specified
LTL objective.

Formal methods were originally developed for specifying
and verifying the correct behavior of software and hardware
systems, as well as for synthesis of such systems. An
important research task now is to ensure these approaches are
scalable, adaptable, and reliable for transportation systems.

B. Formal Methods For Control Synthesis

Control techniques often focus on relatively mundane
objectives of system behavior such as stabilizing a system
around an equilibrium point or ensuring that the system
does not enter an unsafe operating condition. In contrast,
formal methods have been developed in the field of computer
science to verify that software and hardware systems satisfy
rich objectives expressed in temporal logic. Examples of
properties easily expressed in temporal logic include fair-
ness (whenever some condition occurs, another condition
is guaranteed to eventually occur), repeated reachability (a
certain condition occurs infinitely often), and sequentiality
(a condition only occurs after another condition).

Researchers from the control theory and computer science
communities are increasingly interested in combining control
theoretic tools for complex physical systems with formal
methods for accommodating complex specifications. A major
difference is that formal methods rely on finite state models

whereas control theoretic approaches typically consider con-
tinuous state spaces. A full review of the rapidly growing
literature in this area is beyond the scope of this paper, but
we highlight some work that is particularly relevant. Certain
classes of systems allow finite bisimulations such that the
dynamics are exactly represented by a finite transition model
[4], [5], or are amenable to a related notation of approximate
bisimilarity [6], [7], [8], [9], [10]. When a finite bisimulation
is not possible, methods exist to approximate the behavior
of the underlying system with finite abstractions; [11], [12],
[13], [14], [15], [16], [17] are particularly relevant to the
ideas presented in this paper. Applications and special cases
include robotic path planning [18], [19], [20], [21], switched
continuous time systems [22], piecewise linear systems [23],
[24], model predictive control formulations [25], [26], and
control of Markov decision processes [27], [28], [29], [30].

C. Paper Outline

The first aim of this tutorial paper is to review a broad
technique for synthesizing correct-by-design controllers for
dynamical systems by first obtaining a finite state abstraction
and then applying a game-based algorithm for synthesizing
a control strategy to satisfy a linear temporal logic specifi-
cation. Our primary goal is to give an accessible review of
these results and, more generally, formal methods for control
synthesis. The second objective is to review vehicular traffic
flow models and to characterize a general model amenable
to formal control synthesis. We show that the dynamics
of traffic flow networks exhibit considerable structure and
demonstrate that such structure enables efficient finite state
abstraction. In doing so, we point to the importance of
identifying and exploiting inherent structural properties. The
contents of this tutorial paper are based on results presented
in [31], [32], [33].

In Section II, we define a compartmental model for traffic
flow networks. A compartmental model considers traffic
flow networks to be a collection of links interconnected at
junctions, and vehicles flow from link to link through the
junctions depending on physically and phenomenologically
motivated flow policies. The state of the network at a given
time is the number of vehicles occupying each link. This
model captures the salient features of both networks of
signalized intersections and freeway traffic networks.

In Section III, we define finite state abstractions for
discrete time dynamical systems that overapproximate the
behavior of the underlying dynamics. The overapproximation
is such that, by considering the possible evolution of the finite
abstraction for given inputs, we may guarantee properties of
the behavior of the original dynamical system subject to these
inputs.

Using the finite state abstraction, we propose an automatic
controller synthesis procedure in Section IV to guarantee that
the abstraction and the underlying system satisfy an objective
given in temporal logic. The synthesis algorithm, illustrated
schematically in Fig. 1, relies on automata theory and fixed
point algorithms to compute a finite memory control strategy.

In Section V, we specialize the ideas of Sections II and III
to traffic flow networks. We observe that traffic flow networks
are mixed monotone [34], [32], a generalization of mono-
tone dynamical systems [35], [36], [37]. Mixed monotone
systems are decomposable into increasing and decreasing
components. Pairs of links in traffic flow networks naturally
exhibit mixed monotone dependencies whereby an increase
in the state of one link causes an increase or a decrease in the
flow to another link. Whether the flow increases or decreases
depends on the topological relationship of the links under
consideration. We then note that mixed monotonicity allows
efficient computation of finite state abstractions because
one-step reachable sets may be approximated efficiently by
computing a certain decomposition function at two extreme
points. This approach is particularly attractive since the
computational cost of approximating the set of states that
are one-step reachable from another set of states does not
increase with the dimension of the state space.

In Section VI, we apply the techniques and results of
the prior sections and consider a case study example for
which a control strategy is efficiently computed using the
mixed monotone property of the traffic flow dynamics. We
also comment on the practical limitations of an alternative
abstraction procedure that instead uses the piecewise affine
properties of the underlying dynamics; this approach is
developed in Sections II-B and V-D. In Section VII, we
comment on extensions and areas for future work.

D. Notation

For set Y C R, finite set Z, and an element v € YZ,
where Y7 denotes the set of functions from Z to Y, we use
subscript to index the elements of v, that is, v; = v(i) € Y
for i« € Z so that v = {v;};cz. We identify v with the
obvious corresponding element of the Euclidean space RIZ!
where |Z| denotes the cardinality of Z and we assume some
enumeration of Z. The powerset of Z is denoted by 27.

Let Z>(denote the nonnegative integers so that Wtzo
denotes the set of infinite sequences of elements from some
set W. As we use this construction exclusively to represent
a sequence of time, we index w € WZzo0 with brackets and
write w = w[0Jw[l]w([2]--- where w[t] € W for all t. We
sometimes write w = w|-] to emphasize the time dependence.

We further let W™ denote the set of nonempty, finite
length sequences of elements from W, that is, w € W
takes the form w = w[0w[1]---w[n| where w[t] € W for
t=20,...,n for some n > 0.

We let R>g = {2z | « > 0}. For vectors z,y € R", we
interpret z < y elementwise, that is, < y if and only if
r; <y; fori=1,...,n, and similarly for <, >, >.

II. A COMPARTMENTAL MODEL FOR DYNAMIC TRAFFIC
FLOwW NETWORKS

In this section, we present a compartmental model for
the dynamics of traffic flow networks. The model in this
paper takes a macroscopic view of traffic flow by considering
aggregate conditions of the network such as occupancy of
vehicles on each road segment and traffic flow rate rather

(b)

Fig. 2. Vehicular traffic networks are modeled as interconnected links in
a compartmental model. (a) A standard freeway network consisting of one
freeway with a diverge to a second freeway along with a schematic depiction
of the resulting compartmental model where each link models a freeway
segment. (b) A typical signalized network and its compartmental model.
The greyed links are not explicitly modeled since they exit the network. At
each time step, the signalling input actuates a subset of the incoming traffic.
Each link is an incoming road; long links may be subdivided into multiple
links, and roads with multiple lanes that are actuated independently may be
subdivided into parallel links.

than considering movement of individual vehicles. This
model was proposed in [31], [38] and encompasses the cell
transmission model of freeway traffic flow [39], [40] and
queue forwarding models as in [41] where we further account
for the finite capacity of queues.

A. General Model

A traffic network consists of a set of /inks £ interconnected
at a set of nodes V as in Fig. 2. In freeway networks, the
nodes represent junctions where, for example, onramps enter,
offramps exit, two freeways merge, a freeway diverges to
two freeways, or a node serves to divide a longer link into
two smaller links. In signalized networks, the nodes are
signalized intersections. Let o : £ — V map each link to
the node immediately downstream (the head) of link ¢, and
let 7 : £ — VU e map each link to the node immediately
upstream (the tail) of link ¢; the symbol e denotes that no
upstream node is modeled in the network, thus links for
which 7(¢) = e direct exogenous flow onto the network.

Although we present a discrete-time model, the results
easily extend to continuous time; see [33], [42]. The state of
link ¢ € £ at discrete time ¢ is denoted by

zolt] € [0,2,®] forall £ € L (1)

and represents the number of vehicles occupying link ¢ where
z, is the maximum number of vehicles accommodated by
link ¢. For freeway networks, x, is called the jam density.
Note that we adopt a fluid-like model of traffic flow and do

not restrict z,[t] to integer values. The domain is

x £ IJlo, =5 2

Lel

The main premise of the cell transmission model and
queue forwarding models is that traffic flow from one link to
another downstream link through a junction is restricted by
the demand of vehicles to flow along the link as well as the
supply of road capacity downstream. To this end, each link
¢ € L possesses an increasing demand function ®9"'(-) and
a decreasing supply function ®i(-). We make the following
assumption for each ¢ € L:

« The demand function ®9" : [0, z,""] — R>(is increas-

ing and Lipschitz continuous with ®9*(0) = 0.
« The supply function @ : [0, ;"] — R>(is decreasing
and Lipschitz continuous with ®i(2,") = 0.

Prototypical demand and supply functions are shown in
Fig. 3. The demand function models the number of vehicles
on a link that would flow through a junction in one time step
if unimpeded by downstream congestion, while the supply
function models the available capacity on a link to accept
incoming flow. Thus, outgoing flow of a link does not exceed
demand, and incoming flow does not exceed supply.

Junctions may be signalized so that the movement of
vehicles through a junction v from an incoming link £ is
allowed only if the link is actuated by the signal. Let

Uc 2~ 3)

be a collection of sets of links that may be simultaneously
actuated. We call v € U an actuation. Since signalized
intersections are typically operated independently, the set U
is often the Cartesian product of collections of subsets of
incoming links for each intersection.

An important element of modeling transportation networks
is to characterize the routing properties for junctions with
multiple incoming and/or outgoing links that captures phe-
nomenological properties of traffic flow. In particular, the
routing policy must appropriately distribute the demand of
links incoming to a junction among the outgoing links, and
symmetrically, distribute supply of outgoing links among
incoming links. For the former requirement, we introduce the
turn ratio g > 0 for each £, k € L denoting the fraction of
link ¢’s outgoing flow that routes to link k for links ¢ and &
connected at a junction. Conservation of mass implies

> B <1 forallleL)
kel

where B¢, # 0 only if o(¢) = 7(k) and strict inequality in
(4) implies that a nonzero fraction of the outgoing flow from
link / exits the network along, for example, unmodeled roads
or driveways.

t
7 ()
- BP(a)
Ty
\
jam
'IJZ
Fig. 3. Plot of prototypical supply and demand functions @ié“(xg) and
(I)out (T Z)-
Y4

We symmetrically introduce the supply ratio oy, for each
¢,k € L denoting the fraction of link £’s supply available to
link 4. For all u € U, we have

Z agr, =1 forall k € L, (5)
{teulo(O)=(k)}
that is, the total supply of link & is divided among upstream,
actuated links for each possible actuation v € U. For
freeway networks, rather than assuming discrete actuation
values so that a link is either actuated or not, it may be
more appropriate to consider a controlled metering rate for
links that represent onramps to the network. In this case, the
controlled metering rate serves to threshold a link’s demand
at some upper limit; see [43] for a formalization of such an
extension.
We are now able to define the outflow of vehicles from a
link as a function of the state z € & and a chosen actuation
u € U. The outflow of link £ is

- min {fb‘gm(w), . S{nbi)ﬁ#o %@}2 (Jck)}
() = if £ €u
0 else,
(6)

that is, the flow exiting link ¢ is as close to the demand of
link ¢ as allowed by downstream supply. Conservation of
mass completes the model:

xpt + 1] = Fo(x[t], u[t], d[t]) (7
S aft] — £ (] ult]) + > Bre (@] ult]) + delt]
kel
®)

where d,[t] is an exogenous flow entering link ¢. We assume
that the exogenous flow is truncated and therefore dy[t] is
such that z.[t + 1] < 2" always. In general, we further
assume d[t] € D for disturbance set D C (Rxq)* for all
time.

Example 1. Consider the network shown in Fig. 4(a) with
L = {1,2,3} and 512 = 613 = 0.5, 19 = (13 = 1. We
assume the intersection is not signalized and thus the input
set is U = {u}, v £ {1,2,3}, indicating flow along all
links is allowed. Then

(g, 4™ = min {Dl(acl) ng(xg), 153(:1:3)} 9)

0.5 0.5
Oz, u™) = Dy(xy), £€{2,3}. (10)

* 50 | -
-~
2 ; 307 x f((i,@)ﬂ,b, (aad))
9 20
1 2 10 | o
f((z, @), u, (d,d))

0 T T T T T
10 20 30 40 50

Vehicles on link 2
(a) (b)

Fig. 4. Approximating the one-step reachable set of traffic states using
mixed monotonicity. (a) A simple network with three links. (b) We bound
the one-step reachable set from the initial box Z, by evaluating the network
dynamics of each link at two particular extreme points which depend on the
topology of the network. The actual reach set is shaded in light color, the
approximation R is outlined with a dashed line, and the results are projected
in the plane of Link 2 vs. Link 3.

B. Special Case: Piecewise Affine Model

Of particular importance is the case when the demand
and supply functions are assumed to be piecewise linear.
In particular,

(1)
12)

D9 (z¢) = min{vexe, co}

@ign(xz) = wg(x;ap — xy)

for constants v, > 0, wy > 0, and ¢, > 0. For freeway
networks, vy and wy are the free flow speed and congested
wave speed [44]. For signalized networks, we interpet x,
as the queue length and take vy = wy, = 1. Then ¢, is the
saturation flow rate [45], ®9"(x;) is the minimum of the
queue length z, and the saturation flow rate, and ®" () is
the unoccupied queue capacity of link £.

When the demand and supply functions have the form
(11)—(12), the dynamics are piecewise affine, that is, there
exists a set of polytopes P = {X, },co for some index set
Q such that Uyeo X, = X and X;,NX, = 0 forall ¢,¢' € Q,
and such that for each ¢ € Q, we have

F(z,u,d) = Agux +bgo+d forallz e X, (13)

for some A,, € Rf*£, b, € R-. In other words, the
traffic dynamics are affine within each polyhedral partition.
The polytopes arise from the min{-} functions in (6) and
(11). In the sequel, we construct a finite state abstraction
using the tools in [23], [46] that exploit the piecewise affine
nature of the dynamics.

IIT. OVERAPPROXIMATING FINITE ABSTRACTIONS

We now describe a methodology for computing a finite
state abstraction that overapproximates, in a particular sense,
the dynamics of a discrete-time dynamical system. The
motivation for such an abstraction is two fold. First, for many
physical systems, satisfactory performance is often defined
in terms of a finite set of properties such as “no road seg-
ment becomes congested” for traffic networks, “temperature

QT @

&

~ —

&
—~@

() (b)

Fig. 5. Schematic depiction of a finite state abstraction. The lightly shaded
region represents the domain X. (a) The transition map captures all possible
transitions from one partition of the state space under each possible input.
Here, we assume only one input for illustration. The darkly shaded region
denotes one partition and its image under the state update map F', that
is, the corresponding one-step reachable set. (b) A finite state abstraction
represents the dynamics with a finite set of states and transitions between
these states.

remains below a given threshold” for a chemical process,
or “the power network can withstand one generator failure”
for power networks. That is, performance is not based on a
precise, continuous measurement of the state. Second, a finite
state abstraction is amenable to formal synthesis methods as
described in the next section.

We consider a discrete-time dynamical system of the form

2t + 1] = F(x[t], ult], d[t)) (14)

for u[t] € U with U a finite set, z[t] € X C R”™ for all ¢,
and d[t] € D C R™. Note that the traffic network model
proposed above satisfies these stipulations; however, the
ideas presented here apply generally. We call this system the
concrete system, in contrast with the finite state abstraction
developed subsequently.

A. Finite State Abstractions

Consider a partition of X with index set Q, that is, the
collection of nonempty sets P = {X,},cq satisfies X =
UgeoXy and X, N Xy =0 for all ¢,¢' € Q. Let

mp X — QO
mp(x) = ¢ when x € X,

15)
(16)
be the projection map from X to Q. For a trajectory z[-]

of the dynamical system (14), we let wp(x[-]) denote the
sequence ¢[0]q[1]q[2] - -- € Q%=>0.

Definition 1 (Finite state abstraction). Given a partition P =
{Xy}qeq of X for system (14), we say that T = (Q,U,)
with 6 : @ x U — 22 is a finite state abstraction of (14) if

forall z € X and d € D x € Xy and F(z,u,d) € Xy
¢ €d(qu) (7
for any ¢q,¢' € X, u € U. We call ¢ the transition map. An
execution of the finite state abstraction is a pair of sequences

q[-], u[-] with each ¢[t] € Q and each u[t] € U for t > 0 for
which g[t + 1] € §(g[t], u[t]) for all ¢ > 0.]

implies

Fig. 5 illustrates how a finite state abstraction is obtained
for a dynamical system. A finite state abstraction of the
concrete dynamical system (14) captures the underlying
dynamics at a level of granularity dependent on the partition

P. A finite state abstraction is thus a transition system with
a finite set of states Q and finite input set ¢/ inherited from
the concrete system. Each input u € U enables a set of
transitions as determined by (g, u). We will use the notion
of state to refer both to an element ¢ € Q in the finite state
abstraction and an element z € X of the concrete system
when it is clear that no confusion will arise.

Note the direction of implication in (17) allows the sit-
uation where ¢’ € d(q,u) yet F(x,u,d) ¢ X, for any

€ X;, d € D. When this holds, we say that there exists a
spurious one-step transition from ¢ to ¢’ under input u. Thus
the transition function § overapproximates the underlying
dynamics and there may exist executions of the transition
system that do not correspond with any trajectory of the
original dynamical system.

B. Spurious Transitions in Finite Abstractions

If the transition map ¢ is the smallest satisfying (17)
where “smallest” is with respect to set inclusion, then no
spurious one-step transitions exists and (17) holds with the
biconditional “if and only if”” In this case, 7 is called
a quotient based abstraction of the concrete system with
respect to the partition P. There are several advantages
to stipulating this additional requirement on §. First, this
requirement implies that, given a partition, the correspond-
ing finite state abstraction is unique. Second, by avoiding
spurious transitions, we reduce the conservatism inherent in
formal synthesis from finite state abstractions.

However, there are good reasons to accept spurious one-
step transitions in the finite state abstraction. In particular,
computing the smallest transition map requires exact one-
step reachability computations under the dynamics (14),
which is often computationally difficult or impossible. Yet,
for many classes of systems, there exist efficient algorithms
for computing overapproximations of reachable sets that are
not overly conservative.

Even in the absence of spurious one-step transitions in
the map &, there may still exist spurious executions of the
finite state abstraction that, after two or more steps, do not
correspond to any trajectory of the concrete system.

Definition 2 (Spurious sequence and execution). Given a
finite state abstraction 7 = (Q,U,d) of a concrete system
(14). We say a sequence g[n]q[n + 1]---¢q[m] with n < m
is spurious if there does not exist any trajectory z[-] of the

concrete system for which z[t] € Xy fort =mn,...,m. An
execution ¢[-], u[-] of T is spurious if ¢[-] contains a spurious
subsequence. |

The idea of spurious executions is best illustrated with an
example.

Example 2. Consider a system for which X C R? is a
rectangle as in Fig. 6, P = {X, }4c0 for @ = {q1,¢2,¢3,q4}
partitions the domain into four polytopes as shown, and U/
and D are singleton sets. Equivalently, we omit ¢/ and D
so that (14) becomes z[t + 1] = F(z[t]) and T is a finite
abstraction with transition map ¢ : Q@ — 22, We abbreviate

F(Y)={F(z) |z €Y} for Y C X. Suppose F(Xy,) is as
in Fig. 6 so that {g2, g3} C 0(q1). Likewise, suppose F'(Xy,)
is as in the figure so that {q1, g4} C 6(g3), and, furthermore,
we have that F'(F(X,,) N X,,) C A,, as indicated by the
shaded region of F'(X,,). Then, since g3 € §(¢1) and g4 €
d(qs3), the sequence g1 g3q4 consists of valid transitions of the
finite state abstraction 7. However, there is no trajectory x|
of the concrete system such that z[n] € X,,, z[n+1] € X,
and z[n + 2] € X,, for some n > 0, that is, ¢1¢g3q4 is a
spurious sequence.]

There are two standard approaches to limiting the exis-
tence of spurious executions. The first is to refine the partition
P. A refinement of a partition P = {X;}4co is a new
partition P’ = {X,}4co’ such that for all ¢ € Q' there
exists ¢ € Q with X, C X,. For example, by partitioning
Xy, in the above Example, we could obtain an abstraction
that does not exhibit the particular spurious sequence in this
example. Standard iterative partition refinement algorithms
exist for quotient based abstractions [10].

The second approach, which traces its roots to behavioral
systems theory [47], is to compute an ¢-complete abstraction
given the fixed partition P that incorporates finite memory to
track past behavior of the system. Here, ¢ refers to the length
of the memory, and increasing ¢ reduces the conservatism
of the abstraction (i.e., removes spurious executions) [11],
[16]. For example, in an ¢-complete abstraction with ¢ = 2,
the currently and previously occupied partitions constitute an
expanded state of a finite state abstraction, and this expanded
state is considered when constructing the transition map. In
the above example, such an abstraction would not allow the
spurious sequence g;¢3g4 because, for z[0] € X,, and z[1] €
Xy, we have concluded that we must have z[2] ¢ X,, and
thus there is not a transition from the expanded abstract state
(¢q1,4q3) to the expanded abstract state (gs, q4).

While ¢-complete abstractions and quotient based abstrac-
tions obtained from partition refinement are conceptually
similiar, they are generally incomparable. Depending on the
concrete system, one or the other may produce a tighter
abstraction. In some cases, the abstractions are equivalent;
see [17] for a detailed comparison of the two approaches.

The finite state abstraction 7 is deterministic if |6(q, u)| =
1 for all ¢ € Q, u € U and nondeterministic otherwise.
Nondeterminism arises from three sources:

1) The disturbance d implies that z[t + 1] is not uniquely
determined by x[t] and u[t] alone;

2) As discussed above, § may include spurious one-step
transitions;

3) Even when reachable sets are computed exactly, the
one-step reachable set from a partition may intersect
multiple partitions, as in the example above.

Despite the nondeterminism and existence of spurious
transitions, a controller obtained from an overapproximating
finite state abstraction guarantees the same performance for
the concrete system [10], [48]. In particular, condition (17)
implies that the concrete system is an alternating simulation
[10] of the finite state abstraction 7 and that there exists

X2

Fig. 6. Spurious executions of finite state abstractions. Since F'(Xg,)
intersects Xg, and Xgy,, we have that {g2,93} C d(q1), and likewise
{q1,q4} C 8(g3) so that the sequence q1g3qa consists of valid transitions
of the finite state abstraction. Yet no trajectory -] of the concrete system is
such that there exists n with z[n] € Xy, , z[n+1] € Xy,, and z[n+2] €
Xgy since F(F(Xq,) N Xgy) N Xg, = 0, that is, the sequence g1g3q4 is
a spurious sequence.

a feedback refinement [48] from the concrete system to the
abstraction.

IV. SPECIFYING SYSTEM BEHAVIOR

We focus on specifications for system behavior given in
linear temporal logic (LTL), an extension of propositional
logic that allows for temporal modalities. The expressive
power of LTL allows us to capture many objectives relevant
for control of transportation networks, such as “link 1
eventually enters an uncongested state and remains in this
condition for all future time.” LTL formulae comprise a finite
set of observations, denoted by O, the standard Boolean
connectives, and temporal modalities such as [J (“always”)
and ¢ (“eventually”), and a LTL formula is usually denoted
by .

The synthesis approach for LTL specifications presented
here relies on a finite state abstraction of the underlying
continuous system that overapproximates the system’s dy-
namics as described in Section III. The synthesis algorithm
is then posed as a two-player game between a controller and
the environment where the controller seeks control actions
to ensure satisfaction of the behavior specification and the
environment seeks to prevent satisfaction of the specification.

We first begin with a description of LTL and then show
how a controller can be synthesized from a finite state
abstraction and a LTL specification by solving a two-player
game.

A. Linear Temporal Logic

Linear temporal logic (LTL) is used to describe the tem-
poral behavior of systems [49], [50], [S51] and was first sug-
gested for describing the operation of software in [52]. LTL
formulae are constructed from a set of observations, Boolean
operators, and temporal operators, and a LTL formula ex-
presses a property over an infinite trace of observations
made during the infinite execution of a system. For example,
a LTL formula may specify that some observation always

holds (invariance), that some observation eventually holds
(reachability), that some observation holds infinitely often
(liveness), or that some particular observation always follows
another observation (sequentiality). The power of LTL comes
from its ability to concisely and intuitively express a wide
range of relevant properties for system behavior. It is often
straightforward to convert a plain English statement directly
to a LTL formula as we see below.

We use the standard notation for the Boolean operators
including T (true), — (negation), A (conjunction), and the
graphical notation for the temporal operators including O
(“next”), U (“until”), & (“eventually”), and O (“always”).
For example, the LTL formula {){Jo; expresses the property
that observation 0; € O eventually holds at some point in the
future and continues to hold for all future time. We make this
interpretation, and the construction of valid LTL formulae,
precise in the following.

Given a finite set of observations O, LTL formulae are
interpreted over infinite sequences of subsets of O, that is,
over (29)%220 where 2° denotes the set of all subsets of
O. For example, in a finite state abstraction, a fixed set of
observations holds for each partition of the continuous state
space, and an execution of the dynamical system generates
a sequence of sets of observations.

Consider such a sequence o = o[0]o[l]o[2]--- with
each o[t] C O. Given a LTL formula ¢, the sequence o
either satisfies ¢ or it does not. The set of all possible LTL
formulae and the interpretation of their satisfaction is defined
recursively as follows:

e For any 0 € O, o0 is a LTL formula and o satisfies o if
o € o[0], that is, if o holds at the first time step.

e For any LTL formulae ¢ and g, @1 Apq is a LTL formula
and o satisfies 1 A g if o satisfies ¢ and o satisfies @s.

e For any LTL formula ¢, —¢ is a LTL formula and o
satisfies - if it is not the case that o satisfies .

e For any LTL formula ¢, O¢ is a LTL formula and o
satisfies O if o[1---]:= o[l]o[2] - - satisfies (.

e For any LTL formulae ¢; and @2, v1Ups is a LTL
formula and o satisfies p1U s if there exists j > 0 such
that o[j---] := o[j]lofj + 1] - - - satisfies @9 and, for all
i < j, we have oli---]:=oli]oi +1]--- satisfies ;.
Using the “until” temporal operator U, we define the

temporal operators <> (“eventually”) and [J (“always”):

« For any LTL formula ¢, {¢ := TU and thus o satisfies
& if p holds eventually at some future time, that is, there
exists ¢ such that o[i---| = o[i]o[i + 1] - - - satisfies .

o For any LTL formula ¢, Oy := - and thus o satisfies
Op if ofi---] :=oli]o[i + 1] - - - satisfies ¢ for all i > 0.
Compactly, the syntax for LTL as described above is

generated by the following grammar:

(18)

where o € O is an observation and ¢, ¢ and @5 are LTL
formulae.

By combining the above rules, we obtain a wide range
of derived operators. For example, two common temporal

pu=Tlolpr Apa| @] Op|wiUeps

operators are (] (“eventually always”) and O (“always
eventually”).

Below are informal interpretations of the satisfaction of
some frequently used LTL formulae.

o O is satisfied at the current step if ¢ is satisfied at the
next step.

o p1U s is satisfied if ¢ is satisfied “until” o becomes
satisfied.

o Uy is satisfied if ¢ is satisfied at each step (i.e. ¢ is
“always” satisfied).

o [is satisfied if = is satisfied at each step (i.e. ¢ is
“never” satisfied).

o O is satisfied if ¢ is satisfied at some future step (i.e. ¢
is “eventually” satisfied).

o OOy is satisfied if ¢ becomes satisfied at some future
step and remains satisfied for all following steps (i.e. ¢ is
satisfied “eventually forever”).

o OO is satisfied if ¢ always becomes satisfied at some
future step (i.e. ¢ is satisfied “infinitely often”).

Definition 3 (Labeled systems). We say the dynamical
system (14) with partition P = {X, }4co is labeled if there
exists a set of atomic propositions O and a labeling function
L: X — 2© that satisfies z,y € X; = L(z) = L(y), that
is, elements in the same partition are labeled with the same
atomic propositions. We then say that the corresponding
finite state abstraction 7 is labeled, for which there exists
a well-defined labeling function Ly : Q — 29 such that
Lr(q) = L(z) for all x € X,. Throughout this paper, we
use L(-) to denote either labeling function. [|

Definition 4 (Trace). Consider a trajectory z[-] of a la-
beled dynamical system (14) induced by the input se-
quence ul-]. The frace of the trajectory is the sequence
L(z[0])L(z[1]))L(x[2]) - -- € (29)%20. We abbreviate this
sequence as L(z[-]). Similarly, for an execution ¢[],u[]
of a finite state abstraction, the trace of the execution
is the sequence L(q[0])L(q[1])L(q[2])---, abbreviated as
L(gl). n

Consider a labeled finite state abstraction 7 of a labeled
dynamical system (14) with partition P. Equation (17) guar-
antees that, for a trajectory z[-] of the dynamical system (14)
generated by the input sequence u[-], the pair wp(x[]), u[]
is an execution of 7.

We define LTL satisfaction for trajectories of dynamical
systems and executions of finite state abstractions in the
natural way: z[-] satisfies @ if its trace L(x[]) satisfies ¢,
and likewise for ¢[-] and L(q[]).

B. Controller Synthesis from Rabin Games

We consider the labeled dynamical system z[t + 1] =
F(z[t],ult],d[t]) as in (14) with observations O and a
partition P of the domain X', along with a LTL objective ¢.
Informally, our objective is to find a feedback control strategy
such that the resulting closed loop trajectories satisfy . To
make this formal, we will instead define our objective in
terms of a labeled finite state abstraction 7 (Q,U, §) for the

dynamical system; we will see that synthesizing a controller
from the finite state abstraction is sufficient for obtaining a
feedback controller for the concrete system in a form to be
made precise below.

Definition 5 (Control strategy). A feedback control strategy
~ for a labeled finite state abstraction 7 is a map

v (29T s u (19)

that prescribes a control input for each finite history
q[0]g[1] - - - g[n]. u

Control synthesis objective. Our objective is to find a
control strategy v of the form (19) and a set of initial
conditions Qy C Q for the finite state abstraction 7 =
(Q,U,) such that ¢ holds for any execution ¢[-] satisfying
q[0] € Qo and, for all ¢t > 0, g[t + 1] € (q[t],u[t]) with
ult] = y(q[0lg[1] - - - q[t]). u

We do not consider the initial condition to be fixed a priori
but instead consider a set of acceptable initial conditions
to be a result of our synthesis procedure. This is because
the synthesis algorithm we employ identifies all acceptable
initial conditions for our finite state abstraction. If instead
we know that the abstraction will initiate in some subset of
states, we simply check to see if the set of acceptable states
as determined by our algorithm contains the specified set of
initial conditions.

Definition 6 (Finite memory control strategy). The control
strategy -y is said to be finite memory if there exist

e M, a finite set of modes,

e Mo € M, an initial mode,

o« A: M x Q— M, a mode transition map,

e g: M x Q — U, a control selection map
defining a transition system that describes the behavior of
ul[t] = v(q[0]---¢[t]) in the following way: the controller
transition system (abbreviated controller) is initialized so that
m[0] = mo € M is the initial state of the controller. Then,
inductively, u[t] = g(m[t], ¢[t]) and m[t+1] = A(m]t], q[t])
for t > 0 where ¢[t + 1] is obtained via the abstraction
T =(Q,U,9).

|

For a finite memory control strategy, g selects an action
based on the current state of the finite state abstraction and
mode of the controller, and A updates the finite mode (that
is, memory) of the controller. Thus ~y(q[0]g[1]---¢[t]) =
g(m[t], q[t]) where m]t] is computed as described in the
above definition. As we will see below, finite memory
controllers suffice for our purposes.

To synthesize a finite memory controller for a LTL spec-
ification, we consider a finite state automaton that tracks
progress towards the LTL specification using a finite set
of modes. The automaton’s transitions are labeled with the
observations O so that an infinite trace of observations
generates an infinite execution of the automaton. We consider
a particular class of automata, called Rabin automata, that
accept infinite traces of observations if a certain set of modes

are visited infinitely often and another set of modes are
visited only finitely often.

Rabin automata serve two key purposes. First, there exist
automated methods and off-the-shelf software for converting
any LTL objective to a Rabin automaton that accepts all and
only those traces which satisfy the LTL objective. Second,
there exist algorithms for obtaining a control strategy for a
finite state abstraction from the Rabin automaton generated
by the desired LTL specification. Moreover, the obtained
control strategy is finite memory, and the structure of the
finite memory controller is inherited from the structure of
the Rabin automaton.

Definition 7 (Deterministic Rabin automaton). A determin-
istic Rabin automaton consists of:

o A finite set of modes M, called Rabin modes,

e An initial mode mg € M,

« A finite set of inputs 2© that is the set of all subsets of
0,

o A mode transition map Ag : M X 20 5 M, and

« An acceptance condition

F:{<GlaBl)v(G2’B2)7~--7GkaBk)} (20)

where G;,B; C M for all i € {1,...,k} for some
k> 1
Executions of a deterministic Rabin automaton are defined
analogously to executions of a transition system. The input
sequence o] = o[0]o[1]o[2]--- with o[t] C O for all ¢ is
accepted by the deterministic Rabin automaton if the unique
induced execution m[-] satisfies the following acceptance
condition: There exists a pair (G;, B;) € F' for which
o m[t] € G; for infinitely many ¢ > 0
o m[t] € B; for only finitely many ¢ > 0 (equivalently,
there exists t* for which m[t] ¢ B; for all ¢ > t*).
Each (G, B;) € F is an acceptance pair. [|

The notational congruences between Definition 6 and
Definition 7 are intentional. Our interest in Rabin automata
stems from the following result:

Proposition 1 ([53], [54], [55]). Given a LTL formula ¢ over
the set of observations O. There exists a deterministic Rabin
automaton such that the following holds for all o € (2°)%>0:

o satisfies ¢ <=> o is accepted by the Rabin automaton.
(2D

As all Rabin automata considered here are deterministic,
we drop the “deterministic” modifier.

Example 3. Assume O = {a,b} and consider the LTL
formula ¢ = O(a — Ob) which is satisfied if, whenever
a holds, b holds or will hold at some future time. Consider
the Rabin automaton with M = {mqg,m1}, F = ({mo},0),
and for W € 29, A is given by the following rule:

Ag(mg, W) =my if and only if a € W and b & W, (22)
Agr(my, W) = my if and only if b € W. (23)

-aVb —-b

Fig. 7. Example of a Rabin automaton that corresponds to the LTL
specification ¢ = O(a — Ob) for O = {a,b}. We have F' = {(mo,0)},
thus a trace is accepted if and only if m is visited infinitely often. The edge
labeled b from m1 to mg indicates that if m[t] = m1 and the observation
o[t] € 29 is made at time ¢, then the Rabin automaton will transition to
mg if and only if b € o[t], and similarly for the other edges.

Then a trace o = o[0]a[1]o[2] - - - € (29)%20 is accepted by
the Rabin automaton if and only if o satisfies ¢; see Fig.
7(a). Indeed, F' implies that an execution m[t] is accepted if
and only if m[t] = mg for infinitely many ¢ > 0. Reasoning
about A g as given in (22)—(23), this is the case if and only
if whenever a € o[t] there exists some time 7 > ¢ for which
b € olt], that is, if and only if o satisfies .

[]

Moreover, there exist algorithms [54] and readily available
software [56] for constructing a Rabin automaton from a LTL
formula. An important difficulty is that, for the worst case,
the number of Rabin modes |M | grows doubly exponentially
in the length of the LTL formula [54]. However, it has been
observed that this theoretical worst case is rarely encountered
in practice.

From the above discussion, the interaction of a finite
state abstraction and a Rabin automaton generated from a
desired LTL specification ¢ is as follows. From an initial
condition ¢[0], we apply a sequence of inputs u[-] to the
finite state abstraction to generate an execution ¢[] and
an associated trace L(g[-]). To check whether ¢[-] satisfies
o, we apply L(g[-]) as the input to the Rabin automaton,
which produces a corresponding unique execution m/[-] that
we use to determine if L(g[-]) is accepted according to the
acceptance condition in Definition (7).

We may envision the interaction of a finite state abstraction
and a Rabin automaton occurring in parallel; when the
abstraction steps from ¢[t] to ¢[t + 1], the set L(q[t]) of
observations is passed to the Rabin automaton, which then
steps from m|t] to m[t + 1]. Taking this view, we may then
envision a controller that monitors both the evolution of
the abstraction and the Rabin automaton and, at each time
step, chooses a control action with the goal of satisfying
the acceptance condition of the Rabin automaton so that ¢[-]
satisfies .

Indeed, the synthesis is based on a Rabin game that is
played as follows: a controller (also called the protagonist
or scheduler [50]), which has access to the current state ¢[t]
of the finite state abstraction as well as m[t] of the Rabin
automaton, seeks a control input u[t] at each time step so
that, regardless of how a so-called adversary chooses from
among the set of possible next states dictated by the set
5(q[t], u[t]), the resulting trajectory trace is accepted by the
Rabin automaton.

There exist algorithms for solving Rabin games in time
polynomial in [Q], [M], and [d] = >°, 1/ .co10(q,u)| and
factorial in k, the number of acceptance pairs [57], [58], [59].
For many LTL specifications of practical significance, k is
usually small and often 1. Moreover, solutions of the game
are memoryless meaning that the controller’s decision is only
a function of the current state ¢ and mode m [60]. That is, the
result of these algorithms is a function g : Q x M — U and
a set Qg such that, if the finite state abstraction is initialized
with ¢[0] € Qp, then by choosing u[t] = g(q[t], m[t]) at each
time instant, the controller is guaranteed to win the Rabin
game no matter the choice of the adversary, and thus g
satisfies .

To complete the picture, it is then straightforward to
characterize the finite memory control strategy having the
structure in Definition 6. In particular, the modes M and
initial mode mg are inherited from the Rabin automaton,
A(m,q) = Agr(m, L(q)), and g is obtained via the afore-
mentioned algorithms.

C. Employing Abstraction-Based Controllers

We apply a finite memory controller of the form given in
Definition 6 to the original concrete system in the natural
way: we let ult] = g(m[t],7p(x[t])) at each time step
t, and we update the controller mode as m[t + 1] =
A(m]t], mp(z[t])). The following Proposition is straightfor-
ward and implies that the overapproximating finite state
abstraction is sufficient for formal control synthesis.

Proposition 2. Given the finite memory control strategy
v and a set of initial states Qo C Q. If q[-| satisfies ¢
for all executions of T for which q|0] € Qo and ult] =
~v(q[0]q[1] - - - ¢[t]), then x[] satisfies ¢ for all trajectories
x[-] of the concrete system for which z[0] € Uyeco,X, and
ult] = ~(q[O)g[1] - glt]) where we take qlt] = mp(2lt]) for
all t.

The proof follows readily from the overapproximating
nature of 7 as specified in (17). In particular, consider
any trajectory x[-] of the concrete system induced by the
input sequence u[-] for which z[0] € Uyeg, X, and uft] =
~v(q[0]q[1] - - - q[t])) = g(m[t], q[t]) for all ¢ > 0. The pro-
jected sequence wp(z[-]) = ¢[-] = ¢[0]¢[1]q[2]--- is such
that ¢[0] € Qo and ¢[t + 1] € d(q[t], u[t]), that is, g[-], u[]
is an execution of 7. By assumption, ¢[-] satisfies ¢ so that
also z[-] also satisfies ¢.

The importance of Proposition 2 is that we may obtain
a controller for the concrete system by first constructing a
finite state abstraction and then computing a controller for
the abstraction based on the automated synthesis approach
of a Rabin game.

The resulting controller is symbolic, meaning that it only
requires knowledge of mp(z[t]), the currently occupied par-
tition of the system, which implies a degree of robustness to
measurement errors. At each step ¢, the controller, which
has internal state mft], receives the coarse measurement
q[t] = wp(x[t]) and applies the input g(m][t], ¢[t]). The con-
troller’s internal state is then updated by the finite mapping

A(mlt], qlt))-

Furthermore, the online memory and processing require-
ments are modest as the controller essentially consists of two
lookup tables, each of dimension |M| x |Q|, corresponding
to g and A. Even for very large O, we see that the online
computation time is low. The tradeoff is that the offline
computation of g and A can be costly.

For more general abstraction techniques that accommo-
date, for example, continuous input sets, a controller obtained
from the abstraction may not be applicable to the original
concrete system. Furthermore, if the relationship between the
abstraction and the concrete system is not taken advantage of
fully, one may obtain a controller that is not symbolic and,
moreover, requires significantly more online computational
resources. These intricacies have been the focus of recent
research [48], [61].

Finally, Proposition 2 is based on the abstraction 7" which
overapproximates the behavior of the concrete system. While
this overapproximation is sufficient for ensuring correctness
when a controller for the abstraction exists, our attempt to
synthesize a controller from the abstraction may fail due
to spurious trajectories that are nonexistent in the concrete
system. This conservatism is unavoidable for all but a few
limited classes of dynamical systems that are amenable to
finite bisimulation [10].

V. FINITE ABSTRACTIONS OF TRAFFIC FLOW
NETWORKS FROM MIXED MONOTONICITY

In Section III, we defined finite state abstractions for
discrete-time dynamical systems as a finite transition sys-
tem that overapproximates the behavior of the underlying
concrete dynamical system. In Section IV, we developed an
algorithm to synthesize a control strategy for the concrete
system from the overapproximating abstraction. The devel-
opments of these two sections were generally applicable to
any discrete-time dynamical system, but we did not address
the difficulties of computing the finite state abstraction; this
is the focus of the present section.

A. Mixed Monotone Dynamical Systems

We again consider the dynamical system z[t + 1] =
F(x[t],u[t],d[t]) as in (14) and partition P = {X;}4c0
for which we wish to construct a finite state abstraction
T = (Q,U,4). If we can calculate an overapproximation
of the one-step reachable set from X, under input u,

Ryu 2 {F(z,u,d) | x € X,;,d € D}, (24)

then we obtain a transition map ¢ satisfying (17) from

¢ €6(q,u) < XyNRy, #0. (25)

That is, we use an overapproximation of the one-step reach-
able set from each partition for each input to construct a
finite state abstraction.

Certain classes of dynamical systems exhibit structure that
allows efficient reachable set computation. The well-studied
class of monotone systems possess a partial order over the
state space which is maintained along trajectories of the

system [35], [36], [62]. Ignoring disturbances, the system
x[t + 1] = F(«x[t]) is monotone if

1 <x9 = F(x1) < F(22) (26)

for all z;, z2. Throughout this paper, inequalities are inter-
preted elementwise so that < characterizes the partial order
induced by the positive orthant, although the definition of
monotonicity extends readily to general partial orders. The
ordering on trajectories implied by (26) allows us to bound
sets of trajectories by considering appropriate extremal tra-
jectories. For example, (26) implies that for any x such that
21 < x < x9, we have that F(z1) < F(x) < F(x2).
Therefore, an overapproximation for the reachable set of
the hyperrectangle with extreme points z; and x5 is another
hyperrectangle with extreme points F'(x1) and F'(x3).

In this paper, we focus on computing one-step reachable
sets for a class of mixed monotone systems which generalize
monotone systems. A dynamical system is mixed monotone
if the dependence of the update map F' on x and d can
be decomposed into increasing and decreasing dependencies
as we make precise in the definition below. We then show
that traffic flow networks are mixed monotone, allowing
us to efficiently compute finite state abstractions of traffic
networks.

Definition 8 (Mixed monotone system). The system (14) is
mixed monotone if there exists a function f : X2 xU xD? —
X such that the following conditions hold for all u € U:
Cl) Ve € X, Vd € D: F(z,u,d) = f((z,z),u, (d,d))
C2)Vz,Z,y c X and d,d,e € D: < T and d < aimplies
f(z,y),u, (de)) < f((Z,y), u,(d,e))
C3) Vx,y,y € X and d,e,e € D: y <7y and e < € implies
f((937g), U, (dvé)) < f((xvy)7u7 (d,g))
|

Mixed monotonicity may be extended to general partial
orders of X' and D [32]. We see that f((x,y),u, (d,e)) sat-
isfying C2—C3 is nondecreasing in « and d and nonincreasing
in y and e. A function f satisfying C1-C3 above is called a
decomposition function for F(x,u,d).

If f is differentiable, then we may replace C2—C3 with:
C2b) %((x,y),u, (d,e)) > 0 and %((m,y),u, (d,e)) > 0,
C3b) L ((2,9),u, (d,e)) < 0 and GL((z,y),u,(d,e)) <O,
which must hold for all z,y € X, d,e € D.

If f((z,y),u,(d,e)) = F(x,u,d) constitutes a decompo-
sition function satisfying C1-C3 above, we recover standard
characterizations of monotone systems with disturbances; see
[37]. Note that we do not require a notion of monotonicity
with respect to the controlled input u since we consider I/
to be a finite set, and we stipulate C1-C3 to hold for each
input u € U.

Finding a decomposition function to show mixed mono-
tonicity is often not straightforward. Below, we show that
a simple decomposition function exists when the Jacobian
matrices OF/Ox and OF/dd are sign-constant, that is, the
sign of each entry of the Jacobian matrices does not change
as = and d varies.

F(Z,u,d)

F(z,u,d)
Monotone System

(a)

T d
P) <
z da 7 I

f(z,7), u, (d, d))
Mixed Monotone System

(b)

Fig. 8. Mixed monotonicity enables efficient overapproximation of reach-
able sets. (a) For the special case of monotone systems, the hyperrectangle
defined by evaluating the update map F' at the extreme points (z,d) and
(%, d) contains the set of reachable states from the hyperrectangle defined
by z and T under a disturbance taken from the hyperrectangular set defined
by d and d. (b) An analogous result holds in the general mixed monotone
case when the decomposition function is evaluated at two extreme points.

Proposition 3 ([32, Proposition 1]). Consider system (14)
and assume F' is continuously differentiable, and further
assume X and D are hyperrectangles, that is, there exists
1 2% € R™ such that X = {x | 2! < z < 22}, and
similarly for D. If for all w € U and all i € {1,...,n}

Vie{l,...,n}

F,
Juiy; € {-1,1}: m,ja (@, u,d) >0 Ve, d

T 27
J
and
vie{l,...,m}
OF;
Jv; ;€ {—1,1}: Vi’jaj(x’u’d) >0 Vaz,d (28)
J

then (4) is mixed monotone.

The construction of the decomposition function from the
sufficient condition given in Proposition 3 follows naturally
from the sign-constant structure of the Jacobian matrices. In
particular, the ith element of the decomposition function, f;,
is defined to be the ith element of the update map F; where
we exchange y; for z; if 0F;/0x; <Oforallz € X,d € D,
and we similarly exchange e; for d; if 0F;/0d; < 0 for all
re X,deD.

Proposition 3 is analogous to the well-known Kamke
condition for monotone systems whereby (26) holds if and
only if 0F;/0xz; > 0 for all 4, j [36, Section 3.1], although
the condition given in Proposition (3) is only a sufficient
condition for mixed monotonicity. Finally, while Proposition
3 assumed F' to be continuously differentiable, the results
in fact hold if ' is continuous and piecewise differentiable,
and thus nondifferentiable on a set of measure zero as is the
case for traffic networks.

B. One Step Reachable Sets of Mixed Monotone Systems

One of the most important properties of mixed monotone
systems is that we are able to overapproximate reachable sets

by evaluating the decomposition function at only two points.
In particular, given a hyperrectangle of initial conditions and
a hyperrectangular disturbance set, the set of states reachable
in the next step lies within a hyperrectangle defined by
evaluating the decomposition function f at two extreme
points as illustrated in Fig. 8 and made precise in the
following:

Theorem 1. Let (14) be a mixed monotone system with
decomposition function f((x,y),u,(d,e)). Given z,T € X

and d,d € D with x < T and d < d. Then for all uw € U,
f((&,f);u, (d7a)) S F(J},U,d) S f((fag)v’uﬁ (aad))
Vee{z|z<ax<zT}Vde{d|d<d<d} (29)

Returning to Fig. 5(a), mixed monotonicity allows us to
efficiently compute a hyperrectangle that bounds the darkly
shaded one-step reachable set from the indicated partition.

Example 1 (continued). Consider again the network in Fig.
4(21) with ﬁlg = ﬂlg =]./2, 12 = (13 — 1, and let
9" (z¢) = max{cy, ¢} where (c1,c2,c3) = (20,5,30) for
all £, ®i"(z4) =50 —zy forall {,and D = {d | d < d < d}
where d = [0 5 0]7 and d = [0 8 5]7. Let Z, = {x | z <
x < T} where z = [40 15 30]7 and T = [40 30 45]7. We
have

f((z,T),u,(d,d)) = [20 20 10]" (30)
f(@,2),u, (d,) = [30 43 25]". 31)
Then, by Theorem 1,
{F(z,u,d) |z €I, de D} CR, (32)
where
R2 | f((@.7)u, (d,d) < o' < (7 2),u, (8@)3.3)

Fig. 4(b) plots Z,, R, and the actual reachable set projected
in the xo vs. x3 plane.
|

The partition P = {X, }4cq is said to be a hyperrectan-
gular partition if each X is a hyperrectangle, that is, for all
q € Q there exists aj < b} for all £ € £ such that

%, = TLlat.)
teL
as in Fig. 5. We let a? = {a}}scr and b7 = {b]}sc. and
assume D has the form

D={d|d<d<d}

(34)

(35)

for some d,d € R™; the results extend readily to the case
where D is the union of hyperrectangles.

The reachability result of Theorem 1 justifies our interest
in finite abstractions induced by hyperrectangular partitions
for mixed monotone systems. In particular, given a hyper-
rectangular partition of a mixed monotone system, let

A
R(Zau -

Then, by Theorem 1, R, , satisfies (24). The following
theorem now follows readily:

Theorem 2 ([32, Theorem 2]). Consider the mixed monotone
system (14) with hyperrectangular partition P = {X,;},co.
Let § : Q x U — 22 be defined as in (25) with R, ,, given
by (36). Then T = (Q,U,) is a finite state abstraction of
(14).

For hyperrectangular partitions, it is computationally
straightforward to identify whether R,, N Xy = 0 by
performing two componentwise comparisons of vectors of
length |£|, namely, comparing f((a?,b?),u, (d,d)) to b7
(resp. f((b9,a%),u,(d,d)) to a?). Thus, it is simple to
compute §(q,u) for each ¢ and u from (25). See [32] for
details regarding the computational requirements of obtain-
ing a finite state abstraction from a hyperrectangular partition
using Theorem 2.

C. Mixed Monotonicity in Traffic Networks

We return to the traffic network dynamics (7)—(8). Under
a mild technical assumption that g—g(x) >0 forall z e X
and all ¢ € L, that is, the diagonal elements of the Jacobian
are nonnegative (see [31], [32] for conditions on ayg, Brk,
O (z,) and ®P(x,) that guarantee this assumption), the
following theorem establishes mixed monotonicity:

Theorem 3. Assume the traffic network dynamics are such
that %(m) > 0 forall x € X and all £ € L. Then the
traffic network dynamics are mixed monotone.

Theorem 3 is proved for the special case when ®7'(z)
and ®9"(x) are piecewise linear in [31, Theorem 1], and
a more general case in [32, Proposition 3]. The proofs of
[31, Theorem 1] and [32, Proposition 3] demonstrate sign
constancy of the entries of the Jacobians OF/0x and 0F/dd
and then apply Proposition 3.

The significant step in the proof is establishing that
9fe(x) < O forall z if £ # k and 7(¢) = 7(k). This can
be observed in (8) by noting that the incoming flow to link
¢ depends on the outgoing flow of upstream links, which in
turn may be limited by the supply of another downstream link
k # £. The physical interpretation of this case is as follows.
When the supply of downstream link £ is less than upstream
demand due to congestion, link % inhibits flow through the
junction. Therefore, an increase in the number of vehicles on
link £ would worsen the congestion (decrease supply), and
vehicles destined for link & would further block flow to other
outgoing links (in particular, link ¢), causing a reduction in
the incoming flow to these links. That is, the derivative of
incoming flow to a downstream link ¢ # k with respect to
link & is nonzero and, in particular, is negative since <I>i,§ is
a decreasing function.

This phenomenon of downstream traffic blocking flow to
other downstream links at a diverging junction is referred
to as the first-in-first-out (FIFO) property, [40], [63], and
it is a feature of traffic flow that has been observed even
on wide freeways with many lanes, [64], [65]. Because

gTFz(m) < 0 for ¢, k at a diverging junction, we have

that traffic dynamics are not monotone in general since,
for monotone systems, each entry of the Jacobian matrix is
nonnegative. Some of the recent literature in dynamical flow
models propose alternative modeling choices for diverging
junctions, for example, [66], [67], which ensures that the
resulting dynamics are monotone but do not exhibit the FIFO

property.
D. Abstractions from Piecewise Linearity

We return to the special case for which the supply and
demand functions are piecewise linear, resulting in the piece-
wise affine dynamics (13). We have already seen that we may
construct a finite state abstraction by exploiting the mixed
monotonicity of the dynamics. However, as noted above,
by overapproximating one-step reachable sets, we introduce
conservatism in the abstraction. We now propose an alterna-
tive abstraction technique that relies on the piecewise affine
dynamics.

For piecewise affine dynamical systems, we may compute
the exact one-step reachable set from a polytope as the image
of the polytope under an affine transformation, which is itself
a polytope, as suggested in Fig. 5. From this observation,
we propose a modification to the above finite abstraction as
developed in [23].

We recall the formulation for the piecewise affine case
for which we identified a partition P = {X,},co such
that each X, is a polytope and the dynamics are affine
in X;. To construct a finite state abstraction, we again
start with a partition of the domain X. For convenience
of notation, we consider the same partition P induced by
the dynamics, however we may easily consider a refinement
P = {X,}4eo of P satisfying X, C X, for some ¢ € Q
for all ¢ € Q'. We consider the same finite input set U
as before and now assume D is an arbitrary polytope. We
then compute the exact one-step reachable set Rflff‘f‘ for
each ¢ € Q and u € U using polyhedral operations, and
then determine the set §(q,u) £ {¢' | Xy N R £ 0},
completing the construction of the finite state abstraction.
This approach is used to compute finite abstractions of
freeway network models in [43].

There are several advantages to this approach; first, we
may consider arbitrary polyhedral partitions P, as well
as consider D to be a general polytope. In addition, the
exact reachable set computation ensures that there are no
spurious one-step transitions in the finite state abstraction.
However, there are a number of drawbacks. Most seriously,
computing the one-step reachable set and determining the
set of intersected partitions requires operations that scale
exponentially with the dimension of the state space of the
concrete system [68], [69], which is |£| for traffic networks.
For low dimensional systems, this computation is efficient
as compared to more general reachable set computation
techniques, but quickly becomes intractable even for systems
of modest size. In contrast, over-approximating the reachable
set using mixed monotonicity always requires evaluating
the decomposition function at only two points, regardless
of the dimension of the state space. Additionally, while

L 9 C 5 | R

| 4 3 1
1

Fig. 9. Example network with three signalized intersections and 5 links,
denoted with arrows and numbered as shown. Links 1, 4, and 5 direct
exogenous traffic onto the network, and at each time step, the exogenous
arrivals are assumed to be within the disturbance set D. If the queues on
links 2 and 3 are long, they will block flow from links 1, 4, and 5. At each
time step, the signal in the center actuates link 1 (“green” mode) or actuates
links 4 and 5 simultaneously (“red” mode). The left (resp. right) signal
actuates link 2 (resp. link 3) if in “green” mode and none of the modeled
links if in “red” mode. We synthesize a control strategy that satisfies the
LTL formula in (41).

exact reachable sets eliminate one-step spurious trajectories,
more general spurious trajectories remain, as discussed in
Section III-B. Furthermore, as mentioned above, we may
easily modify the abstraction algorithm for mixed monotone
systems to allow D to be a union of hyperrectangles and
thus can suitably approximate more general disturbance sets.
Finally, we reiterate that this alternative abstraction approach
requires piecewise affine dynamics, while the mixed mono-
tone approach applies to a much more general class of
systems.

VI. CASE STUDY

As a case study, we consider the network in Fig. 9 with five
links, £ = {1,2,3,4,5}, and three signalized intersections
which we denote by “L”, “C”, and “R” for the left, center,
and right intersections as they appear in Fig. 9. The signal in
the center either actuates link 1 (“green” mode), or actuates
links 4 and 5 simultaneously (“red” mode). The left (resp.
right) signal actuates link 2 (resp. link 3) in “green” mode,
and actuates no links in “red” mode (for example, some
unmodeled link(s) are actuated in this mode). It follows
that [U{| = 8 to capture the eight possible combinations of
red/green for the three signals. Time is discretized so that
one time step is 15 seconds.

Links 1, 4, and 5 direct exogenous traffic onto the
network. To this end, we assume the disturbance d[t] =
[d1 dy ds dy ds)T[t] is such that

dt] eD2{d|0<d<[150000]"}
u{d|0<d<[00015157T},

(37
(38)

for all ¢ > 0, that is, at each time step, up to 15 vehicles
arrive at the queue on link 1, or up to 15 vehicles each arrives
at the queues on links 4 and 5. We assume that traffic divides
evenly from link 1 to links 2 and 3 so that 515 = 813 = 0.5,
and further assume (55 = B43 = 0.6. Furthermore, a5y =
43 = aa = a5 = 1. The queue capacity is 40 vehicles so
that ;" = 40 for all £.

We take

P9 (xy) = min{zy, o} (39)

O (20) = 2y — 2y (40)

where we assume ¢, = 20 is the saturation flow for all /.
We see that, akin to Example 1, flow from links 1, 4, and 5
may be blocked by the queues on links 2 and 3. Therefore
the dynamics are not monotone but are mixed monotone as
in Theorem 3.

We wish to find a traffic signal control strategy so that the
closed loop dynamics satisfy the following LTL objective:

Y =191 NP2 N3N\ py (41)

where
1 = OO (left signal is “red”) (42)
2 = OO (right signal is “red”) 43)
ps=00(A (2 <30) (44)

i€{1,4,5}

Y4 = D((J?Q >30V x3 > 30) ﬁo(aﬁg <10Az3 < 10))
(45)

We interpret (42)—(45) as follows: @5 (resp. (2) is “infinitely
often, the left (resp. right) signal is red”, o3 is “eventually,
the queue on links 1, 4, and 5 have fewer than 30 vehicles and
this remains true for all future time”, and ¢, is “whenever
the queue on link 2 or link 3 exceeds 30 vehicles, at some
future time, both queues have less than 10 vehicles”.

To synthesize a control strategy, we first obtain a hy-
perrectangular partition of the state space by introducing a
gridding of X = [, [0, 2,"] C R®. Specifically, we divide
[0, z,""] into the following sets of intervals:

Q¢ = {[0,15], (15, 20], (20, 25], (25, 30], (30, 35], (35, 40]},

e {1,4,5}
(46)
Q¢ = {[0,10], (10, 20], (20, 30], (30, 40]}, e {2,3}.
47)
Then we take
o=J]@ (48)

LeLl

to index the induced hyperrectangular partition so that, for
q=(¢"¢°,¢* ¢*,¢°) € Q with ¢" € Qy, we have

Xq:qlxq2xq3><q4><q5§R5. 49)

The resulting transition system has |Q] = [],c, Q¢ =
3456 states. Building the transition system using the mixed
monotone properties of the dynamics takes 35.2 seconds on
a standard laptop. The average number of transitions from
a given partition under a particular input is 73.9. Notice
that ¢ includes specifications on the input, specifically, ¢
and o impose conditions on the left and right signals. To
accommodate specifications over I/, we must augment our

transition system to include the last applied input as a state
variable; the details are omitted but are straightforward and
the procedure may be found in [31]. The final transition
system that models the behavior of our concrete system then
has 8 x 3456 = 27648 states.

The LTL specification is transformed into a Rabin au-
tomaton with 29 modes and one acceptance pair using the
ltl2dstar tool [56]. Solving the resulting Rabin game
takes 42.8 minutes on a standard laptop and results in a
control strategy such that the specification is satisfied from
any initial condition. We plot a resulting trace of the traffic
network dynamics in Fig. 10. To produce the traces, a random
disturbance input is synthesized satisfying (37) for which
larger disturbances were favored.

Fig. 10(a) shows a resulting trace using the synthesized,
correct-by-design control strategy. We see that ¢ and o
are both satisfied since the left and right signals repeatedly
switch to the “red” mode; the switching is done in such
a way to ensure that ¢4 is satisfied. To accommodate 3,
the signaling mode at the center intersection responds to the
present conditions which depend on the particular realization
of the disturbance input.

In Fig. 10(b), a naive control strategy is used that satisfies
(1 and o by using a cyclic control strategy with period 4.
This strategy may be considered reasonable since it spends
limited time in the “red” mode at the left and right signals,
and evenly divides the time between “green” and “red”
modes at the center signal. However, this fixed strategy is
unable to react to the realized disturbance and does not
satisfy 3. Furthermore, even if this naive strategy happens
to satisfy ¢y, it is difficult to verify this with certainty. The
same initial condition and disturbance input is used in both
cases in Fig. 10.

In principle, we could use the alternative abstraction
method that relies on the piecewise affine dynamics. How-
ever, even with the relatively modest state space dimension
of |£] = 5, computing the finite state abstraction would be
cost prohibitive as it would require |U/||Q| = 27648 one-
step reachable set computations and as many as |[U||Q|? ~
9.6 x 107 polyhedral intersection operations to compute &. In
contrast, computing the finite state abstraction using mixed
monotonicity as above takes less than one minute, negligible
compared to the Rabin game synthesis computation, and the
mixed monotonicity technique has been applied to traffic
networks with as many as ten links [31]. Ongoing research
for further scalability is discussed in the next section.

VII. CONCLUSIONS

In this tutorial paper, we have described a formal methods
approach to control of traffic flow networks. First, we consid-
ered a dynamical model that captures important traffic flow
phenomena such as blocked flow due to congestion. Several
simplifying assumptions were made to arrive at this model;
for example, we adopt a “single commodity” perspective
whereby all vehicles are assumed to behave similarly. In
reality, multiple populations of drivers exist. For instance,
truck and freight traffic occupy more physical space and

(=20 |
(== -}

o

» K A

Number of Vehicles in Queue

[==}

0 5 10 15 20 25 30 35

Signal
QO

(S = B |
S & o

=

30

Number of Vehicles in Queue

Signal
FUIF‘O
lll
-k
Ill
lll
| |
| |
| |
| |
| |

o
S
-
o
-
=3
53
o
&
@
o
&

Time Period
(b)

Fig. 10. Sample trajectories of the network in Figure 9. (a) The applied
control at each time step is determined by the correct-by-design control
strategy obtained using the formal abstraction and synthesis approach
presented in this article. As suggested by the sample trajectory, the closed-
loop behavior of the concrete system is guaranteed to satisfy the LTL
formula (41). (b) Sample trajectory when a fixed, cyclic control strategy
is applied to the network. The initial condition and disturbance input are
the same as in the previous case. It is apparent that the LTL formula (41)
is not satisfied for this naive controller.

thus links can accommodate fewer vehicles of this type.
Accommodating such additions increases model complex-
ity. Developing traffic flow models that are simple enough
for computation and analysis yet capture required physical
considerations is an important area of future research.

Next, we reviewed a general approach to formal synthesis
of finite memory controllers for discrete-time dynamical
systems that relies on a finite state abstraction that overap-
proximates the underlying dynamics. Specifically, for each
input, the abstraction enables at least the transitions that are
possible in the concrete system. This approach ensures that
a controller synthesized for the abstraction guarantees that
the concrete system satisfies the same specifications.

The general paradigm of abstracting physical control sys-
tems to finite state transition systems for formal synthesis
and verification is an important and active area of research.
Numerous extensions and alternative approaches have been
developed that accommodate a broad range of cases includ-

ing continuous-time dynamics, continuous inputs, overlap-
ping/uncertain state and input quantization, and probabilistic
systems. Each of these cases poses unique challenges, and
care must be taken to ensure that a controller synthesized
from the abstraction can be effectively and efficiently applied
to the concrete system.

An overarching concern is scalability; many abstraction
and formal synthesis techniques do not apply to systems
with more than two or three state dimensions due to the
need to compute reachable sets. In this tutorial paper, we
have shown that structural properties of the dynamics such
as mixed monotonicity and piecewise linearity ameliorate
some of these issues. Mixed monotonicity is a particularly
powerful structural property since the one-step reachable
set is overapproximated by computing the decomposition
function at only two points regardless of the state space
dimension, and this approach has been applied to systems
with up to ten state dimensions.

Nonetheless, reachable set computation is only one of the
difficulties in efficient finite state abstraction; for example,
the size of the state space partition generally increases
exponentially with the state space dimension. An important
future direction of research is computing relatively small
partitions that are still sufficient for formal synthesis. One
approach is to compute the partitions online so that only
a relevant subset of the state space is partitioned. Another
approach is to methodically adjust the granularity of the
partition; for example, in traffic flow networks, it is plausible
that regions of the state space corresponding to few vehicles
in the network do not need to be finely partitioned. This
idea appears to a degree in the case study, where the first
interval of Q in (46) is the relatively large interval [0, 15].
Other approaches include avoiding partitioning the state
space altogether [70], [71], an idea closely related to ¢-
complete approximations [11], [16], [17].

Another important consideration for scalability is compo-
sitionality in which a composite system is viewed as the
interconnection of a collection of subsystems. A controller
for the composite system is then obtained by synthesizing
controllers for each subsystem. Compositional synthesis has
emerged as an important method for software verification and
synthesis [49], [72]. One successful approach is the assume-
guarantee framework [73] whereby each subsystem assumes
a certain behavior from neighboring systems and symmet-
rically guarantees a prescribed behavior to its neighbors.
These assumptions and guarantees reduce the synthesis task
to decoupled subproblems of manageable complexity. Such
an approach is well-suited for traffic networks that may be
naturally divided into neighborhoods or towns interconnected
via a few roads. This approach is currently being explored
[74].

A key thesis of this tutorial paper is that in order to obtain
tractable and scalable formal methods for physical systems,
the underlying structure of the systems must be identified
and exploited. We have shown that traffic networks are a
particularly rich example of physical systems with extensive
structure induced by topology, physics, and phenomeno-

logical properties. By articulating key structural properties
inherent to traffic networks with system-theoretic notions,
we were able to develop general theory and algorithms that
are more broadly applicable.

REFERENCES

[1] A. A. Kurzhanskiy and P. Varaiya, “Traffic management: An outlook,”
Economics of Transportation, 2015.

[2] R. Dowling and S. Ashiabor, “Traffic signal analysis with varying

demands and capacities, draft final report,” Tech. Rep. NCHRP 03-

97, Transportation Research Board, 2012.

D. Schrank, B. Eisele, T. Lomax, and J. Bak, “2015 annual urban

mobility scorecard,” tech. rep., Texas Transportation Institute and

Inrix, Inc., 2015.

E. Haghverdi, P. Tabuada, and G. J. Pappas, “Bisimulation relations for

dynamical, control, and hybrid systems,” Theor. Comput. Sci., vol. 342,

pp. 229-261, Sept. 2005.

P. Tabuada and G. Pappas, “Linear time logic control of discrete-time

linear systems,” IEEE Transactions on Automatic Control, vol. 51,

no. 12, pp. 1862-1877, 2006.

[6] A. Girard and G. J. Pappas, “Approximation metrics for discrete

and continuous systems,” IEEE Transactions on Automatic Control,

vol. 52, no. 5, pp. 782-798, 2007.

G. Pola, A. Girard, and P. Tabuada, “Approximately bisimilar symbolic

models for nonlinear control systems,” Automatica, vol. 44, no. 10,

pp. 2508-2516, 2008.

A. Girard, G. Pola, and P. Tabuada, “Approximately bisimilar symbolic

models for incrementally stable switched systems,” IEEE Transactions

on Automatic Control, vol. 55, no. 1, pp. 116-126, 2010.

[9] M. Zamani, P. Mohajerin Esfahani, R. Majumdar, A. Abate, and
J. Lygeros, “Symbolic control of stochastic systems via approximately
bisimilar finite abstractions,” IEEE Transactions on Automatic Control,
vol. 59, pp. 3135-3150, Dec 2014.

[10] P. Tabuada, Verification and control of hybrid systems: a symbolic
approach. Springer, 2009.

[11] T. Moor and J. Raisch, “Supervisory control of hybrid systems within
a behavioural framework,” Systems & control letters, vol. 38, no. 3,
pp. 157-166, 1999.

[12] T. Moor and J. Raisch, “Abstraction based supervisory controller
synthesis for high order monotone continuous systems,” in Modelling,
Analysis, and Design of Hybrid Systems, pp. 247-265, Springer, 2002.

[13] M. Kloetzer and C. Belta, “Dealing with nondeterminism in symbolic
control,” in Hybrid Systems: Computation and Control, pp. 287-300,
Springer, 2008.

[14] G. Reissig, “Computing abstractions of nonlinear systems,” [EEE
Transactions on Automatic Control, vol. 56, no. 11, pp. 2583-2598,
2011.

[15] J. Liu and N. Ozay, “Abstraction, discretization, and robustness in
temporal logic control of dynamical systems,” in Proceedings of the
17th international conference on Hybrid systems: computation and
control, pp. 293-302, ACM, 2014.

[16] A.-K. Schmuck and J. Raisch, “Asynchronous ¢-complete approxima-
tions,” Systems & Control Letters, vol. 73, pp. 67-75, 2014.

[17] A. Schmuck, P. Tabuada, and J. Raisch, “Comparing asynchronous
¢-complete approximations and quotient based abstractions,” arXiv
preprint arXiv:1503.07139, 2015.

[18] H. Kress-Gazit, G. Fainekos, and G. Pappas, “Temporal-logic-
based reactive mission and motion planning,” [EEE Transactions on
Robotics, vol. 25, pp. 1370-1381, Dec 2009.

[19] G.E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas, “Temporal
logic motion planning for dynamic robots,” Automatica, vol. 45, no. 2,
pp. 343-352, 2009.

[20] M. Kloetzer and C. Belta, “Automatic deployment of distributed
teams of robots from temporal logic motion specifications,” IEEE
Transactions on Robotics, vol. 26, pp. 48-61, Feb 2010.

[21] J. Fu, N. Atanasov, U. Topcu, and G. J. Pappas, “Optimal tempo-
ral logic planning in probabilistic semantic maps,” arXiv preprint
arXiv:1510.06469, 2015.

[22] J. Liu, N. Ozay, U. Topcu, and R. Murray, “Synthesis of reactive
switching protocols from temporal logic specifications,” IEEE Trans-
actions on Automatic C()ntrql, vol. 58, pp. 1771-1785, July 2013.

[23] B. Yordanov, J. Tamova, 1. Cerna, J. Barnat, and C. Belta, “Temporal
logic control of discrete-time piecewise affine systems,” IEEE Trans-
actions on Automatic Control, vol. 57, no. 6, pp. 1491-1504, 2012.

[3

=

[4

=

[5

[t}

[7

[8

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

B. Yordanov and C. Belta, “Formal analysis of discrete-time piecewise
affine systems,” IEEE Transactions on Automatic Control, vol. 55,
no. 12, pp. 2834-2840, 2010.

T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
control for temporal logic specifications,” in Proceedings of the 13th
ACM International Conference on Hybrid Systems: Computation and
Sontrol, pp. 101-110, ACM, 2010.

E. A. Gol, M. Lazar, and C. Belta, “Temporal logic model predictive
control,” Automatica, vol. 56, pp. 78-85, 2015.

E. Wolff, U. Topcu, and R. Murray, “Robust control of uncertain
Markov decision processes with temporal logic specifications,” in
Proceedings of the 51st IEEE Conference on Decision and Control,
pp. 3372-3379, 2012.

J. Fu and U. Topcu, “Probably approximately correct MDP learn-
ing and control with temporal logic constraints,” arXiv preprint
arXiv:1404.7073, 2014.

X. C. Ding, S. L. Smith, C. Belta, and D. Rus, “Optimal control
of Markov decision processes with linear temporal logic constraints,”
IEEE Transactions on Automatic Control, 2014.

D. Sadigh, E. S. Kim, S. Coogan, S. S. Sastry, and S. A. Seshia,
“A learning based approach to control synthesis of Markov decision
processes for linear temporal logic specifications,” in IEEE Conference
on Decision and Control, pp. 1091-1096, 2014.

S. Coogan, E. A. Gol, M. Arcak, and C. Belta, “Traffic network control

from temporal logic specifications,” IEEE Transactions on Control of

Network Systems, 2015. Accepted for publication, arXiv:1408.1437.
S. Coogan and M. Arcak, “Efficient finite abstraction of mixed mono-
tone systems,” in Proceedings of the 18th International Conference on
Hybrid Systems: Computation and Control, pp. 58-67, 2015.

S. Coogan and M. Arcak, “A compartmental model for traffic networks
and its dynamical behavior,” IEEE Transactions on Automatic Control,
pp- 2698-2703, 2015.

H. Smith, “Global stability for mixed monotone systems,” Journal of

Difference Equations and Applications, vol. 14, no. 10-11, pp. 1159-
1164, 2008.

M. W. Hirsch, “Systems of differential equations that are competitive
or cooperative II: Convergence almost everywhere,” STAM Journal on
Mathematical Analysis, vol. 16, no. 3, pp. 423-439, 1985.

H. L. Smith, Monotone dynamical systems: An introduction to the the-
ory of competitive and cooperative systems. American Mathematical
Society, 1995.

D. Angeli and E. Sontag, “Monotone control systems,” IEEE Trans-
actions on Automatic Control, vol. 48, no. 10, pp. 1684—-1698, 2003.
S. Coogan, E. Aydin Gol, M. Arcak, and C. Belta, “Controlling a net-
work of signalized intersections from temporal logical specifications,”
in Proceedings of the 2015 American Control Conference, pp. 3919—
3924, 2015.

C. F. Daganzo, “The cell transmission model: A dynamic represen-
tation of highway traffic consistent with the hydrodynamic theory,”
Transportation Research Part B: Methodological, vol. 28, no. 4,
pp. 269-287, 1994.

C. F. Daganzo, “The cell transmission model, part II: Network traffic,”
Transportation Research Part B: Methodological, vol. 29, no. 2,
pp. 79-93, 1995.

P. Varaiya, “Max pressure control of a network of signalized inter-
sections,” Transportation Research Part C: Emerging Technologies,
vol. 36, pp. 177-195, 2013.

S. Coogan and M. Arcak, “Stability of traffic flow networks with a
polytree topology,” Automatica, vol. 66, pp. 246-253, 2016.

S. Coogan and M. Arcak, “Freeway traffic control from linear temporal
logic specifications,” in Proceedings of the 5th ACM/IEEE Interna-
tional Conference on Cyber-Physical Systems, pp. 3647, 2014.

G. Gomes, R. Horowitz, A. A. Kurzhanskiy, P. Varaiya, and J. Kwon,
“Behavior of the cell transmission model and effectiveness of ramp
metering,” Transportation Research Part C: Emerging Technologies,
vol. 16, no. 4, pp. 485-513, 2008.

Transportation Research Board, “Highway capacity manual,” Wash-
ington, DC, 2000.

J. TGmové, B. Yordanov, C. Belta, I. Cernd, and J. Barnat, “A
symbolic approach to controlling piecewise affine systems,” in 49th
IEEE Conference on Decision and Control (CDC), pp. 4230-4235,
Dec 2010.

J. C. Willems, “Paradigms and puzzles in the theory of dynamical
systems,” IEEE Transactions on Automatic Control, vol. 36, no. 3,
pp. 259-294, 1991.

[48]

[49]
[50]
[51]
[52]
[53]
[54]
[55]
[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

G. Reissig, A. Weber, and M. Rungger, “Feedback refinement re-
lations for the synthesis of symbolic controllers,” arXiv preprint
arXiv:1503.03715, 2015.

E. M. Clarke, O. Grumberg, and D. A. Peled, Model checking. MIT
press, 1999.

C. Baier and J. Katoen, Principles of Model Checking. MIT Press,
2008.

E. A. Lee and S. A. Seshia, Introduction to embedded systems: A
cyber-physical systems approach. LeeSeshia.org, 2011.

A. Pnueli, “The temporal logic of programs,” in /8th Annual Sympo-
sium on Foundations of Computer Science, pp. 46-57, IEEE, 1977.
R. McNaughton, “Testing and generating infinite sequences by a finite
automaton,” Information and control, vol. 9, no. 5, pp. 521-530, 1966.
S. Safra, “On the complexity of w-automata,” in 29th Annual Sympo-
sium on Foundations of Computer Science, pp. 319-327, 1988.

W. Thomas, “Automata on infinite objects,” Handbook of theoretical
computer science, vol. 2, 1990.

J. Klein, “1t12dstar-LTL to deterministic Streett and Rabin au-
tomata,” 2005. http://www.ItI2dstar.de/.

O. Kupferman and M. Y. Vardi, “Weak alternating automata and tree
automata emptiness,” in Proceedings of the Thirtieth Annual ACM
Symposium on Theory of Computing, STOC °98, (New York, NY,
USA), pp. 224-233, ACM, 1998.

F. Horn, “Streett games on finite graphs,” Proc. 2nd Workshop Games
in Design Verification (GDV), 2005.

N. Piterman and A. Pnueli, “Faster solutions of Rabin and Streett
games,” in 21st Annual IEEE Symposium on Logic in Computer
Science, pp. 275-284, 2006.

E. A. Emerson, “Automata, tableaux, and temporal logics,” in Logics
of Programs, pp. 79-88, Springer, 1985.

G. Reissig and M. Rungger, “Feedback refinement relations for
symbolic controller synthesis,” in IEEE Conference on Decision and
Control, pp. 88-94, Dec 2014.

M. Hirsch and H. Smith, “Monotone maps: a review,” Journal of
Difference Equations and Applications, vol. 11, no. 4-5, pp. 379-398,
2005.

A. A. Kurzhanskiy and P. Varaiya, “Active traffic management on road
networks: A macroscopic approach,” Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences,
vol. 368, no. 1928, pp. 4607-4626, 2010.

J. C. Munoz and C. F. Daganzo, “The bottleneck mechanism of
a freeway diverge,” Transportation Research Part A: Policy and
Practice, vol. 36, no. 6, pp. 483-505, 2002.

M. J. Cassidy, S. B. Anani, and J. M. Haigwood, “Study of freeway
traffic near an off-ramp,” Transportation Research Part A: Policy and
Practice, vol. 36, no. 6, pp. 563-572, 2002.

G. Como, E. Lovisari, and K. Savla, “Throughput optimality and over-
load behavior of dynamical flow networks under monotone distributed
routing,” IEEE Transactions on Control of Network Systems, vol. 2,
pp. 57-67, March 2015.

E. Lovisari, G. Como, and K. Savla, “Stability of monotone dynamical
flow networks,” in Proceedings of the 53rd Conference on Decision
and Control, pp. 2384-2389, 2014.

A. Kurzhanskiy and P. Varaiya, “Computation of reach sets for
dynamical systems,” in The Control Systems Handbook, ch. 29, CRC
Press, second ed., 2010.

M. Herceg, M. Kvasnica, C. Jones, and M. Morari, “Multi-
Parametric Toolbox 3.0,” in Proceedings of the European Control
Conference, (Ziirich, Switzerland), pp. 502-510, July 17-19 2013.
http://control.ee.ethz.ch/~mpt.

M. Zamani, A. Abate, and A. Girard, “Symbolic models for stochastic
switched systems: A discretization and a discretization-free approach,”
Automatica, vol. 55, pp. 183-196, 2015.

E. Le Corronc, A. Girard, and G. Goessler, “Mode sequences as sym-
bolic states in abstractions of incrementally stable switched systems,”
in Proceedings of the 52nd IEEE Conference on Decision and Control,
pp. 3225-3230, 2013.

S. Berezin, S. Campos, and E. M. Clarke, Compositional reasoning
in model checking. Springer, 1998.

O. Grumberg and D. E. Long, “Model checking and modular verifi-
cation,” ACM Trans. Program. Lang. Syst., vol. 16, pp. 843-871, May
1994.

E. S. Kim, M. Arcak, and S. A. Seshia, “Compositional controller
synthesis for vehicular traffic networks,” in IEEE Conference on
Decision and Control, 2015.

