Quantile Forecasts for Traffic Predictive Control

Maxence Dutreix and Samuel Coogan

Abstract—We present a quantile regression method for predicting future traffic flow at a signalized intersection by combining both historical and real-time data. The algorithm exploits nonlinear correlations in historical measurements, and efficiently solves a quantile loss optimization problem using the Alternating Direction Method of Multipliers (ADMM). The resulting parameter vectors allow us to determine a probability distribution of upcoming traffic flow. We use these predictions to establish an efficient, delay-minimizing control policy for the intersection. The approach is demonstrated on a case study with two years of high resolution flow measurements.

I. INTRODUCTION

Despite the emergence of high-resolution sensing technologies in transportation systems, many traffic control approaches used in practice still fail to adequately leverage real-time and historical measurements [1]. Current demographic and urbanization trends worldwide likely portend a global over-congestion of roads in the coming years [2], [3], raising the need of more optimized signal timing practices. Although typical signalized intersections are often able to accommodate moderate deviations from average traffic conditions, they lack the ability to adapt to more significant and uncommon variations in vehicle flows. Harvested real-time data, analyzed in tandem with historical information, provide a practical solution to this problem, as they enable us to predict the future state of traffic and to modify the intersection’s behavior accordingly.

Previous work has demonstrated the strong potential of prediction-based control in a variety of traffic settings. Tools such as ARMAX models or Kalman filtering have delivered promising results in the framework of freeway traffic predictions [4], [5]. Another recent contribution exploits low-rank latent structure in historical traffic data to predict future flows at intersections [6]. Highly correlated, low-rank components are computed and used directly as linear regressors for the prediction target. However, most models rely on pointwise forecasting techniques and solely estimate a single (e.g. most likely) future traffic condition. In systems displaying a high degree of uncertainty, determining only the most probable outcome is often not adequate for the implementation of an effective and robust control strategy.

In this paper, we build on [6] and extend its capabilities with the utilization of probability forecasting tools. We particularly aim to predict future traffic flow at signalized intersections and assign a probability of occurrence to several ranges of possible flow values. Also, we seek to capture the nonlinear relationships between past and future traffic flows, and to exploit them in our procedure. As these predictions ultimately need to be coordinated with real-time measurements we design a computationally inexpensive, time-efficient algorithm by means of multiple quantile regression analysis. Lastly, we present a direct application of our results in a delay minimizing control policy.

We first present a dimensionality-reduction algorithm that casts the flow measurements vectors onto a smaller set of highly correlated components. Inspired by [7], which seeks a quantile regression algorithm for wind and power forecasting, we then project the reduced-size data to a non-linear feature space through the application of radial basis functions (RBF). Finally, we solve a quantile loss function minimization problem in order to compute a set of regression parameters and predict the quantiles of future traffic flow using an input vector collected in real-time.

Section II presents the problem formulation. Section III describes the methodology used to predict the quantiles of future traffic flow from a set of training input and output. Section IV demonstrates the practical benefits of our quantile regression algorithm on the test site in Fig.1.
II. PROBLEM FORMULATION

We consider a traffic intersection with 4 different approaches: North Bound (NB), East Bound (EB), South Bound (SB) and West Bound (WB). The intersection in Fig.1 used for our study is a standard intersection located in Beaufort, South Carolina. Each approach allows 3 distinct movements: Through (T), Right Turn (RT) and Left Turn (LT). Thus, there are \(L = 12 \) possible movements. As shown in Fig. 2, traffic flows vary widely around the mean from day to day, rendering average-based control suboptimal. Our goal is to exploit historical data along with real-time measurements in order to predict future vehicle flows. Then, we use these predictions to adjust the signal timing control and better accommodate the ensuing traffic conditions.

A probabilistic forecasting problem consists in determining the probability density function \(P(Y | X = x) \), of a target random variable \(Y \in \mathbb{R} \), with \(x \in \mathbb{R}^m \) denoting the prediction’s covariates. In this work, \(x \) compiles past traffic flows up to a given time for all \(L \) movements and \(y \) designates flows at a future time for a specified movement.

We seek to characterize \(P \) by a set of \(q \) predicted quantiles \(\{\hat{y}_{\alpha_1}(\cdot), \hat{y}_{\alpha_2}(\cdot), \ldots, \hat{y}_{\alpha_q}(\cdot)\} \), where \(\hat{y}_{\alpha_i}(\cdot) \in \mathbb{R} \) is the predicted \(\alpha_i \)-quantile for some \(\alpha_i \in [0, 1] \). The number \(y_{\alpha_i} \in \mathbb{R} \) satisfying \(P(Y \leq y_{\alpha_i}) = \alpha_i \) is called the \(\alpha \)-quantile for \(Y \).

Suppose that at time 10:00, we wish to predict the total traffic flow for movement NB-T over the next hour, 10:00–11:00. Then, \(x \) contains traffic flows from 0:00 to 10:00 for all movements, \(y \) designates the total flow for movement NB-T between 10:00 and 11:00, and the set \(\{\hat{y}_{\alpha_i}(\cdot)\}_{i=1}^q \) contains \(q \) predicted quantiles for \(y \).

First, we establish an appropriate metric to gauge the quality of a quantile-based regression. Let \(\rho_{\alpha}(z) \) be the tilted absolute loss function, defined as \(\rho_{\alpha}(z) = \max\{a z, (\alpha - 1)z\} \). Assume the set \(S = \{y_1, y_2, \ldots, y_n\} \) to be a collection of random outcomes for \(y \). The quantity

\[
\sum_{i=1}^{n} \rho_{\alpha_i}(\hat{y}_{\alpha_i}(x) - y_i) \tag{1}
\]

is minimized by setting \(\hat{y}_{\alpha_i} \) as the true \(\alpha_i \)-quantile of \(S \) [9]. Due to this property, the tilted absolute loss function is the metric of quality used in this paper for quantile regressions.

In Section III, using a set of \(n \) training input vectors \(\{x_i\}_{i=1}^n \), with \(x_i \in \mathbb{R}^m \), along with a set of training output scalars \(\{y_i\}_{i=1}^n \), \(y_i \in \mathbb{R} \), we develop an efficient algorithm for predicting the \(\alpha_i \)-quantiles \(\hat{y}_{\alpha_i}(x) \), \(i = 1, 2, \ldots, q \), as a function of an input vector \(\hat{x} \in \mathbb{R}^m \) to minimize (1).

III. QUANTILE REGRESSION

We aim to exploit the fact that predictors and predictands correlate in a nonlinear fashion. To that end, we first seek a nonlinear transformation \(T : \mathbb{R}^m \to \mathbb{R}^k \) from input vector \(x \in \mathbb{R}^m \) to a nonlinear feature vector \(T(x) \in \mathbb{R}^k \). Then, our objective is to find a collection of estimation parameters \(\{\hat{\theta}_i\}_{i=1}^q \), with each \(\hat{\theta}_i \in \mathbb{R}^k \) and such that \(\hat{y}_{\alpha_i} = \hat{\theta}_i^T T(x) \). We further choose \(T \) as a composition \(\phi \circ H \), where \(H : \mathbb{R}^m \to \mathbb{R}^m \) is a dimensionality reduction operator and \(\phi : \mathbb{R}^m \to \mathbb{R}^k \) nonlinarly transforms the lower-dimensionality predictors to the feature space. Below, we will construct \(H \) as a Projection to Latent Structure (PLS) mapping, also known as Partial Least Squares, and \(\phi \) using radial basis functions. Afterwards, we will show how the Alternating Direction Method of Multipliers (ADMM) is used for efficiently computing the set \(\{\hat{\theta}_i\}_{i=1}^q \).

A. PLS Dimensionality Reduction

In the context of traffic predictions, a substantial number of predictors must be considered. For instance, a 15-minute sample interval of vehicle flows results in daily measurement vectors with length \(4 \times 24 \times L \).

As nonlinear feature generation is a dimensionality-sensitive task, we propose first to reduce the data size using the Projection to Latent Structure method [10]. A PLS-based approach seeks to project the data onto a smaller set of orthogonal vectors in directions of high covariance between \(X \) and \(Y \). We denote by \(m' \) the number of PLS components to be computed, a user-specified tuning parameter.

Consider the set of training input vectors \(\{x_i\}_{i=1}^n \) and outputs \(\{y_i\}_{i=1}^n \) consisting of historical traffic flow measurements. Let us introduce the mean-centered matrices \(\bar{X} \in \mathbb{R}^{n \times m} \) and \(\bar{Y} \in \mathbb{R}^{n} \) as

\[
\bar{X} = [\bar{x}_1^T, \ldots, \bar{x}_n^T]^T, \quad \bar{Y} = [\bar{y}_1, \ldots, \bar{y}_n]^T \tag{2}
\]

where

\[
\bar{x}_i = x_i - \bar{x} \quad \text{with} \quad \bar{x} = \frac{1}{n} \sum_{i=1}^{n} (x_i)_j, \tag{3}
\]

\[
\bar{y}_i = y_i - \bar{y} \quad \text{with} \quad \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i, \tag{4}
\]
\((x_i)_j \) and \(\bar{x}_j \) denote the \(j \)th entry of \(x_i \) and \(\bar{x} \) respectively.

PLS analysis is carried out iteratively: a pair \((p_i, s_i) \) of principal component \(p_i \) and score vector \(s_i \) is determined at each iteration of the process, with \(p_i \in \mathbb{R}^m \) and \(s_i \in \mathbb{R}^n \). We remove the contributions of newly computed components by subtracting them from the data matrices between successive iterations. The algorithm terminates once \(m' \) component-score pairs have been calculated.

We briefly describe a classic algorithm for PLS [10]. In order to determine the pair \((p_1, s_1) \), we first find two solutions \(v^* \in \mathbb{R}^n \) and \(u^* \in \mathbb{R}^m \) solving the following optimization problem:

\[
(v^*, u^*) = \arg\max_{\|u\|_2 = 1} (Xv)^T(\tilde{Y}w)
\]

Observe that \(v^* \) and \(u^* \) are, respectively, the left and right singular vectors of the product \(X^T \tilde{Y} \). Then, we obtain a score vector \(s_1 \) by projecting \(\tilde{X} \) onto the direction of high covariance \(v^* \) found in (5) and according to

\[
s_1 = \frac{\tilde{X}v^*}{\|Xv^*\|_2}.
\]

We note that only \(v^* \) is involved in the computation of the score vector. This necessary asymmetry is introduced to later use the score vectors for regression.

Corresponding components \(p_1 \) and \(q_1 \) result from the projection of the data matrices onto \(s_1 \) and are given by

\[
p_1 = \tilde{X}s_1 \quad q_1 = \tilde{Y}s_1.
\]

Lastly, we update \(\tilde{X} \) and \(\tilde{Y} \) to generate \(\tilde{X}_2 \) and \(\tilde{Y}_2 \) applying

\[
\begin{align*}
\tilde{X}_2 &= \tilde{X} - s_1 p_1^T, \\
\tilde{Y}_2 &= \tilde{Y} - s_1 q_1^T.
\end{align*}
\]

We repeat this process with the updated data matrices \(\tilde{X}_2 \), \(\tilde{Y}_2 \) and find an additional pair \((p_2, s_2) \), etc. This algorithm is iterated to obtain \(m' \) pairs.

Once a collection \(\{(p_i, s_i)\}_{i=1}^{m'} \) of component-score pairs has been computed, we build the reduced-size matrix of predictors \(S \) along with the loading matrix \(P \) and write

\[
S = [s_1, s_2, \ldots, s_{m'}], \quad P = [p_1, p_2, \ldots, p_{m'}].
\]

We denote by \(S_i \) the \(i \)th row of the PLS score matrix \(S \). We see that PLS effectively fulfills its purpose of dimensionality reduction by representing \(X \in \mathbb{R}^{n \times m} \), which contains traffic flow data, as a score matrix \(S_{n \times m'} \), \(m' \ll m \), so that each training input \(x_i \in \mathbb{R}^m \) is instead represented by a score vector \(S_i \in \mathbb{R}^{m'} \).

Now, assume an input \(\tilde{x} \) is to be used for predictions. Its PLS projection score vector \(\tilde{S} \in \mathbb{R}^{m'} \) must be calculated with respect to the components of \(P \). We find \(\tilde{S} \) applying

\[
H(\tilde{x}) := \tilde{S} = ((\tilde{x} - \bar{x})^T (P^T)^T)^T = \mathbb{R}^{m'}.
\]

\((P^T)^T\) stands for the Moore-Penrose pseudoinverse of \(P^T \).

\section*{B. Nonlinear Features Generation}

Now that we have characterized \(H \) to reduce the data dimensionality, we define a nonlinear features transformation \(\phi \). Among the most popular kernels employed in machine learning for nonlinear features extraction is the RBF Gaussian kernel [11]. Given a user-specified number of desired nonlinear features, our method finds a set of data centers and bandwidths used in the computation of the RBFs.

We initially use a \(k \)-means clustering algorithm on \(S \) to generate a set of \(k \) data centers \(\mu_i \in \mathbb{R}^{m'} \) along with their associated bandwidth \(\sigma_i \in \mathbb{R} \), such that \(\sigma_i = \text{median} \|\mu_i - \mu_j\|_2; \ i = 1, 2, \ldots, k \). We resort to a \(k \)-means++ multiple seeding procedure [12]. We define the RBF vector \(\phi(\bar{U}) = [\phi_1(U), \phi_2(U), \ldots, \phi_k(U)] \in \mathbb{R}^k \), with

\[
\phi_j(U) := e^{\frac{-d^2}{\sigma_j}}; \ j = 1, 2, \ldots, k
\]

being the RBF functions with center \(\mu_j \) and bandwidth \(\sigma_j \). The stacked matrix \(\Phi \) of feature vectors \(\phi(S_i) \in \mathbb{R}^k \) is constructed by evaluating the RBF vector for all \(S_i \) and concatenating them to obtain

\[
\Phi = [\phi(S_1), \phi(S_2), \ldots, \phi(S_n)]^T \in \mathbb{R}^{n \times k}.
\]

Each row \(\phi(S_i) \) of \(\Phi \) is equivalent to the nonlinear transformation \(T \) applied to \(x_i \) and we thus define \(T(x_i) := \phi(H(x_i)) = \phi(S_i), \ i = 1, 2, \ldots, n \).

\section*{C. Alternating Direction Method of Multipliers Algorithm}

Recall the set of parameters \(\{\theta_i\}_{i=1}^{q} \) that we aim to compute such that the \(\alpha_i \)-th quantile \(\tilde{y}^{(\alpha_i)} \) satisfies \(\tilde{y}^{(\alpha_i)} = \theta_i^T T(x_j) \). Minimizing the absolute tilted loss function in order to find \(\{\theta_i\}_{i=1}^{q} \) is a convex optimization problem [13]. We reformulate (1) so as to include a \(l_2 \)-regularization parameter \(\lambda \) and highlight the dependence of the predicted quantiles \(\tilde{y}^{(\alpha_i)} = \theta_i^T T(x_j) \) on the training inputs \(x_j \):

\[
\text{argmin}_{\theta_i} \sum_{i=1}^{q} \sum_{j=1}^{n} \rho_i (\theta_i^T T(x_j) - y_j) + \lambda \sum_{i=1}^{q} \|\theta_i\|_2^2.
\]

We remark that this expression decouples along \(\theta_i \) and thus is \(q \) independent optimization problems. The main advantage of the ADMM procedure is to provide an efficient solution to (13) through a simultaneous computation of all the estimators, as suggested in [7] and [14]. This procedure is shown in the pseudo-code in Algorithm 1.

ADMM is an iterative process characterized by its step size \(\delta \). We choose not to implement any stopping conditions and introduce a fixed number of iterations \(T \) as an additional tunable hyperparameter. Upon completion, the program returns a matrix \(\Theta \in \mathbb{R}^{n \times q} \) containing the desired estimators

\[
\Theta = \begin{bmatrix} | & | & \cdots & | \\ \theta_1 & \theta_2 & \cdots & \theta_q \end{bmatrix}.
\]

Independent quantile regressions may be the source of mathematical aberrations, such as estimating two quantiles \(\tilde{y}^{(\alpha_a)} \) and \(\tilde{y}^{(\alpha_b)} \), with \(\tilde{y}^{(\alpha_a)} < \tilde{y}^{(\alpha_b)} \) when \(\alpha_a > \alpha_b \). Thus, we sort the set of computed quantiles, as is done in [7].
Algorithm 1: Quantile Parameters Regression

Input: Set of training input traffic flows \(\{ x_i \}_{i=1}^n \), \(x_i \in \mathbb{R}^m \), collected from 0:00 to \(T_S \) on day \(i \), set of quantiles \(\{ \alpha_1, \alpha_2, \ldots, \alpha_q \} \) to be computed with \(\alpha_i \in [0, 1] \), set of training output traffic flows \(y \in \mathbb{R}^n \) with \(y_i \) collected at time \(T_P \) on day \(i \) \((T_P > T_S)\), number of PLS components \(m' \), number of k-means centers \(k \), regularization parameter \(\lambda \in \mathbb{R} \), ADMM step size \(\delta \in \mathbb{R} \), number of iterations \(T \in \mathbb{N} \)

Output: Set of quantile estimators \(\Theta = [\theta_1, \ldots, \theta_q] \in \mathbb{R}^{k \times q} \), set of RBF centers and bandwidths \(\{ \{ \mu_i, \sigma_i \} \}_{i=1}^k \), matrix of PLS components \(P \), mean-flow vector \(\bar{x} \)

Initialize:
- \(A^0 = 0_{n,q} \), \(Z^0 = 0_{n,q} \), \(\Theta^0 = 0_{k,q} \)
- \(z_l^j \) denotes the \(j \)th column of \(Z_l \)

Compute mean-centered, aggregated data matrices \(X \) and \(Y \), and mean flow vector \(\bar{x} \) from (2)-(4);

Compute score matrix \(S \) and component matrix \(P \) using (5) to (9);

\(\{ (\mu_i, \sigma_i) \}_{i=1}^k = k\text{-means++}(S, k) \)

Compute the stacked matrix of feature vectors \(\Phi(S, k) \) according to (11) and (12);

Find the Cholesky decomposition \(UU^T \) of \((\Phi^T \Phi + \frac{1}{2} I) \);

for \(j = 1, 2, \ldots, T \) **do**

\[
\Theta^{j+1} = U^{-1} U^T \Phi^T (y \mathbf{1}_q + Z^j - A^j);
\]

\[
\bar{Z}^j = (\Phi \Theta^{j+1} - y \mathbf{1}_q + A^j);
\]

for each column \(z_l^j \) of \(\bar{Z} \), \(l = 1, 2, \ldots, q \) **do**

\[
z_l^{j+1} = \max(0, z_l^j - \frac{1}{\lambda} \alpha_l) + \min(0, z_l^j - \frac{1}{\lambda} (\alpha_l - 1));
\]

(this is a component-wise operation)

end

\[A^{j+1} = A^j + \Phi \Theta^{j+1} - y \mathbf{1}_q - Z^{j+1} ;\]

end

return \(\Theta, \{ (\mu_i, \sigma_i) \}_{i=1}^k, P, \bar{x} \)

IV. CASE STUDY

A. Traffic Flow Prediction

We now demonstrate the algorithm presented in Section III using data collected at the test site in Fig.1 on weekdays from March 2014 to September 2016. This is \(n = 591 \) days worth of traffic flow measurements for each movement. Vehicle counts for all movements were sampled on 15-minute intervals. To generate our training data, we aggregate the measurements by calendar days into the set \(\{ x_i \}_{i=1}^n \), where \(x_i \in \mathbb{R}^{12 \times 4 \times T_S} \) is a row-vector containing all flows for all movements from 00:00 to \(T_S \) in 15-minute intervals on day \(i \). Our objective is to forecast a set of flow percentiles \(\{ \tilde{y}^{(0.01)}, \tilde{y}^{(0.02)}, \ldots, \tilde{y}^{(0.99)} \} \) for a specified movement, at time \(T_P \), on a given day, \(T_P > T_S \). The training set of outputs \(\{ y_i \}_{i=1}^n \) thus contains flow measurements for that particular movement at time \(T_P \) for all days in the data set.

For this case study, our goal is to make hourly predictions for all movements based on historical flows, and we therefore let \(T_S \) vary from 10:00 to 23:00 in one-hour increments on different days. At each time step, the target quantity for prediction is the hourly flow for all movements in the time range \([T_S; T_S + 1 \text{ hour}] \). Algorithm 2 depicts the procedure used to make predictions for a given \(T_S \). PLS and ADMM hyperparameters were tuned empirically and the following combination was found to yield consistent, high-quality predictions: \(m' = 7, \lambda = 0.00022, k = 250, T = 150, \delta = 0.5 \). Subtracting the mean flow from the training and test outputs allows for a uniform selection of parameters across the whole data set.

We further enhance the performance of the regression algorithm by taking additional predictors into consideration. Weather data such as temperature and precipitation are good candidates. We used data extracted from an Automated Surface Observation System (ASOS) located in Beaufort. Hourly precipitation and hourly average temperature obtained from 0:00 to time \(T_S \) are appended to the inputs \(\{ x_i \}_{i=1}^n \) of traffic flow measurements before each prediction. We found that including weather conditions had a positive, although slight, impact on the prediction quality.

Fig. 3 displays the 10th to 90th percentile range predicted by the algorithm for the NB-RT movement on 3 distinct test days. Both the 30th to 70th and 40th to 60th percentile ranges are delineated with darker blue tones. The observed flow, as well as the average flow across the entire data set, are superimposed on the plots as a cyan solid line and a red dotted line respectively. July 2nd 2015 fell right before a long weekend holiday and experienced higher-than-average traffic; February 24th 2015 was a day with lower-than-average traffic due to winter weather; January 1st 2015 was a nationwide US holiday, causing unusual traffic. We see in the figure that the algorithm detects variations from average conditions and accurately predicts impending traffic flow. The results are also coherent in a statistical sense. Indeed, a proper fraction of observed values — which should amount to about 20% — fall outside of the 10 to 90 percentile range.

Two examples of Cumulative Distribution Functions (CDF), extrapolated from the sets of predicted quantiles and produced at peak traffic times, are presented in Fig. 4. The algorithm displays greater certainty for below-average traffic predictions, as their CDFs allocate more probability mass to
Fig. 3: Example of predictions for the NB-RT movements on three days with different traffic profiles. Lightest blue indicates the predicted 10 to 90 percentile range, with darker tones corresponding to the 30 to 70 and 40 to 60 ranges. The algorithm successfully predicts traffic flows for all three days with different profiles.

Fig. 4: Plots of predicted cumulative distribution functions for two separate times experiencing unlike traffic volumes. Steeper slopes indicate higher expected probabilities of occurrence. Observed flows were accurately predicted by the algorithm.

TABLE I: Comparison of loss scores. The historical loss score is computed using the quantiles of the historical data set. The data set mean is obtained via leave-one-out cross validation for the entire data set. Hourly flows from 10:00 onward were chosen as targets for prediction. We compute the total scores by summing the daily scores for each movement. The predictions’ performance surpasses that of the historical quantiles.

<table>
<thead>
<tr>
<th>Date</th>
<th>Historical</th>
<th>Predicted</th>
<th>Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>February 24, 2015</td>
<td>253</td>
<td>51</td>
<td>202</td>
</tr>
<tr>
<td>July 2, 2015</td>
<td>230</td>
<td>45</td>
<td>185</td>
</tr>
<tr>
<td>January 1, 2015</td>
<td>444</td>
<td>35</td>
<td>409</td>
</tr>
<tr>
<td>Data Set Mean</td>
<td>60</td>
<td>38</td>
<td>22</td>
</tr>
</tbody>
</table>

B. Delay-Optimizing Control using Predictions

To evaluate the practical benefits of our traffic prediction algorithm, we consider using predictions to adjust control actions at the intersection. Typically, a traffic intersection controller supposes fixed arriving flow for each movement and optimizes green splits, that is, the fractions of time each movement is given a green signal to allow traffic flow [15].

The Synchro software is a software package used extensively by traffic engineers to compute optimal control parameters at intersections. It employs a quantile-based approach for estimating delay for signalized intersections [16]. It assumes five different traffic arrival scenarios, generates the optimal green times and cycle time for each one of them, and averages the five delays computed with a simple equation. However, these scenarios — namely the 90, 70, 50, 30 and 10 flow percentiles — are approximated presuming a Poisson-distributed arrival of vehicles with a nominal average arrival rate and do not reflect the actual behavior of the intersection.

Inspired by this Synchro percentile method, we first predict the quantiles \(\{\hat{y}_{i}^{(0.10)}; \hat{y}_{i}^{(0.30)}; \hat{y}_{i}^{(0.50)}; \hat{y}_{i}^{(0.70)}; \hat{y}_{i}^{(0.90)}\} \) of future flows for all 12 movements each hour, with \(\hat{y}_{i}^{(\alpha_j)} \) denoting the \(\alpha_j \)-quantile for movement \(i \). Then, we aim to minimize delay given by Webster’s delay formula

\[
 d_i = \frac{0.5C(1 - \frac{q_i}{C})^2}{1 - \left[X_i\frac{q_i}{C}\right]} + 900 \left(X_i - 1 \right) + \sqrt{(X_i - 1)^2 + \frac{4X_i}{s_i}}
\]

(15)

as defined in the Highway-Capacity Manual [17] and used in Synchro, where \(d_i \) is the delay per vehicle (s/veh) for movement \(i \); \(q_i \) is the effective green time per cycle (s) for movement \(i \); \(C \) is the optimal cycle length (s) for the intersection; \(s_i \) is the saturation flow (veh/s) for movement \(i \) and depends on the lanes’ capacity; and \(X_i = \frac{C}{q_i} \times \frac{q_i}{s_i} \), with
TABLE II: Illustrative total delays estimated for two test days between 10:00 and 24:00. We additionally display the average total delay across the data set. The delays are computed using both predicted and empirical historical quantiles; a lower bound on the total nominal delays was also calculated. Adjusting the green cycles according to our predictions improves total delay by 4.6 hours per day.

<table>
<thead>
<tr>
<th>Date</th>
<th>Historical Quantiles (h)</th>
<th>Predicted Quantiles (h)</th>
<th>Delay lower bound (h)</th>
<th>Predicted vs. Historical improvement (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb. 24, 2015</td>
<td>99.5</td>
<td>275.7</td>
<td>181.2</td>
<td>5.9</td>
</tr>
<tr>
<td>Jul. 2, 2015</td>
<td>93.6</td>
<td>271.4</td>
<td>176.6</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.6</td>
</tr>
</tbody>
</table>

$q_i \ (veh/s)$ the arrival-rate indicates the movement’s degree of saturation. The total delay D at the intersection is the sum $D = \sum_{i=1}^{12} d_i$. Now, let D_{α_i} be the delay assuming the arrival-rates q_i for each movement are equal to their predicted $\bar{\gamma}_i^{\alpha_i}$, $i = 1, 2, \ldots, 12$. We aim to compute

$$\{\{q_i^{opt}\}_{i=1}^{12}, C^{opt}\} = \arg\min_{\{q_i\}_{i=1}^{12}, C} \sum_{j=1}^{q} D_{\alpha_j},$$

where $\{\alpha_j\}_{j=1}^{9} = \{0.10, 0.30, 0.50, 0.70, 0.90\}$. This is a convex optimization problem and can be readily solved [15]. Once $\{q_i^{opt}\}_{i=1}^{12}$ and C^{opt} have been found, the realized total delay D caused by this combination of green splits and cycle length are calculated by setting $q_i = q_i^{opt}$ and $C = C^{opt}$ in (15) and letting the q_i’s be equal to the actual flows.

For comparison, we consider green splits computed using empirical historical quantiles calculated over the entire data set. Table II records the delay engendered when adjusting the control policy according to the predicted quantiles compared to the data set quantiles. At the beginning of each hour, new green splits and cycle length are implemented following the procedure described above, using total flow quantiles over the next hour. More specifically, the table shows the estimated total delay for February 24th 2015 and July 2nd 2015 between 10:00 and 24:00, as well as the mean total delay for this time range across the entire data set using leave-one-out cross validation. We additionally compute a theoretical lower bound on the delay time by supposing the actual flow is known in advance and optimizing for the actual flow. As expected, the predicted quantiles lead to lower delays in comparison to the historical quantiles. On February 24, 2015 and July 2, 2015, total delay has been reduced by 5.9 hours and 4.3 hours respectively. Over the whole data set, total delay is decreased by 4.6 hours per day on average.

V. CONCLUSIONS

We discussed a powerful method for estimating quantiles of future traffic flow at an intersection using diverse real-time measurements. Furthermore, we demonstrated the efficiency of the regression algorithm through a case study conducted using data on a test site in South Carolina. Our predictions accurately described the observed traffic flows for several volume scenarios, using only computationally non-intensive operations. We were able to achieve an average delay reduction of 4.6 hours per day at the intersection switching from a historical quantile-based control policy to a prediction-based policy. We accomplished better green split management and reduced traffic delays while making no additional adjustments to the existing infrastructure encountered on the roads.

An interesting extension would be to examine the potential of quantile regression in the case of networked intersections. In this setting, can PLS capture the existing spatial correlations between contingent movements?

Moreover, since quantile predictions reflect historical, day-to-day variation in traffic flow, we could investigate their ability to detect anomalous deviations from usual traffic conditions due to car accidents or lane closures.

VI. ACKNOWLEDGMENTS

The authors acknowledge Sensys Networks, Inc. and Beaufort County, South Carolina for providing access to traffic flow data and especially thank Christopher Flores and Pravin Varaiya for stimulating discussions.

REFERENCES