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Contraction-based Observers using non-Euclidean Norms

with an Application to Traffic Networks

Samuel Coogan and Murat Arcak

Abstract

In this note, we study Luenberger-type full-state observers for nonlinear systems using con-
traction theory. We show that if the matrix measure of a suitably defined Jacobian matrix
constructed from the dynamics of the system-observer interconnection is uniformly negative,
then the state estimate converges exponentially to the actual state. This sufficient condition
for convergence establishes that the distance between the estimate and state is infinitesimally
contracting with respect to some norm on the state-space. In contrast to existing results for
contraction-based observer design, we allow for contraction with respect to non-Euclidean norms.
Such norms have proven useful in applications. To demonstrate our results, we study the prob-
lem of observing vehicular traffic density along a freeway modeled as interconnected, spatially
homogenous compartments, and our approach relies on establishing contraction of the system-
observer interconnection with respect to the one-norm.

1 Introduction

A dynamical system is contractive if any two solutions exponentially converge to one another
[1, 2, 3]. The importance of contraction theory in observer design has been previously noted in
[1, 4, 5, 6, 7]. In [1], it is shown how contraction theory is applied for control synthesis and observer
design for several example systems. Contraction-based observer design has been proposed in [4, 5]
for a class of Lagrangian systems. The paper [6] establishes necessary and sufficient conditions
for an observer to ensure that the distance between system state and the observer estimate is
nonincreasing, and [7] proposes observer design for stochastic systems. In all cases, the contractive
properties are with respect to scaled Euclidean norms so that the resulting distance metric on the
state space is Riemannian.

In contrast, in this paper, we use the matrix measure as the basic tool for establishing contractive
properties, which accommodates arbitrary vector norms. Thus, this appears to be the first work
that proposes contraction-based observer design for non-Euclidean metrics. As seen in Section
3, such metrics (such as those based on the one-norm and infinity-norm) are natural for certain
applications such as traffic flow networks where the dynamics are modeled as a compartmental flow
network.

S. Coogan (sam.coogan@gatech.edu) is with the School of Electrical and Computer Engineering and the School
of Civil and Environmental Engineering at the Georgia Institute of Technology, Atlanta, GA.
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2 Problem Formulation

Consider the dynamical system

ẋ = f(t, x) (1)

y = g(t, x) (2)

with state x ∈ X ⊆ R
n for positively invariant and convex X , output y ∈ R

m, and t ∈ [0,∞). We
assume f(t, x) and g(t, x) are differentiable in x and that f(t, x) and g(t, x), as well as the Jacobian
matrices ∂f

∂x
(t, x) and ∂g

∂x
(t, x), are continuous in (t, x). When X is not an open set, we understand

this to mean that f(t, x) and g(t, x) can be extended to an open superset of X for which the above
conditions hold.

For L ∈ R
n×m, consider the Luenberger-type observer given by

˙̂x = f(t, x̂) + L(g(t, x̂)− g(t, x)). (3)

We assume that always x̂(t) ∈ X for all t ∈ [0,∞), that is, X × X is positively invariant for the
system-observer interconnection. Our objective is to establish that limt→∞ |x(t)− x̂(t)| = 0 for any
solution (x(t), x̂(t)) to the observer-system interconnection defined by (1)–(3) for some norm | · |
on R

n.
To that end, let | · | be a vector norm on R

n, and let ‖ · ‖ denote its induced matrix norm. For
A ∈ R

n×n, the matrix measure of A, denoted µ(A), is given by [8, 9]

µ(A) = lim
h→0+

1

h
(‖I + hA‖ − 1). (4)

The main result of this note, presented in Theorem 1 below, establishes a sufficient condition for
ensuring convergence of the estimator (3). In particular, if the matrix measure of a certain Jacobian
matrix induced by the system-observer dynamics is uniformly negative on X , then the dynamics
satisfy a contractive property that ensures global exponential stability of the zero estimation error
set {(x, x̂) ∈ X × X : x = x̂}.

Theorem 1. Let | · | be a norm on R
n and µ(·) its associated matrix measure. Consider the

system-observer interconnection given by (1)–(3). If

µ

(
∂f

∂x
(t, x) + L

∂g

∂x
(t, x)

)

≤ c (5)

for some c ∈ R for all x ∈ X and t ≥ 0, then

|x(t)− x̂(t)| ≤ ect|x(0) − x̂(0)| (6)

for any solution (x(t), x̂(t)) of the system-observer interconnection. In particular, if the above
condition holds for c < 0, then the zero estimation error set {(x, x̂) ∈ X × X : x = x̂} is globally
exponentially stable.

The proof of Theorem 1 uses the Clarke generalized derivative [10] to bound the time derivative
of a suitably defined Lyapunov function that is not differentiable everywhere. Basic definitions and
facts regarding the Clarke generalized derivative are contained in Appendix A.1. The main idea
of the proof is to show that an auxiliary system induced by the system-observer interconnection is
a contractive system; definitions and fundamental results for contractive systems are contained in
Appendix A.2. Convergence of the observer follows from the contractive properties of this auxiliary
system.
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Proof of Theorem 1. Define V (x, x̂) = |x− x̂|. Let S ⊂ R
n be the measure-zero set where | · | is not

differentiable, and for z 6∈ S, define d(z) := ∂
∂z
|z|. We claim, for all x, x̂ ∈ X and for almost all t,

V̇ (t, x, x̂) ≤ V o
t (x, x̂; ẋ,

˙̂x) ≤ cV (x, x̂), (7)

where

V o
t (x, x̂; ẋ,

˙̂x) = lim sup
(z,ẑ)→(x,x̂),z−ẑ 6∈S

d(z − ẑ)(f(t, x) − f(t, x̂) + L(g(t, x) − g(t, x̂))), (8)

that is, V o
t (x, x̂; ẋ,

˙̂x) is the Clarke derivative of V at (x, x̂) in the direction of (ẋ, ˙̂x) at time t.
Assuming the claim to be true, we then have

d

dt
|x(t)− x̂(t)| ≤ c|x(t)− x̂(t)| (9)

for almost all t for any solution (x(t), x̂(t)) of the system-observer interconnection. Then (6) follows
from the Comparison Lemma [11, Lemma 3.4, p. 102].

We now prove each inequality of the claim (7). When V̇ (t, x, x̂) exists, it is given by

V̇ (t, x, x̂) =
∂V

∂x
ẋ+

∂V

∂x̂
˙̂x = d(x− x̂)(f(t, x) − f(t, x̂)− L(g(t, x̂)− g(t, x))), (10)

and thus the first inequality of (7) holds.
For the second inequality, consider the auxiliary system ξ̇ = f(t, ξ) + Lg(t, ξ) =: F (t, ξ). By

hypothesis, µ(F (t, ξ)) ≤ c for all t ≥ 0 and all ξ ∈ X . Then, by Corollary 2 in the Appendix,

lim sup
(z1,z2)→(ξ1,ξ2),z1−z2 6∈S

d(z1 − z2)(f(t, ξ1) + Lg(t, ξ1)− f(t, ξ2)− Lg(t, ξ2)) ≤ c|ξ1 − ξ2| (11)

for any ξ1, ξ2 ∈ X and t ≥ 0. But this is exactly what must be shown to establish the second
inequality of (7), and thus the claim holds, completing the proof.

3 An Example of Traffic Flow Estimation

Consider a linear freeway with n segments such that traffic flows from segment i to i+1, xi ∈ [0, x̄i]
is the density of vehicles occupying link i, and x̄i is the capacity of link i. An example network is
shown in Figure 1. The state-space is then X =

∏n
i=1[0, x̄i].

Associated with each link is a continuously differentiable demand function Di : [0, x̄i] → R≥0

that is strictly increasing and satisfies Di(0) = 0, and a continuously differentiable supply function
Si : [0, x̄i] → R≥0 that is strictly decreasing and satisfies Si(x̄i) = 0. We assume D′

i(xi) ≥ ν

and S′(xi) ≤ −ω for some ν > 0 and some ω > 0 for all i and all xi ∈ [0, x̄i] where
′ denotes

differentiation for functions of a scalar argument.
A fraction βi ∈ [0, 1) of the demand on link i is assumed to exit the network via, e.g., unmodeled

offramps1. The remaining 1− βi fraction of demand is destined for link i+ 1.
We assume δ1(t) vehicles per unit of time are available to flow into link 1 at time t where δ(t) ≥ 0

for all t. Flow from segment to segment is restricted by upstream demand and downstream supply,

1By assuming that the offramp flow is not restricted by downstream capacity, we adopt a non-first-in-first-out

junction model appropriate if, e.g., dedicated exit lanes exist for the offramp traffic. See [12, 13, 14] for a discussion
of FIFO and non-FIFO assumptions in traffic networks.
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1 2 3 4 5

β1 β4

Figure 1: A model for a linear freeway consisting of interconnected compartments. The flow of vehicles from
compartment to compartment depends on the traffic density of the upstream and downstream links. At the end
of segment i, a fraction of the vehicles exit the freeway via unmodeled exit ramps as determined by the parameter
βi ≥ 0. If no vehicles exit for some links, βi = 0, as is the case for i = 2, 3, 5 above.

and the change in density of a link is governed by mass conservation:

ẋ1 = min{δ1(t), S1(x1)} − p1(x1, x2)− β1D1(x1) (12)

ẋi = pi−1(xi−1, xi)− pi(xi, xi+1)− βiDi(xi), i = 2, . . . , n − 1 (13)

ẋn = pn−1(xn−1, xn)−Dn(xn) (14)

where, for i = 1, . . . , n− 1,

pi(xi, xi+1) = min{(1− βi)Di(xi), Si+1(xi+1)}. (15)

Compactly, we have ẋ = f(t, x) where f is defined in accordance with (12)–(15). It is straight-
forward to establish positive invariance of the hyper-rectangle X by verifying that xi = 0 implies
ẋi ≥ 0 and also xi = x̄i implies ẋi ≤ 0 for all i = 1, . . . , n.

Our objective is to determine an observation function g(x) to ensure global exponential conver-
gence of the zero estimation error set for the the corresponding observer-system interconnection.

Remark 1. Due to the min{·} in (12) and (15), f(t, x) is not differentiable in x. However, f(t, x)
is continuous and is piecewise differentiable in x [15]. In particular, we interpret f(t, x) as selecting
at each x from a finite number of continuously differentiable vector fields (this finite selection at
each x is governed by the active minimizers in (12) and (15)). The main results above remain valid
in this case by considering the Jacobian matrix induced by each vector field in this finite collection.

Let ∂i denote differentiation with respect to the ith component of x. Notice that, for i =
1, . . . , n− 1,

∂ipi(xi, xi+1) ≥ 0 and ∂i+1pi(xi, xi+1) ≤ 0. (16)

Define p0(t, x1) := min{δ1(t), S1(x1)}. The Jacobian of f(t, x), where it exists, is given by

J(t, x) :=
∂f

∂x
(t, x) =










∂1p0 − ∂1p1 −∂2p1 0 0 · · · 0
∂1p1 ∂2p1 − ∂2p2 −∂3p2 0 · · · 0
0 ∂2p2 ∂3p2 − ∂3p3 −∂4p3 0
...

. . .
...

0 0 · · · 0 ∂n−1pn−1 ∂npn−1










︸ ︷︷ ︸

=:J1(t,x)

+










−β1D
′
1(x1) 0 0 · · · 0
0 −β2D

′
2(x2) 0

0 0 −β3D
′
3(x3) 0

...
. . .

...
0 0 0 · · · −D′

n(xn)










︸ ︷︷ ︸

=:J2(t,x)

. (17)
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Let | · |1 denote the vector one-norm, i.e., |x|1 =
∑n

i=1 |xi| for x ∈ R
n. For A ∈ R

n×n, the
corresponding matrix measure µ1(·) is given by [8, 9]

µ1(A) = max
j=1,...,n



[A]jj +
∑

i 6=j

|[A]ij |



 (18)

where [A]ij denotes the ij-th element of A. When all off-diagonal entries of A are nonnegative
(such matrices are said to be Metzler), (18) reduces to the maximum column sum of A. It is
straightforward to confirm using (16) that J(t, x) is Metzler for all t ≥ 0 and all x ∈ X so that

µ1(J(t, x)) = max
j=1,...,n

{
n∑

i=1

[J1(t, x)]ij +
n∑

i=1

[J2(t, x)]ij

}

. (19)

From (17), we see that, for all t ≥ 0 and all x ∈ X ,

n∑

i=1

[J1(t, x)]ij ≤ 0 and

n∑

i=1

[J2(t, x)]ij ≤ −βjv (20)

for j = 1, . . . , n where we take βn := 1. If each βj > 0, then µ(J(t, x)) ≤ −minj{βj}v < 0, that
is, the dynamics are contractive and the “observer” ˙̂x = f(t, x̂) ensures exponential convergence of
the state estimate.

When βj = 0 for some j, however, we must introduce an observation function to ensure con-
vergence of the observer. Let J = {j : βj = 0} be the links for which βj = 0, that is, no traffic
exits the network via link j. We propose to construct a differentiable observation function gj(xj)
for each j ∈ J . For example, gj(xj) might be the number of vehicles visible from a roadside video
camera for which a portion of link j is visible. If pj ∈ [0, 1] is the fraction of link j visible in the
camera’s frame, then a reasonable approximation might be gj(xj) = pjxj , or gj might be obtained
by fitting measured data. We only impose that there exists αj > 0 such that g′(xj) ≥ αj for all
xj ∈ [0, x̄j ] for all j.

We then construct the observation function g(x) elementwise from gj :

g : X → R
n, (21)

[g]j(x) =

{

gj(xj) if j ∈ J

0 else
(22)

where [g]j(x) denotes the j-th element of g(x). Finally, we choose L = −I where I is the identity
matrix. We then have

n∑

i=1

[
∂g

∂x
(x)

]

ij

=

{

g′j(xj) if j ∈ J

0 else
(23)

for all x ∈ X . It follows that

µ1

(

J(t, x) + L
∂g

∂x
(x)

)

≤ −max

{

vmin
j 6∈J

βj ,min
j∈J

αj

}

< 0 (24)

for all t ≥ 0 and all x ∈ X . Furthermore, we verify that X × X is positively invariant for the
observer-system interconnection as follows. Recall that X is positively invariant for the system, so
we need only verify x̂(t) ∈ X for all t for all solutions of the state estimate x̂. To that end, suppose
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x̂i(t) = 0 for some i at some time t. Then, as previously noted, fi(t, x̂) ≥ 0 where fi is the i-th
element of f . Further, since gi is increasing and xi ≥ x̂i, we have gi(x̂i) − gi(xi) ≤ 0. Therefore,
˙̂xi(t) = fi(t, x̂)− (gi(x̂i) − gi(xi)) ≥ 0. An analogous argument implies that if x̂i(t) = x̄i for some
t, then ˙̂xi(t) ≤ 0 so that X × X is positively invariant for the observer-system interconnection.

The above results can be summarized as follows. For a link j with βj > 0, some vehicles exit
the network upon leaving the link, and this dissipation ensures that the estimated density on this
link converges to the actual density. For a link j with βj = 0, one approach is to measure (a
function of) the density on such links. By introducing negative feedback of the difference between
this measurement and the estimated measurement, convergence of the observer is guaranteed, and
this guarantee is provided via a contraction theoretic argument.

A Appendix

A.1 Clarke Generalized Derivative

Let X ⊆ R
n and G : X → R be a locally Lipschitz continuous function. For any x ∈ X and v ∈ R

n,
the Clarke generalized directional derivative or Clarke derivative of G at x in the direction of v is
given by [10]

G◦(x; v) = lim sup
z→x,h→0+

G(z + hv) −G(z)

h
. (25)

Let S ⊂ X be the measure-zero set on which G(x) is not differentiable. A basic fact of the Clarke
derivative is that [10, Corollary, p. 64]

G◦(x; v) = lim sup
z→x,z 6∈S

∂G

∂x
(z)v. (26)

A.2 Contractive Systems

Here, we collect some fundamental results for dynamical systems for which the matrix measure
of the Jacobian matrix of the system’s vector field is uniformly bounded. In the case when this
bound is negative, the system is contractive, that is, the distance between any two trajectories is
exponentially decreasing.

Proposition 1. Consider

ẋ = F (t, x) (27)

with t ∈ [0,∞) and x ∈ X ⊂ R
n for positively invariant and convex X , and assume F (t, x) is

differentiable in x, and F (t, x) and ∂F
∂x

(t, x) are continuous in (t, x). Let | · | be a norm on R
n and

µ(·) its associated matrix measure. If, for some c ∈ R,

µ

(
∂F

∂x
(t, x)

)

≤ c, ∀x ∈ X ∀t ≥ 0, (28)

then for any x1(t) and x2(t) solutions of (27) and for all t ≥ t0 ≥ 0,

|x1(t)− x2(t)| ≤ ec(t−t0)|x1(t0)− x2(t0)|. (29)

Proof. A proof is found in [2, proof of Theorem 1]. Note that Theorem 1 of [2] assumes c < 0, but
the result and proof technique remains valid for all c ∈ R.
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Corollary 1. Under the hypotheses of Proposition 1, let S ⊂ R
n be the measure-zero set where | · |

is not differentiable, and let x1(t) and x2(t) be solutions of (27). If x1(t0) − x2(t0) 6∈ S for some
t0 ≥ 0, then

d

dt
(|x1(t)− x2(t)|)

∣
∣
t=t0

≤ c|x1(t0)− x2(t0)|. (30)

Proof. Let a(t) = |x1(t) − x2(t)| and let b(t) = ec(t−t0)|x1(t0) − x2(t0)| so that a(t0) = b(t0).
Suppose (30) did not hold, i.e., ȧ(t0) > ḃ(t0). The functions a(t) and b(t) are continuously
differentiable for t near t0, and therefore there exists τ > 0 such that ȧ(t) > ḃ(t) for all t ∈
[t0, t0 + τ ]. By the mean-value theorem, there exists t′ ∈ [t0, t0 + τ ] such that ȧ(t′) − ḃ(t′) =
1
τ
(a(t0 + τ)− b(t0 + τ)− a(t0) + b(t0)) =

1
τ
(a(t0 + τ)− b(t0 + τ)). Since ȧ(t′) > ḃ(t′), we then have

that a(t0+τ) > b(t0+τ). But Proposition 1 guarantees a(t) ≤ b(t) for all t ≥ t0, a contradiction.

Corollary 2. Under the hypotheses of Proposition 1, let S ⊂ R
n be the measure-zero set where | · |

is not differentiable, and for z 6∈ S, define d(z) := ∂
∂z
|z|. For all x1, x2 ∈ X and all t ≥ 0,

lim sup
(z1,z2)→(x1,x2),z1−z2 6∈S

d(z1 − z2)(F (t, x1)− F (t, x2)) ≤ c|x1 − x2|. (31)

Proof. Suppose not, and let (zi1)
∞
i=1 and (zi2)

∞
i=1 be sequences converging to some x1 and x2, respec-

tively, such that zi1 − zi2 6∈ S for all i and there exists ǫ1 > 0 such that

lim
i→∞

d(zi1 − zi2)(F (t0, x1)− F (t0, x2)) ≥ c|x1 − x2|+ ǫ1 (32)

for some t0 ≥ 0.
Because F (t0, ·) and | · | are continuous functions and (zi1, z

i
2) → (x1, x2), for any ǫ2 ∈ (0, ǫ1),

there exists sufficiently large i∗ such that

d(zi
∗

1 − zi
∗

2 )(F (t0, z
i∗

1 )− F (t0, z
i∗

2 )) ≥ c|zi
∗

1 − zi
∗

2 |+ ǫ2. (33)

Now let z1(t) and z2(t) denote solutions to (27) with z1(t0) = zi
∗

1 , z2(t0) = zi
∗

2 . Then the
left-hand side of (33) is equal to d

dt
(|z1(t)−z2(t)|)

∣
∣
t=t0

. However, Corollary 1 guarantees d
dt
(|z1(t)−

z2(t)|)
∣
∣
t=0

≤ c|z1(t0)− z2(t0)| = c|zi
∗

1 − zi
∗

2 |, a contradiction.
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