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Abstract— We present an efficient computational procedure
to perform model checking on discrete-time, mixed monotone
stochastic systems subject to an affine random disturbance.
Specifically, we exploit the structure of such systems in order to
efficiently compute a finite-state Interval-valued Markov Chain
(IMC) that over-approximates the system’s behavior. To that
end, we first make the assumption that the disturbance is uni-
modal, symmetric, and independent on each coordinate of the
domain. Next, given a rectangular partition of the state-space,
we compute bounds on the probability of transition between
all the states in the partition. The ease of computing the one-
step reachable set of rectangular states under mixed monotone
dynamics renders the computation of these transition bounds
highly efficient. We furthermore investigate a method for over-
approximating the IMC of mixed monotone systems when the
disturbance is only approximately unimodal symmetric, and we
discuss state-space refinement heuristics. Lastly, we present two
verification case studies.

I. INTRODUCTION

In recent years, much effort has been devoted to devel-
oping formal method techniques to check a wide array of
systems against complex specifications [1], [2]. For cyber-
physical systems, the state-space is often infinite, and a
common approach to system verification is to abstract the dy-
namics into a finite set of states connected to one another by a
finite number of transitions. These finite-state models enable
to efficiently answer crucial questions about the dynamics of
the original continuous system, such as safety or reachability
[3], formulated in a variety of symbolic languages.

However, many formal methods techniques designed for
deterministic or nondeterministic systems do not directly
apply when stochastic components are present, and fewer
works have been dedicated to the generalization of finite-state
abstractions for stochastic systems. Among the approaches
that have been developed, Markov chains with uncertain
probabilities of transition have been studied in the context
of Interval-Valued Markov Chains (IMC) in [4], [5]. These
abstractions augment the properties of Markov chains by
assigning a range of possible probabilities —as opposed to
a single probability—for all state-to-state transitions. This
approach motivates the development of novel machinery for
performing verification and synthesis tasks on discrete-time
stochastic systems [6], [7], [8]. In particular, [6] studied the
problem of verifying a system against specifications given
in Probabilistic Computation Tree Logic (PCTL) [9]. PCTL
extends Computation Tree Logic (CTL) by introducing a

M. Dutreix is with the School of Electrical and Computer Engineering,
Georgia Institute of Technology, maxdutreix@gatech.edu. S. Coogan
is with the School of Electrical and Computer Engineering and the School
of Civil and Environmental Engineering, Georgia Institute of Technology,
sam.coogan@gatech.edu.

probabilistic operator and permitting quantitative inquiries
about the likelihood of paths over Markov chains [10].
The authors in [7] and [8] investigate the model checking
problem for IMCs against PCTL specifications and ω-regular
properties respectively.

Unfortunately, constructing interval-valued abstractions of
stochastic systems is often a computationally expensive pro-
cess, especially when the dynamics are nonlinear. Indeed,
in the general case, calculating the exact lower and upper
bounds of transitions between all discrete states involves
numerical searches over the state space and evaluations of
integrals, rendering this procedure highly time-inefficient.
Nevertheless, we aim to show that this impractical computa-
tional blowup can be avoided in some cases by exploiting the
inherent structure of the system’s dynamics. Our proposed
approach results in an IMC abstraction with conservative
transition probability ranges, which remains sufficient for
verification.

In particular, we consider a class of stochastic systems
for which the dynamics exhibits a mixed monotone property
[11], [12]. Mixed monotonicity generalizes the property of
monotonicity for dynamical systems for which trajectories
maintain a partial ordering on states [13], [14], [15]. Many
physical systems have been shown to be monotone or mixed
monotone such as biological systems [16] and transportation
networks [17], [18], [19]. This mixed monotone property
enables efficient computation of reachable sets: a rectangular
over-approximation of the one-step reachable set from any
rectangular discrete state is determined by evaluating a
certain decomposition function at the least and the greatest
point of that state. The significance of mixed monotonicity
in computing reachable sets for discrete abstractions was
revealed in [12]. Similar approaches were developed in
[20], [21] for monotone systems, a special case of mixed
monotone systems.

In this paper, we study mixed monotone systems that
are subject to an affine random disturbance vector whose
components are mutually independent and for which the
probability distribution for each component is unimodal and
symmetric. For such systems, we show that an upper bound
and a lower bound on the probability of transitions between
states of a rectangular partition are found by evaluating only
two integrals per dimension and per transition. We make
use of these bounds to create an IMC abstraction of the
original system that is suitable for verification against, e.g.,
complex PCTL formulas. Next, we relax our assumptions
and allow for an affine disturbance whose distribution is only
approximately unimodal and symmetric in each component.
We show that the probability intervals of the IMC abstrac-



tion can be expanded to accommodate this approximation.
Finally, we briefly discuss refinement techniques to reduce
the uncertainty of a rectangular partition against three types
of PCTL formulas.

We organize the paper as follows: Section 2 introduces key
concepts and notations. Section 3 is a formal statement of the
problem. In Section 4, we derive the core properties facilitat-
ing the computation of IMCs for stochastic mixed monotone
systems with affine, unimodal, symmetric disturbances. In
Section 5, we propose an algorithm for generating an IMC
when the affine disturbance is not unimodal and symmetric.
Section 6 discusses algorithms for state-space refinement.
Section 7 demonstrates the performance of our techniques
through several case studies. All proofs are contained in the
Appendix.

II. PRELIMINARIES

Throughout, all inequalities are interpreted elementwise so
that, for x, y ∈ Rn, x ≤ y means xi ≤ yi for i = 1, . . . , n,
and similarly for ≥, < and >.

Let D ⊂ Rn be a compact rectangular set, i.e., D =
{x : d1 ≤ x ≤ d2} for some d1, d2 ∈ Rn satisfying d1 ≤
d2. A rectangular partition P of the domain D ⊂ Rn is
a collection of discrete states P = {Qj}mj=1, Qj ⊂ D,
satisfying
• Qj = {x : aj ≤ x ≤ bj} for some aj , bj ∈ Rn such

that aj ≤ bj , ∀j = 1, . . . ,m,
•
⋃m
j=1Qj = D,

• int(Qj) ∩ int(Q`) = ∅ ∀j, `, j 6= `

where int denotes interior.
For Qj ∈ P , Qj = {x : aj ≤ x ≤ bj} is a compact

rectangular set and aj , bj are respectively called the least
point and the greatest point of Qj . For vectors, we reserve
the subscript to index elements of the vector so that, e.g.,
aji for i ∈ {1, . . . , n} denotes the i-th element of aj ∈ Rn.

An Interval-Valued Markov Chain (IMC) is a triple I =

(Q, T̂ , T̂ ) where:
• Q is a finite set of states,
• T̂ : Q × Q → [0, 1] maps pairs of states to a lower

transition bound so that T̂Qj→Q`
:= T̂ (Qj , Q`) denotes

the lower bound of the transition probability from state
Qj to state Q`, and

• T̂ : Q × Q → [0, 1] maps pairs of states to an upper
transition bound so that T̂Qj→Q`

:= T̂ (Qj , Q`) denotes
the upper bound of the transition probability from state
Qj to state Q`,

and T̂ and T̂ satisfy T̂ (Qj , Q`) ≤ T̂ (Qj , Q`) for all
Qj , Q` ∈ Q and∑

Q`∈P
T̂ (Qj , Q`) ≤ 1 ≤

∑
Q`∈P

T̂ (Qj , Q`) (1)

for all Qj ∈ P .
IMCs generalize Markov chains by assigning a range of

transition probabilities between any pair of states Qj and

Q`. When T̂ = T̂ , the IMC becomes a Markov chain.
Trajectories of an IMC evolve in the following way: when the
IMC transitions from some state Qj , a collection of transition
probabilities to other states is realized such that the transition
probabilities satisfy the constraints imposed by T̂ and T̂ . If
the IMC visits state Qj again at some point in the future, it is
possible that a different collection of transition probabilities
is realized.

In this paper, our primary interest in IMCs is for their
use in verifying probabilistic system properties such as “the
probability that the goal state Q` is eventually reached is at
least 98%” or “the probability that an undesirable state Q`
is reached in the next 5 steps is less than 1%”. Such system
properties can be succinctly stated in, e.g., Probabilistic
Computation Tree Logic (PCTL), and we wish to verify
such properties against all possible instantiations of transition
probabilities for the IMC. As such, we assume that transition
probabilities are nondeterministically realized at each step of
the IMC’s evolution. Thus, for the verification problem, we
will reason about worst-case realizations.

III. PROBLEM FORMULATION

We consider the discrete-time stochastic system

x[k + 1] = F (x[k], w[k]) (2)

where x[k] ∈ D ⊂ Rn is the state of the system at time
k, domain D is a compact rectangle, w[k] ∈ W ⊂ Rp is a
random disturbance, and F : D ×W → D is a continuous
map. At each time-step k, the random disturbance w[k] is
sampled from a probability distribution with density function
fw : Rp → R≥0 satisfying fw(z) = 0 if z 6∈W .

Definition 1 (IMC Abstraction). Given the system (2) evolv-
ing on a domain D ⊂ Rn and a partition P = {Qj}mj=1 of
D, an IMC I = (Q, T̂ , T̂ ) is an abstraction of (2) if:
• P = Q, that is, the finite set of states of the IMC is the

partition set P , and
• For all Qj , Q` ∈ P ,

T̂Qj→Q`
≤ min
x∈Qj

Pr(F (x,w) ∈ Q`), and (3)

T̂Qj→Q`
≥ max
x∈Qj

Pr(F (x,w) ∈ Q`), (4)

where Pr(F (x,w) ∈ Q`) for fixed x denotes the
probability that (2) transitions from x to some state
x′ = F (x,w) contained in Q`.

The IMC abstraction I is said to be tight if (3) and (4) hold
with equality.

The potential of IMCs as a tool for model-checking
stochastic systems motivates this approach [6]. To that end,
for any pair of states Qj and Q` belonging to P , we seek
to find an upper and a lower bound on the probability of
transition from Qj to Q` as in (3) and (4).

We remark that evaluating the right-hand side of (3) and
(4) requires a search over all x ∈ Qj in the general case.
Moreover, evaluating Pr(F (x,w) ∈ Q`) generally involves



integrating the stochastic kernel induced by the system (2)
over the set Q`.

Therefore, it is generally impractical to solve these expres-
sions for equality in order to find the tightest IMC. Several
methods for over-approximating these transition bounds have
been proposed. In [22] and [23], the authors use a point rep-
resentation of each state in a grid partition to derive bounds
on the transition probabilities. However, these derivations
rely on Lipschitz bounds of the system’s transition kernel,
which can result in overly conservative approximations. The
work in [6] proposes to approximate each state in the state-
space by a large finite set of points over which (3) and (4)
are estimated. We show in this paper that potentially less
conservative and more efficient techniques can be used for a
wide class of systems. We underline the fact that evaluating
a PCTL formula from an over-approximation of the tightest
IMC is sufficient for verification, as proved in [23].

Our goal is to construct an abstraction of system (2) in
the form of an IMC to be used for system verification.
Specifically, we address the following two problems.

Problem 1: Given stochastic system (2) and rectangular
partition P , construct an IMC abstraction of (2).

Problem 2: If necessary, refine the partition P in order to
construct an IMC abstraction with tighter transitions bounds
for system verification.

It is apparent that there always exists an IMC abstraction
induced by any partition P since we may trivially take
T̂Qi→Qj

= 0 and T̂Qi→Qj
= 1 for all Qi, Qj ∈ P . Thus,

in Problem 1, we seek an IMC such that the transition
bounds are not overly conservative and such that that IMC is
sufficient for system verification where “sufficiency” depends
on the problem specification, desired level of accuracy, etc.,
as illustrated in the case studies of Section VIII. To solve
Problem 2, inspired by the refinement approach proposed
in [6], we discuss a refinement procedure particularly well-
suited for a certain class of PCTL formulas and for the
rectangular partitions studied in this paper. The efficiency
of this approach is also demonstrated in the case studies.

IV. MIXED MONOTONE SYSTEMS AFFINE IN
DISTURBANCE

In the remainder of this paper, we study a large class of
stochastic systems that proves amenable to efficient computa-
tion. In particular, we consider affine-in-disturbance systems
of the form

x[k + 1] = F (x[k]) + w[k] (5)

with specific assumptions on F and the distribution of the
random disturbance w. We first introduce several definitions
and then specify these assumptions.

Definition 2 (Mixed monotone function). A function F :
D → D with D a rectangular domain is mixed monotone
if there exists a decomposition function g : D × D → D
satisfying [11], [12]:
• ∀x ∈ D : F (x) = g(x, x)

• ∀x1, x2, y ∈ D : x1 ≤ x2 implies g(x1, y) ≤ g(x2, y)
• ∀x, y1, y2 ∈ D : y1 ≤ y2 implies g(x, y2) ≤ g(x, y1)

Mixed monotonicity generalizes the notion of monotonic-
ity in dynamical systems, which is recovered when g(x, y) =
F (x) for all x, y. Systems with monotone state update maps
exhibit considerable structure useful for analysis and control
[24], [25], [15], [14]. More recently, systems with mixed
monotone state update maps have been shown to enjoy many
of these same structural properties [12], [11]. For example,
for mixed monotone F with decomposition function g, for
x, y, z ∈ D satisfying x ≤ z ≤ y, we have g(x, y) ≤
F (z) ≤ g(y, x). This leads to the following proposition.

Proposition 1 ([12, Theorem 1]). Let F : D → D be mixed
monotone with decomposition function g : D×D → D, and
let a, b ∈ D satisfy a ≤ b. Then

{F (x) : a ≤ x ≤ b} ⊆ {z : g(a, b) ≤ z ≤ g(b, a)}.

Proposition 1 implies that the one-step reachable set
from the rectangular region bounded between a and b is
overapproximated by the rectangular region bounded by the
two points g(a, b) and g(b, a). This property will prove key
for efficient computation of IMC abstractions.

Definition 3 (Unimodal distribution). For a random distur-
bance ω ∈ Ω ⊂ R with Ω an interval, its probability density
function fω : R → R is unimodal if fω is differentiable on
Ω and there exists a unique number c ∈ R, referred as the
mode of the distribution, such that, for x ∈ Ω:
• x < c⇒ f ′ω(x) ≥ 0,
• x = c⇒ f ′ω(x) = 0, and
• x > c⇒ f ′ω(x) ≤ 0.

For simplicity, we will only consider distributions without
a “flat” peak, that is, unimodal distributions with a unique
mode c.

Definition 4 (Symmetric distribution). For a random distur-
bance ω ∈ Ω ⊂ R with Ω an interval, its probability density
function fω : R → R is symmetric if there exists a number
d ∈ R such that fω(d− x) = fω(d+ x) for all x.

Note that if fω is unimodal with mode c and symmetric,
then it must be that fω(c− x) = fω(c+ x).

Throughout the remainder of the paper, we make the
following assumptions.

Assumption 1. F (x) in (5) is mixed monotone with decom-
position function g(x, y).

Assumption 2. The random disturbance w[k] in (5) is of
the form w[k] =

[
w1[k] w2[k] . . . wn[k]

]T
, where each

wi ∈ Wi ⊂ R has probability density function fwi(xi), Wi

is an interval, and the collection {wi}ni=1 is mutually inde-
pendent. Denote by Fwi

(x) =
∫ x
−∞ fwi

(σ)dσ the cumulative
distribution function for wi.

Moreover, until Section VI, we make the following addi-
tional assumption.



Assumption 3. The probability density function fwi
for each

random variable wi is symmetric and unimodal with mode
ci.

In Section VI, we will relax Assumption 3 to allow for
affine disturbances that are only approximately symmetric
and unimodal.

V. APPROXIMATING TRANSITION PROBABILITIES FOR
MIXED MONOTONE DYNAMICS

We decompose our procedure for bounding the transition
probability from a state Q1 to a state Q2 in two steps: first,
we compute the rectangular over-approximation of the F -
reachable set from state Q1 by taking advantage of the mixed
monotonicity property. Next, we determine the positions of
fw within this rectangular region that respectively minimize
and maximize its overlap with Q2. In the next section,
we exploit the characteristics of w previously evoked to
streamline the calculation of these extremum points.

Proposition 2. Consider system (5) under Assumptions 1–3.
Let Q1 = {x : a1 ≤ x ≤ b1} and Q2 = {x : a2 ≤ x ≤ b2}
be two nonempty rectangular sets with least point aj and
greatest point bj for j = 1, 2. Then

min
x∈Q1

Pr(F (x) + w ∈ Q2)

≥
n∏
i=1

min
zi∈[gi(a1,b1),gi(b1,a1)]

∫ b2i

a2i

fwi
(x− zi)dx (6)

and

max
x∈Q1

Pr(F (x) + w ∈ Q2)

≤
n∏
i=1

max
zi∈[gi(a1,b1),gi(b1,a1)]

∫ b2i

a2i

fwi
(x− zi)dx (7)

where gi denotes the i-th element of g(x, y), the decompo-
sition function of F .

Recall that all proofs are found in the appendix. Before
generalizing to higher dimensions, we treat a 1-dimensional
version of our original problem. In Lemma 1, we prove that
for a fixed interval [a, b] ⊂ R, there exists a unique position
for a unimodal and symmetric distribution which maximizes
its integral over [a, b].

Lemma 1. Let ω ∈ Ω ⊂ R with Ω an interval be a random
variable with symmetric and unimodal probability density
function fω : R → R and mode c ∈ R. For any a, b ∈ R
satisfying a ≤ b and any r1, r2 ∈ R satisfying r1 ≤ r2, let

smax =
a+ b

2
− c

Q1

Q2

R1

fw

⊕

a1

b1

g(a1, b1)

g(b1, a1)

sR1
max⊕
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Fig. 1. Schematic depiction of the procedure for computing an upper
bound on the probability of transition from Q1 to Q2. First, the one-
step reachable set R1 from Q1 is over-approximated by evaluating the
decomposition function at only two extremal points, regardless of the state-
space dimension. Then, the distribution of z+w is positioned as close to the
center of Q2 as possible under the restriction that z ∈ R1. A lower bound
on the transition probability is achieved by positioning the distribution as
far from the center of Q2 as possible.

and define

srmax = arg min
s∈[r1,r2]

|smax − s| =


smax, if smax ∈ [r1, r2]

r2, if smax > r2

r1, if smax < r1,

srmin = arg max
s∈[r1,r2]

|smax − s| =

{
r1, if smax < r1+r2

2

r2, otherwise.

Then

max
s∈[r1,r2]

∫ b

a

fω(x− s) dx =

∫ b

a

fω(x− srmax) dx (8)

min
s∈[r1,r2]

∫ b

a

fw(x− s) dx =

∫ b

a

fω(x− srmin) dx. (9)

When smax ∈ [r1, r2] in Lemma 1, the lemma confirms
the intuitive idea that the integral of a unimodal, symmetric
distribution over some interval I = [a, b] is maximized when
the peak of its probability distribution lies at the center of
I . However, for the type of systems considered in this work,
the shift of such distributions will always be restricted to
take values within a given rectangular set [r1, r2] so that,
when smax 6∈ [r1, r2], the shift s ∈ [r1, r2] maximizing the
overlap of the density function over I is the one closest to the
global maximizing shift smax. Conversely, a shift s ∈ [r1, r2]
minimizing this overlap is the one furthest from smax.

Theorem 1 combines Lemma 1 and Proposition 2 in order
to provide a procedure for efficiently constructing an IMC
abstraction for (5) given a rectangular partition of its domain
D.



Theorem 1. Consider system (5) under Assumptions 1–3 and
let P = {Qj}mj=1 be a rectangular partition of D with each
Qj = {x : aj ≤ x ≤ bj} for some aj , bj ∈ Rn satisfying
aj ≤ bj . For all Qj , Q` ∈ P , let

s`i,max =
a`i + b`i

2
− ci for i = 1, . . . , n, (10)

r̂
j

= g(aj , bj),

r̂j = g(bj , aj),

and define

T̂Qj→Q`
=

n∏
i=1

∫ b`i

a`i

fwi
(xi − sj→`i,max) dxi, (11)

=

n∏
i=1

(
Fwi(b

`
i − s

j→`
i,max)− Fwi

(a`i − s
j→`
i,max)

)
,

T̂Qj→Q`
=

n∏
i=1

∫ b`i

a`i

fwi(xi − s
j→`
i,min) dxi (12)

=

n∏
i=1

(
Fwi

(b`i − s
j→`
i,min)− Fwi

(a`i − s
j→`
i,min)

)
where Fwi

is the cumulative distribution function for wi and

sj→`i,max =


s`i,max, if s`i,max ∈ [r̂

j
i , r̂

j
i ]

r̂ji , if s`i,max > r̂ji
r̂
j
i , if s`i,max < r̂

j
i ,

(13)

sj→`i,min =

{
r̂
j
i , if smax <

r̂ji+r̂
j
i

2

r̂ji , otherwise.
(14)

Then I = (P, T̂ , T̂ ) is an IMC abstraction of (5).

Theorem 1 is a main contribution of this work. Given a
system of the form (5) satisfying Assumptions 1 to 3, and a
rectangular partition P , it shows that an IMC abstraction of
(5) can be computed efficiently. Specifically, for any state
in P , we establish an over-approximation of its one-step
reachable set by evaluating the system’s decomposition func-
tion at only two points. Likewise, finding the maximizing
and minimizing shifts inside the reachable sets decouples
along each coordinate and involves a number of operations
and conditional statements that is linear in the dimension n
of the state-space, according to (13) and (14). Finally, we
see in (11) and (12) that n integral evaluations are needed
per transition bound. Presuming the cumulative distribution
function Fwi

for each wi is available to us, this last step
amounts to 2n function evaluations per bound. The practical
implications of Theorem 1 can then be implemented in the
form of Algorithm 1.

VI. IMC ABSTRACTION FOR ARBITRARY AFFINE
DISTURBANCES

In Section 4, we exploited the crucial facts that each
component of the random disturbance w of system (5) was
unimodal and symmetric in order to efficiently construct an
IMC approximation. Unfortunately, real-world systems rarely

Algorithm 1: Computation of an IMC abstraction for a
rectangular partition P

Input : Partition P = {Qj}mj=1,
Probability density functions fwi

and
modes ci ∈ R for each component
of disturbance,
Cumulative distribution functions Fwi of
fwi

System decomposition function g
Output: IMC abstraction I of (5)

for j = 1, 2, . . . , n do
Set r̂j = g(bj , aj) and r̂j = g(aj , bj)
for ` = 1, 2, . . . , n do

for i = 1, 2, . . . , n do
Compute s`i,max according to (10)
Compute sj→`i,max and sj→`i,min according to
(13) and (14)

end
Compute T̂Qj→Q`

and T̂Qj→Q`
according to

(11) and (12)
end

end

return I = (P, T̂ , T̂ )

encounter disturbances displaying these two properties. In
such instances, one could resort to purely numerical tech-
niques to generate an IMC. We instead develop an alternate
solution by approximating the original distribution with an-
other one which is unimodal and symmetric. Then, the tools
derived in Section 3 can be utilized on the approximation
distribution. In this section, we introduce a method for
generating an IMC abstraction of the original system: we
first compute an IMC using the approximation distribution,
and then adjust its transition bounds appropriately.

To that end, consider random disturbance w ∈ Rn of (5)
and suppose the collection {wi}ni=1 remains mutually inde-
pendent, but we no longer assume that each wi is unimodal
and symmetric, i.e., Assumption 3 no longer holds. However,
we assume that each wi is reasonably approximated by a
unimodal and symmetric distribution. To this end, many
metrics exist to quantify the similarity between two prob-
ability distributions. Here, the maximum absolute difference
between the original distribution w and its approximation v
is our metric of choice, and we replace Assumption 3 with
the following Assumption.

Assumption 3b. There exists a mutually independent col-
lection of random variables {vi}ni=1 and constants {δi}ni=1

such that vi ∈ Vi, the probability density function fvi for
each vi is unimodal and symmetric with mode c̃i, and

δi ≥ max
xi∈R

|fvi(xi)− fwi(xi)|.

In Assumption 3b, recall that fwi
is the probability density



function of wi ∈ Wi, the i-th component of the random
disturbance w.

The main result of this section, Theorem 2 below, states
that we are able to determine an upper and a lower bound
on the probabilities of transition between any two states
in system (5) subject to disturbance w through an efficient
computation of the bounds assuming instead that the system
is subject to the random disturbance v.

Theorem 2. Consider system (5) under Assumptions 1, 2,
and 3b, and let P = {Qj}mj=1 be a rectangular partition of
D with each Qj = {x : aj ≤ x ≤ bj} for some aj , bj ∈ Rn
satisfying aj ≤ bj . For all Qj , Q` ∈ P , let

s̃`i,max =
a`i + b`i

2
− c̃i

and let r̂j = g(aj , bj) and r̂j = g(bj , aj). Define

T̂ ∗Qj→Q`
=

n∏
i=1

(∫ b`i

a`i

fvi(xi − s̃
j→`
i,max) dxi + δi(b

`
i − a`i)

)
,

(15)

T̂ ∗Qj→Q`
=

n∏
i=1

(∫ b`i

a`i

fvi(xi − s̃
j→`
i,min) dxi − δi(b`i − a`i)

)
(16)

where

s̃j→`i,max =


s̃`i,max, if s̃`i,max ∈ [r̂

j
i , r̂

j
i ]

r̂ji , if s̃`i,max > r̂ji
r̂
j
i , if s̃`i,max < r̂

j
i ,

s̃j→`i,min =

{
r̂
j
i , if s̃max <

r̂ji+r̂
j
i

2

r̂ji , otherwise.

Then I = (P, T̂ ∗, T̂ ∗) is an IMC abstraction of (5).

Although similar to Theorem 1, Theorem 2 relaxes As-
sumption 3 and considers an arbitrary disturbance w to
system (5). It assumes the existence of a random disturbance
v that is unimodal, symmetric and characterized by its
maximum absolute difference with w as stated in Assumption
3b. This allows us to efficiently compute an IMC abstraction
for (5) by applying the equations in Theorem 1 to disturbance
v with the addition of an error term in the bounds (15)
and (16). The error terms solely involve the multiplication
of two known quantities and do not significantly affect the
complexity of computing the IMC as compared to Theorem
1. However, it should be noted that the conservatism of an
IMC generated from Theorem 2 strongly depends on the δi
parameters. The latter are scaled by the size of the destination
states and added to the IMC bounds, meaning that a large
maximum absolute distance between w and v can only be
compensated by a reduction of the states’ size and an increase
in the number of states in the partition. As such, even though
this method can be applied to arbitrary disturbances, it is
most practical if w originally displays a probability density
profile that is almost symmetric and unimodal.

The proof of Theorem 2 requires the following lemma
in which we first restrict ourselves to a one-dimensional
framework.

Lemma 2. Let ω ∈ Ω ⊂ R with Ω an interval be a random
variable with probability density function fω : R → R. Let
ν ∈ Ω ⊂ R be another random variable with symmetric
and unimodal probability density function fν : R→ R with
mode c̃, and let δ satisfy δ ≥ max

x∈R
|fω(x) − fν(x)|. For

any a, b ∈ R satisfying a ≤ b and any r1, r2 ∈ R satisfying
r1 ≤ r2,

max
s∈[r1,r2]

∫ b

a

fω(x− s) dx

≤ max
s∈[r1,r2]

∫ b

a

fν(x− s) dx+ δ(b− a)

min
s∈[r1,r2]

∫ b

a

fω(x− s) dx

≥ min
s∈[r1,r2]

∫ b

a

fν(x− s) dx− δ(b− a).

Lemma 2 is the enabling step in the proof Theorem 2 in
the appendix.

VII. STATE-SPACE REFINEMENT

Once an IMC abstraction of the system has been produced,
we seek to exploit it to perform verification. A standard logic
for expressing specifications in probabilistic terms is PCTL.
A PCTL formula φ is of the form

φ = P./psat
[Ψ]

where ./∈ {≤, <,≥, >}, psat ∈ [0, 1] is a probability and Ψ
is a path formula [2]. A path formula expresses a specifica-
tion over trajectories of the dynamical system. For example,
the specification “the trajectory always remains in region
A” is a path formula which can be written symbolically
as �A where � is the “always” temporal operator. A state
x0 ∈ D satisfies φ if the probability that trajectories x[k]
initialized with x[0] = x0 satisfy Ψ is less than or equal
to psat in the case that ./=≤, and similarly for the other
possibilities for ./. Examples of several PCTL formulas and
their interpretations are given alongside the case studies of
Section VIII. For further details on the syntax and semantics
of PCTL, see [2].

Given a state-space partition P of D ⊂ Rn, we
model check against φ by assigning a probability interval
[pjmin, p

j
max] of satisfying Ψ for all states Qj ∈ P . The

techniques for determining these intervals from an IMC are
not the focus of this paper and we apply the same procedure
as in [6]. Any state Qj such that psat ∈ ]pjmin, p

j
max[ when

./∈ {≤,≥}, or psat ∈ [pjmin, p
j
max] when ./∈ {<,>}, is

undecided with respect to φ and we write Qj ∈ Q?. The
remaining states in P either satisfy φ or do not satisfy φ.
The sets of states satisfying a PCTL formula φ are denoted
by Qyes, while those not satisfying φ belong to the set Qno.



That is, for any Qj ∈ Qyes, all x ∈ Qj satisfy φ, and for
any Qj ∈ Qno, all x ∈ Qj are guaranteed to not satisfy φ.

Upon completion of verification, P is characterized by
the volume of uncertain states Q?. We address the issue of
reducing the uncertain volume and briefly suggest refinement
heuristics for the “next”, “until” and “bounded until” path
formulas. These algorithms terminate once Imaxd < Id,
where Imaxd = max

i s.t. Qj∈Q?
|pjmax − pjmin| and Id ∈ [0, 1]

is a user-specified precision parameter.

A. Next Path Formula

Given a set D ⊂ Rn, a PCTL formula φ = P./psat
[XD ]

including the Next operator X raises the question:

“Which states in P have a probability of reaching a state
labeled by D in one time-step that is less (or greater) than
psat?”

Presume Qj ∈ Q?. We want to reduce the size |pjmax −
pjmin| of the transition probability interval of reaching D
from Qj . A standard technique for achieving this is to create
a new partition P ′ by dividing a selection of states in P into
smaller ones. This process causes P ′ to be a new partition
of D with reduced uncertainty [6].

In this particular case, only local refinement of Qj is
necessary. Indeed, subdividing another state Q` does not
affect the one-time-step reachability properties of Qj .
Furthermore, we must ensure that P ′ is a rectangular
partition of D. Hence, we propose the following refinement
procedure:

1) ∀Qj ∈ Q?, split Qj into two hyperrectangles along
its largest dimension.

2) Compute the probability intervals of transition for the
new partition and perform model-checking.

3) If Imaxd > Id, return to step 1. Else, terminate.

Note that only the transitions from the states in Q? need to be
computed when evaluating this one-time-step formula. This
renders verification against Next operators computationally
efficient as compared to formulas comprising multiple-time-
steps operators.

B. Until and Bounded Until Operators Path Formulas

PCTL formulas with Until and Bounded Until Operators
are respectively of the form

φa = P./psat
[D ′ U D ]

φb = P./psat [D
′ U≤k D ]

where D ′ = {Qj′}mj′=1 and D = {Qj}lj=1, Qj′ , Qj ⊂ Rn,
are two sets of states. φa asks

“Which states in P have a probability of reaching a state
labeled by D before reaching a state not in D ′ that is less

(or greater) than psat?”

while φb requests

“Which states in P have a probability of reaching a state
labeled by D in k time steps or less before reaching a state
not in D ′ that is less (or greater) than psat?”

Here, local refinement of states in Q? may not be the most
appropriate method to reduce uncertainty in the IMC. When
the operator involves multiple time steps, the behavior of
the successor states of a given Qj affects the probability of
reaching some state in k steps from Qj . Thus, refining states
in Qyes and Qno may contribute to reducing the size of the
[pmin, pmax] interval for some states in Q?.

To account for that fact, we implement the following
refinement algorithm:

1) ∀Qj ∈ Qyes ∪ Qno, compute a score
σj = (pjmax − p

j
min)×

∑
Q`∈P (T̂Q`→Qj

− T̂Q`→Qj ).
pjmax and pjmin are bounds on the probability of
satisfying the formula of interest from state Qj in
the current partition. Score σj can be interpreted as a
measure of the uncertainty caused by state Qj in the
abstraction.

2) ∀Qj ∈ Q?, split Qj into two hyperrectangles along its
largest dimension. Then, split the states in Qyes∪Qno
with the n greatest (non-zero) scores in the same
fashion, where n is a user-dependent parameter.

3) Compute the probability intervals of transition in the
new partition and perform model-checking.

4) If Imaxd > Id, return to step 1. Else, terminate.

These heuristics are implemented in the next section for
our case studies. Refining Qno states appears to significantly
improve the runtime in comparison to algorithms focus-
ing primarily on Q? states, Qyes states, and their spatial
neighbors, as it is the case in [6]. Nevertheless, a complete
refinement approach for general PCTL formulas remains a
subject for future research.

VIII. CASE STUDIES

In this section, we perform verification on two mixed
monotone systems with affine disturbance against various
PCTL specifications. IMCs are computed according to Sec-
tion 3 and 4, while the model-checking procedures are the
same as in [6].

A. Planar System

We investigate two case studies proposed in [6, Section
VIII-A]. Consider the system x[k+ 1] = Ax[k] +w[k] with
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Fig. 2. Initial partition P of the state space displaying the Obstacle (Obs)
and Destination (Des) regions for the case studies in Section VIII-A.

w[k] ∈W where

A =

[
0.4 0.1
0 0.5

]
,

W =

{
x ∈ R2 :

[
−0.4
−0.4

]
≤ x ≤

[
0.4
0.4

]}
.

In addition, w is drawn from the truncated Normal distribu-
tion fw given by

fw(y) =

{
N (y,0,0.09I)∫

W
N (z,0,0.09I)dz

if y ∈W
0 Otherwise

where I is the identity matrix and N (·, 0, 0.09I) is the
zero-mean Normal distribution with covariance matrix 0.09I .
We note that this system is monotone—a special case of
mixed monotone systems—and the procedure derived in
the previous sections can be applied to it. In particular,
we take g(x, y) = Ax as the decomposition function for
F (x) = Ax.

Our goal is to find a set of initial states satisfying some
specification written as a PCTL formula, and, following [6],
we consider the two PCTL formulas

φ1 = P<0.05[XObs],
φ2 = P≥0.90[¬Obs U Des],

where ¬ denotes the ‘Not’ operator, Obs ⊂ R2 is the union
of four rectangular “obstacle” regions, and Des ⊂ R2 is the
union of two “destination” regions as shown in Figure 2.
Thus, φ1 states “the probability that the state of the system
in the next time-step is within the obstacle region is less than
0.05,” and φ2 states “the probability that the system remains
outside of the obstacle region until reaching the destination
region is greater than or equal to 0.90”.

For both specifications, we initially perform model check-
ing using an initial course partition P as shown in Fig. 2. The
results for this step are displayed in the top plots of Fig. 3 and
Fig. 4. Next, we execute the refinement algorithm of Section
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Fig. 3. Results for specification φ1 with the initial partition (top) and
the final partition after refinement when Id = 0.001 (bottom). Red states
do not satisfy the specification, green states satisfy the specification, while
yellow states are undecided.

VII on P until the interval of satisfaction for Ψi for all Q?

states has size smaller than Id = 0.05 where Ψ1 = XObs
and Ψ2 = ¬Obs U Des in accordance with φ1 and φ2;
recall that Q? states are those partition regions for which we
cannot conclude with certainty whether the specification is
satisfied or not because the interval of satisfaction contains
psat (psat = 0.05 in the case of φ1 and psat = 0.90 in the
case of φ2).

We use Python as our programming language for all
simulations. The latter were conducted on a OS X 10.16
computer endowed with 8 GB of memory and a 3.3 GHz
Intel Core i7 processor. The total computation times for
the initial abstraction generation, verification and refinement
all together were 1.14 and 14.3 seconds for φ1 and φ2
respectively. In [6], the authors employed a sampling-based
technique to construct an IMC abstraction, requiring multiple
expensive integral evaluations, and achieved the same level
of precision in 4.8 and 51.4 hours respectively. Moreover,
our refinement algorithm generated 210 states for φ1 and
452 states for φ2, while approximately twice as many states
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Fig. 4. Results for specification φ2 with the initial partition (top) and
the final partition after refinement when Id = 0.005 (bottom). Red states
do not satisfy the specification, green states satisfy the specification, while
yellow states are undecided.

were produced in [6] for the same level of precision. We
hypothesize that these computational improvements were due
to both a more efficient abstraction generation and a better
targeted refinement, although further work is required to fully
understand the separate contributions of these improvements
to the overall computation time.

In addition, we increase the precision of our results by a
factor of 50 for the specification φ1 by reducing the size of
Id to 0.001. For specification φ2, we enhance the precision
by a factor of 10 and choose Id = 0.005. We show the
final model-checked state-spaces in Fig. 3 and Fig.4. The
algorithm terminated in 33.15 minutes and produced 10388
states for the specification φ1, while verifying against φ2
took 15.5 hours to run and generated 15329 states.

We remark that our method is particularly powerful when
the disturbance takes values from a compact set. Via the over-
approximation of the reachable set, we can quickly check
whether the affine disturbance can attain a given state or
not, avoiding unnecessary integral evaluations.

3

2

1

Fig. 5. Sketch of a merging junction consisting of three links.

B. Merging Traffic Junction: Gaussian Approximation of
Poisson Distributions

We now present a 3-dimensional case study for a model
of a merging traffic junction as displayed in Fig. 5. This
example demonstrates the applicability of our technique to
a nonlinear system, as well as the practical relevance of
the derivations in Section VI. Traffic flow results in mixed
monotone dynamics [26], and new vehicles entering traffic
networks can readily be interpreted as affine disturbances.
The following monotone discrete-time system describes the
time evolution of the junction in Fig. 5 and is a slight
modification of the model contained in [27]:

x1[k + 1] = x1[k]−min

{
D(x1[k]),

α

β
S(x3[k])

}
+ w1

(17)

x2[k + 1] = x2[k]−min{D(x2[k]), ᾱS(x3[k]), u[k]}+ w2

(18)

x3[k + 1] = x3[k] + min{βD(x1[k]), αS(x3[k])}
+ min{D(x2[k]), ᾱS(x3[k]), u[k]}
−D(x3[k])− w3 (19)

where x1[k], x2[k], x3[k] are the queue lengths of links 1,
2 and 3 respectively at time k; D(x) = min{c, vx} is a
traffic demand function with c and v respectively denoting
the capacity and free-flow speed; S(x) = w̄(x̄ − x) is a
traffic supply function where w̄ is a coefficient relating the
available space on a given link and the supply on that link
and x̄ stands for the jam occupancy; α and ᾱ denote supply
weights for link 1 and 2 and respectively; β determines the
fraction of vehicles leaving link 1 to enter link 3 at each time
step; u[k] is a parameter representing the maximum number
of cars allowed to drive from link 2 to link 3 in one time
step; w1 and w2 are disturbances corresponding to a random
flow of cars entering the system through link 1 and 2 at each
time step, while w3 is a random number of cars exiting the
system along link 3.

In reality, the arrival rates at Link 1 and 2, as well as the
departure rate at Link 3, can only take integer values and
are appropriately modeled by Poisson distributions. Although
unimodal, Poisson distributions are not symmetric and the
techniques developed in Section 3 do not directly apply.
We thus choose to approximate each wi by a unimodal,
symmetric distribution vi. We exploit the property that, for
large λ, Poisson(λ) ' N (λ, λ). We denote by λi the mean
arrival (or departure) rate of Link i and make the following



Parameter Value
c 100
v 0.5
α 1
ᾱ 5
β 0.75
x̄ 800
w̄ 0.5/3

u[k] = u 60

TABLE I
PARAMETER VALUES FOR SYSTEM (26)

approximations:

w1 ∼ Poisson(λ1 = 100) ' v1 ∼ N (100, 100)

w2 ∼ Poisson(λ2 = 100) ' v2 ∼ N (100, 100)

w3 ∼ Poisson(λ3 = 60) ' v3 ∼ N (60, 60).

We determine that δ1 = 0.000895, δ2 = 0.000895 and δ3 =
0.0015 satisfies δi ≥ max

xi∈R
|vi(x)− wi(x)|.

The initial partition P is shown in Fig. 5. We aim to model-
check system (28) against the specification

φ3 = P≥0.90[true U≤3 Des]

where Des = {x ∈ R3 : 0 ≤ xi < 400 for i = 1, 2, 3} is the
set of states that have all three queue lengths strictly smaller
than 400. We interpret φ3 as “What are the set of states
that reach a queue length shorter than 400 for all 3 links,
within 3 time steps, with probability greater than or equal
to 0.90?”.

We evaluate φ3 over the initial partition P using these
approximations and conduct refinement with precision Id =
0.20. We stop the refinement process after the volume of
the uncertain states Q? falls below 5 percent. The running
time was 15 hours and 35 minutes. The final partition is
shown in Fig. 6 and contains 16403 states. Green-colored
states are certain to satisfy φ3, red-colored stats are certain
to not satisfy φ3, and yellow-colored may or may not satisfy
φ3.

IX. CONCLUSIONS

We have developed an efficient algorithm for computing
the IMC of a mixed monotone system with affine disturbance
over rectangular partitions. We demonstrated our techniques
through two case studies and significantly reduced the com-
putational cost of verification and refinement compared to
other approaches previously employed.

Exploring the potential of mixed monotonicity for solving
synthesis problems in stochastic controlled systems is a
natural step for future work. In addition, the implementation
of more efficient refinement procedures is necessary to im-
prove the scalability of IMCs to higher dimensions. Finally,
alternative local approximations of arbitrary distributions
may be examined to reduce conservatism in the bounds
derived in Section 4.
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Fig. 6. The initial partition P of the state-space for system (17)–(19)
(top) and the results of verification against φ3 after refinement (bottom).
Refinement was interrupted when the volume of Q? states reached 5 percent
of the total state-space volume. Red states do not satisfy the specification,
green states satisfy the specification, while yellow states are undecided.

REFERENCES

[1] E. M. Clarke, O. Grumberg, and D. A. Peled, Model checking. MIT
press, 1999.

[2] C. Baier and J. Katoen, Principles of Model Checking. MIT Press,
2008.

[3] P. Tabuada, Verification and control of hybrid systems: A symbolic
approach. Springer, 2009.

[4] L. V. Utkin and I. O. Kozine, “Computing system reliability given
interval-valued characteristics of the components,” Reliable computing,
vol. 11, no. 1, pp. 19–34, 2005.
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APPENDIX

A. Proof of Proposition 2

Proof. By Proposition 1, we observe

{F (x) : x ∈ Q1} ⊆ {z : g(a1, b1) ≤ z ≤ g(b1, a1)}. (20)

To prove (6), we have

min
x∈Q1

Pr(F (x) + w ∈ Q2)

≥ min
z:g(a1,b1)≤z≤g(b1,a1)

Pr(z + w ∈ Q2) (21)

= min
z:g(a1,b1)≤z≤g(b1,a1)

n∏
i=1

Pr(zi + wi ∈ [a2i , b
2
i ]) (22)

=

n∏
i=1

min
zi:gi(a1,b1)≤zi≤gi(b1,a1)

Pr(zi + wi ∈ [a2i , b
2
i ]) (23)

where (21) follows from (20), (22) follows from the mutual
independence of all components of w in Assumption 2, and
(23) holds because g(a1, b1) ≤ z ≤ g(b1, a1) if and only
if gi(a1, b1) ≤ zi ≤ gi(b

1, a1) for all i = 1, . . . , n. Then
(6) holds because Pr(zi + wi ∈ [a2i , b

2
i ]) =

∫ b2i
a2i
fwi(x −

zi)dx. Finally, (7) holds by a symmetric argument as above,
replacing min with max.

B. Proof Lemma 1

Proof. For s ∈ R, define H(s) =
∫ b
a
fω(x−s) dx. We claim

H(smax) = max
s∈R

H(s),

and, moreover, for all s1, s2 ∈ R such that |smax − s1| ≥
|smax − s2|, it holds that H(s1) ≤ H(s2), that is, H(s)
monotonically decreases as |smax − s| increases. Assuming
the claim to be true, it follows that maxs∈[r1,r2]H(s) =
H(srmax) and mins∈[r1,r2]H(s) = H(srmin), i.e., (8) and
(9), completing the proof.

To prove the claim, we have, for all s ∈ R,

H(smax)−H(s)

=

∫ b

a

fω(x− smax) dx−
∫ b

a

fω(x− s) dx

=

∫ b−smax

a−smax

fω(x) dx−
∫ b−s

a−s
fω(x) dx

=

∫ a−s

a−smax

fω(x) dx−
∫ b−s

b−smax

fω(x) dx

=

∫ smax−s

0

[
fω(x+ a−b

2 − c)− fω(x+ b−a
2 − c)

]
dx.

(24)

Moreover, because fω is symmetric and unimodal with
mode c, fω(x + a−b

2 − c) − fω(x + b−a
2 − c) is an odd

function of x and is negative for x > 0 and positive for
x < 0. Therefore, the integral in (24) is nonnegative and
monotonically decreases as |smax−s| increases, thus proving
the claim.



C. Proof of Theorem 1
Proof. For all Qj , Q` ∈ P and i = 1, . . . , n, by Lemma 1,

min
zi∈[gi(aj ,bj),gi(bj ,aj)]

∫ b`i

a`i

fwi
(x− zi)dx

=

∫ b`i

a`i

fwi
(xi − sj→`i,min) dxi,

max
zi∈[gi(aj ,bj),gi(bj ,aj)]

∫ b`i

a`i

fwi(x− zi)dx

=

∫ b`i

a`i

fwi(xi − s
j→`
i,max) dxi,

Then, by Proposition 2,

min
x∈Qj

Pr(F (x) + w ∈ Q`) ≥
n∏
i=1

∫ b`i

a`i

fwi(xi − s
j→`
i,min) dxi

(25)

max
x∈Qj

Pr(F (x) + w ∈ Q`) ≤
n∏
i=1

∫ b`i

a`i

fwi(xi − s
j→`
i,max) dxi,

(26)

so that (11)–(12) implies (3)–(4). Furthermore, (25)–(26)
implies T̂ (Qj , Q`) ≤ T̂ (Qj , Q`) and (3)–(4) implies (1) so
that I = (P, T̂ , T̂ ) is a valid IMC, concluding the proof.

D. Proof of Lemma 2
Proof. Let sωmax and sωmin satisfy∫ b

a

fω(x− sωmax) dx = max
s∈[r1,r2]

∫ b

a

fω(x− s) dx,∫ b

a

fω(x− sωmin) dx = min
s∈[r1,r2]

∫ b

a

fω(x− s) dx.

Since |fω(x)− fν(x)| ≤ δ ∀x, we have

fω(x− sωmax) ≤ fν(x− sωmax) + δ ∀x

and it follows that∫ b

a

fω(x− sωmax) dx

≤
∫ b

a

fν(x− sωmax) dx+ δ(b− a)

≤ max
s∈[r1,r2]

∫ b

a

fν(x− s) dx+ δ(b− a).

Similarly,

fω(x− sωmin) ≥ fν(x− sωmin)− δ ∀x

so that∫ b

a

fω(x− sωmin) dx

≥
∫ b

a

fν(x− sωmin) dx− δ(b− a)

≥ min
s∈[r1,r2]

∫ b

a

fν(x− s) dx− δ(b− a).

E. Proof of Theorem 2

Proof. For all Qj , Q` ∈ P and i = 1, . . . , n, by Lemma 1
and Lemma 2,

min
zi∈[gi(a1,b1),gi(b1,a1)]

∫ b2i

a2i

fwi
(x− zi)dx

≥
∫ b`i

a`i

fvi(xi − s̃
j→`
i,min) dxi − δi(b`i − a`i),

min
zi∈[gi(a1,b1),gi(b1,a1)]

∫ b2i

a2i

fwi(x− zi)dx

≤
∫ b`i

a`i

fvi(xi − s̃
j→`
i,max) dxi + δi(b

`
i − a`i).

The theorem then follows from Proposition 2 by following
the same argument as in the proof of Theorem 1.


