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Abstract— This paper studies the infinite-time behavior of
switched linear systems in the presence of additive noise. In
particular, we show that the propagation of the state covariance
matrix can be described by a linear affine system and therefore
classified by an invariant region of the covariance space.
An algorithm is presented for bounding the state covariance
matrix with a suitable hyper-ellipsoid in the dimension of the
covariance space; we form this algorithm using a Kronecker
algebra-based derivation.

I. INTRODUCTION

Safety guarantees for real-world systems are often de-
rived from switched dynamical system models [1]. In some
instances, this is due to the inherent modal nature of the
system dynamics [2], [3], but the class of systems which
can be abstracted with switched models is quite broad.
Certain classes of nonlinear systems, for example, can be
modeled with switching dynamics, as can systems which
experience time delays [4], [5]. As a result, academic work
on the stability of switching systems can be distilled into
many overlapping categories. Many works explore stability
guarantees and control synthesis techniques arising from con-
ditions on the system structure and switching scheme. Some
deal with systems that switch deterministically at boundaries
in the state space [6], [7]. Others provide conditions for
controllability and develop feedback control strategies for
switched-linear systems [8], [9]. Feedback control strategies
have been developed for nonlinear systems with stochastic
switching [10] and for systems with time delays [11], [12].

This work explores systems in which the switching se-
quence is arbitrary. In [13], [14] stability guarantees follow
from the construction of a piecewise quadratic Lyapunov
function for such systems. In many studies of switched
systems, a Linear Matrix Inequality (LMI) is formulated in
order to solve numerically for a positive definite matrix or
set of such matrices which parameterize a single quadratic
Lyapunov function for the switched system [15]. Here, we
consider a switched linear system with additive Gaussian
noise and ultimately formulate an LMI which can be solved
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to compute an ellipsoidal bound for the covariance matrix of
the system state.

The covariance matrix of this switched linear system with
noise does not hold a single value. We show that it evolves as
the state of a related “augmented” system. As shown in [16],
for the case of a continuous-time switching system without
random noise, this augmented system is stable if and only
if the original arbitrarily switching system is stable. In the
present case, we are not concerned with asymptotic stability
but rather that the state covariance is bounded. The state
covariance evolves according to a switching linear affine
difference equation, and the state of such a system often
approaches an attractor set [17] rather than an equilibrium
point. The authors in [18] find a sufficient condition for
which the set of possible covariances form a fractal set in a
Kalman filtering problem. Another related study seeks to find
an optimal control scheme to control the covariance matrix
for a stochastic discrete-time linear time-varying system,
steering it from an initial probabilistic distribution to a
desired one [19]. In this research, we present an algorithm
for computing an ellipsoidal bound on the set of possible
covariance matrices for the switching system with noise,
which is equivalent to a bound on the minimal attractor set
of the augmented system.

This paper is organized as follows. We define the system
under study, and then proceed to look at the case of a
randomly switching affine system. In other words, the state
propagation is subject to multiple sets of dynamics, each of
which may contain a different equilibrium point. A stability
guarantee or, at the very least, a bound on the minimal
attractor set for such a system, constitutes a preliminary
development of this paper. Then, we show that this randomly
switching affine system is of the same form as a randomly
switching system that propagates a covariance matrix (as
the system state) for a randomly switching system with
noise. Numerical examples demonstrate how the ellipsoid
determined through the matrix inequality formulation solves
the guaranteed bound problem.

II. BOUNDING THE INFINITE-TIME BEHAVIOR OF
RANDOMLY SWITCHING AFFINE SYSTEMS

This work considers discrete-time dynamical systems of
the form

x(k + 1) = A(k)x(k) + w(k)

w(k) ∼ N (µ(k), Σ(k))
(1)

where x(k) ∈ Rn denotes the system state, and w(k) ∈ Rn

denotes an additive Gaussian noise term with mean µ(k) ∈



Rn and noise covariance matrix Σ(k) ∈ Rn×n. We further
assume that the tuple (A(k), µ(k), Σ(k)) ∈ C ⊂ Rn×n ×
Rn × Rn×n is chosen at each time step from a finite set of
system parameters:

C ,
{

(A1, µ1, Σ1), · · · , (AN , µN , ΣN )
}
.

Importantly, we make no assumptions on the stochastic
properties of (A(k), µ(k), Σ(k)) within C.

We are specifically interested in classifying the infinite-
time behavior of the system (1) under arbitrary switching
and identifying any invariant regions of the statespace, should
they exist. To that end, we first consider an affine reduction
of (1). After deriving a general framework for computing
invariant regions for switched affine systems, we return to
the initial stochastic setting of (1).

A. Mathematical Preliminaries

Consider the discrete-time linear affine system

x(k + 1) = A(k)x(k) + w(k) (2)

where x(k) ∈ Rn denotes the system state and the pair
(A(k), w(k)) ∈ C′ is chosen arbitrarily at each timestep from
a finite set of system parameters:

C′ ,
{

(A1, w1), · · · , (AN , wN )
}
.

We further assume that for all i ∈ {1, · · · , N} the eigenval-
ues of Ai have a magnitude less than one; in this case, each
subsystem

x(k + 1) = Aix(k) + wi

i ∈ {1, · · · , N}
(3)

converges globally to an equilibrium point xeq,i given by

xeq,i = (In −Ai)
−1wi, (4)

where In ∈ Rn×n denotes the n× n identity matrix.
The system (2) does not have an equilibrium point in

general, unless xeq,i = xeq,j for all i, j ∈ {1, · · · , N}. In
this specific case, however, one cannot assume the stabil-
ity properties of the equilibrium under arbitrary switching;
that is, the presence of a unique equilibrium point for the
switched system (2) does not guarantee global convergence,
even in the case that each switched mode of (3) is itself
stable. For this reason, it is preferable to instead classify
the infinite-time behavior of (2) with invariant regions of the
state space.

B. The Attractor Set

A related notion to equilibrium is that of the attractor set,
which is an invariant region of the state space to which all
initial system states converge.

Definition 1 (Attractor Set). We use the symbol d(x,S) to
denote the Euclidean distance between the vector x ∈ Rn

and a set S ⊂ Rn, which we define by

d(x,S) = min
y∈S
‖y − x‖

where ‖·‖ is the Euclidean norm. A closed set A ⊂ Rn

is a global attractor for (2) if for all switching sequences
(A(0), w(0)), (A(1), w(1)), . . . with (A(k), w(k)) ∈ C′ for
all k, and for all initial conditions x(0) ∈ Rn, the resulting
state trajectory x(k) satisfies

lim
k→∞

d(x(k),A) = 0.

An attractor is minimal if no strict subset is also an attractor,
and we use Am to denote the global minimal attractor set of
(2).

The intersection of any collection of attractors is itself an
attractor. It thus follows that the minimal attractor for a given
system is unique. Little is known in general about the shape
or size of Am. It often features a fractal structure, as shown
in a numerical example provided at the end of this section.

We aim to compute an invariant, hyper-ellipsoidal outer
approximation of Am, which will take the form

EP,xc =
{
x ∈ Rn | (x− xc)TP (x− xc) ≤ 1

}
⊂ Rn

where xc ∈ Rn denotes the centroid of the ellipse and
where P ∈ Rn×n is a symmetric positive definite matrix
which encodes the orientation and scaling. We choose to
focus on ellipsoidal outer-approximations since the search
for the ellipsoid parameter P can be easily formulated as
a semidefinite programming (SDP) problem. The following
proposition specifies a requirement on the time-evolution
of the ellipsoidal set which ensures that the ellipsoid is
an outer-approximation of Am. The proposition is similar
to the LaSalle-like invariance theorem in [20] but with
relaxed assumptions since only systems of the form (2) are
considered, and only an outer-approximation of an invariant
set is sought rather than a proof of asymptotic stability.

Proposition 1. Define

E(x) , (x− xc)TP (x− xc), (5)

for some vector xc ∈ Rn and some symmetric positive
definite matrix P ∈ Rn×n. Additionally, let

EP, xc = {x ∈ Rn | E(x) ≤ 1} ⊂ Rn. (6)

If for all x ∈ Rn with trajectories generated according to
(3), and for all i ∈ {1, · · · , N} we have

E(Ai x+ wi) ≤ 1 when E(Ai x+ wi)− E(x) ≥ 0 (7)

then EP, xc
is positively invariant along trajectories of (2).

Moreover, Am ⊆ EP, xc
.

Proof: Consider the initial condition x(k) ∈ EP, xc
.

Here, E(x(k)) ≤ 1. For the case where

E(Ai x(k) + wi)− E(x(k)) < 0

for a given i ∈ {1, · · · , N}, we have E(Ai x(k) + wi) < 1.
Therefore, x(k + 1) ∈ EP, xc

for the given value of i.
Next consider the case where, for a given i ∈ {1, · · · , N},

we have
E(Ai x(k) + wi)− E(x(k)) ≥ 0 (8)



By (7), we have E(Ai x(k)+wi) ≤ 1. Therefore, x(k+1) ∈
EP, xc for the given value of i. Since one of the above
two cases must hold for all i ∈ {1, · · · , N}, we conclude
that x(k + 1) ∈ EP, xc

for all x(k + 1) ∈ {A1 x(k) +
w1, · · · , AN x(k) + wN} and that EP, xc

is positively in-
variant along trajectories of (2).

The proof that Am ⊆ EP, xc
follows from (7):

E(x(k)) > 1 =⇒ E(Ai x(k) + wi)− E(x(k)) < 0,

for all i ∈ {1, · · · , N}. Therefore, for all initial conditions
x(0) ∈ Rn we have limk→∞ x(k) ∈ EP, xc

, and moreover
Am ⊆ EP, xc

.

C. Computing Elliptical Invariant Regions

As shown in Proposition 1, the existence of an E(x) that
satisfies (7) guarantees that Am ⊆ EP, xc , where E(x) is
defined by (5) and EP, xc

is defined by (6). In what follows,
we present an algorithm, encoded as a semidefinite program,
which searches for such a mapping E(x). We first present
the following theorem.

Theorem 1. Let xc ∈ Rn, and define the mapping Si :
Rn×n × R→ Rn+1×n+1:

Si(P, λ) ,

[
S1,i S2,i

ST
2,i S3,i

]
(9)

S1,i = (1 + λ)AT
i PAi − λP

S2,i = (1 + λ)AT
i P (wi − xc) + λPxc

S3,i = (1 + λ)wT
i P (wi − 2xc) + xTc Pxc − 1

where i ∈ {1, · · ·N}. If there exists a positive definite matrix
P ∈ Rn×n and a positive real λ ∈ R∗ such that Si(P, λ)
is negative semidefinite for all i ∈ {1, · · · , N}, then Am ⊆
EP, xc

.

Proof: We show this result using certain properties
of convex functions. Specifically, we note that by the S-
Procedure [15], the condition (7) holds if there exists a
λ ∈ R∗ such that

1− E(Aix+ wi)− λE(Aix+ wi) + λE(x) > 0

for all x ∈ Rn and all i ∈ {1, · · · , N}. Formulating this
statement as a quadratic inequality in the vector

[
xT 1

]T
,

we have that if [
xT 1

]
Si(P, λ)

[
x
1

]
≤ 0

for all i ∈ {1, · · · , N} then Am ⊆ EP, xc
, where Si(P, λ)

is given by (9). Therefore, if there exists a positive definite
matrix P ∈ Rn×n and a positive real λ ∈ R∗ such that
Si(P, λ) is negative semidefinite for all i ∈ {1, · · · , N}, then
Am ⊆ EP, xc .

Theorem 1 shows that if there exists a positive definite
matrix P ∈ Rn×n, a vector xc ∈ Rn and a λ ∈ R∗ such that
Si(P, λ) � 0 for all i ∈ {1, · · ·N}, then Am ⊆ EP, xc

. From
this result, we present an algorithm for over-approximating
the minimal attractor of the switched affine system (2) with
a suitable invariant ellipsoid. Since the invariant ellipsoid is

the solution to a semidefinite program, the algorithm relies
on CVX, a convex optimization toolbox made for use with
MATLAB [21], [22].

Algorithm 1 Bounding the Attractor Set of the Switched
Affine System (2) with an Invariant Ellipsoid

inputs : C′ from (2). Desired ellipsoidal centroid
xc ∈ Rn. Free parameter λ ∈ R∗

output: P ∈ Rn×n, such that EP, xc from (6) is
invariant and over-approximates Am.

1: function FINDINVARIANTSET(C′, xc, λ)
2: cvx begin sdp
3: variable P (n, n) semidefinite
4: for i = 1 toN do
5: S1,i := (1 + λ)AT

i PAi − λP
6: S2,i := (1 + λ)AT

i P (wi − xc) + λPxc
7: S3,i := (1 + λ)wT

i P (wi − 2xc) + xTc Pxc − 1

8: Si :=

[
S1,i S2,i

ST
2,i S3,i

]
9: Si ≤ 0

10: %% Possibly Insert Objective Function
11: cvx end
12: if Program feasible then
13: return P
14: else
15: return ‘infeasible’
16: end function

Algorithm 1 takes as inputs a desired ellipsoid center xc
and a parameter λ ∈ R∗ and returns a positive definite matrix
P ∈ Rn×n, should one exist, which satisfies the constraint
(7). Such a feasible solution P will identify EP, xc

as an
invariant hyper-ellipsoid in the dimension of the statespace
which over-approximates the minimal attractor set of the
system (2); this is a result of Theorem 1. In some sense
the choice of xc is arbitrary; if (2) does not diverge, then for
all xc ∈ Rn there exists a P and λ which solves the semi-
definite program. For this reason, we suggest two methods
for selecting a suitable ellipsoid center xc ∈ Rn; one may
choose to identify the approximate centroid of the attractor
set of Am through simulation, or instead one may choose to
select xc ∈ Rn at the mean of the affine equilibria given in
(4). Additionally, note that the solution to the semi-definite
program presented in Algorithm 1 is parameterized by λ; a
line search can be conducted over this parameter in order
to find a feasible outer-approximation of Am. Since it is in
general preferable to compute an ellipsoid which bounds the
attractor set as tightly as possible, line 10 in Algorithm 1
can be replaced with an objective function such as

9: maximize log det(P )

where log det(·) is a function provided by CVX which com-
putes the natural logarithm of the determinant of the input
symmetric matrix and is useful for finding the minimum-



Fig. 1: Over-approximating the minimal attractor set of the
system (10). When beginning at an initial position x(0) =
[0, 0]T , the system (10) can only reach the region shown
in blue. An invariant ellipse EP, xc

⊂ R2, shown in red, is
calculated using Algorithm (1).

volume ellipsoid.

D. Numerical Example

In this section, we present a sample case and over-
approximate the minimal attractor set of a stable switched
affine system using Algorithm 1.

Consider the planar shifted rotating system

x(k + 1) = Ai x(k)+wi, i ∈ {1, 2}

A1 = .9

[
cos(.2) − sin(.2)
sin(.2) cos(.2)

]
, w1 =

[
−0.12
0.19

]
A2 = .9

[
cos(.1) − sin(.1)
sin(.1) cos(.1)

]
, w2 =

[
0.10
−0.09

] (10)

This example is inspired by the fact that repeating rotation
with a nonzero equilibrium forms a fractal-like pattern [23].
Additionally, for this specific choice of system parameters,
note that

xeq,1 =

[
1
0

]
, xeq,2 =

[
−1
0

]
where xeq,1 and xeq,2 are given by (4).

We compute an elliptical over-approximation of Am of
(10) using Algorithm 1. Using inputs xc = [−0.18, 0.12]T

and λ = 9.7, the semi-definite program is found to be
feasible. From the solution P ∈ R2×2, a invariant ellipse
is plotted in Figure 1.

III. TIME-VARYING SWITCHED SYSTEMS WITH
ADDITIVE NOISE

We now return to the initial stochastic setting of (1),
restated as follows:

x(k + 1) = A(k)x(k) + w(k)

w(k) ∼ N (µ(k), Σ(k))

where x(k) ∈ Rn denotes the system state, w(k) ∈ Rn

denotes an additive Gaussian white noise term with mean
µ(k) ∈ Rn and noise covariance matrix Σ(k) ∈ Rn×n, and
where C ⊂ Rn×n×Rn×Rn×n denotes a finite set of system
parameters, such that (A(k), µ(k), Σ(k)) ∈ C for all k ∈ N.
In this setting, the system state x(k) is a multivariate random
variable.

A. Computing a Bound on the State Covariance

In the instance that Σi 6= 0 for i ∈ {1, · · ·N} the system
(1) will not have any equilibria. Moreover, at any given time
k ∈ N the noise term w(k) can be arbitrarily large, and,
as such, the infinite-time behavior of the system state x(k)
cannot be classified with an invariant region in the state
space. For this reason, we instead characterise the system
(1) with an invariant ellipsoid which bounds the covariance
matrix of the system state. The symbol x(k) denotes the
mean of the state and E[ · ] denotes the expected value
function such that

x(k) = E[x(k)] (11)

Importantly, at a given time k ∈ N there exists an i ∈
{1, · · · , N} such that

x(k + 1) = Aix(k) + µi

We next define the state and disturbance covariance matrices.

Definition 2 (State and Disturbance Covariance Matrices).
We use the symbol X(k) ∈ Rn×n to denote the state
covariance matrix of the system (1) at a time k ∈ N∗, which
is defined by

X(k) , E[ (x(k)− x(k))(x(k)− x(k))T ] (12)

As before, we use the symbol Σi(k) ∈ Rn×n to denote the
disturbance covariance matrix of the ith mode of the system
(1):

Σi , E[(w(k)− µi)(w(k)− µi)
T ] (13)

By virtue of the fact w(k) is a white noise random process,
we have that x(k) and w(k) are independent. Therefore

E[ (x(k)− x(k))(w(k)− µi)
T ] = 0

along trajectories of (1). Moreover, the propagation of (12)
is governed by a discrete-time Lyapunov recursion:

X(k + 1) = E[ (x(k + 1)− x(k + 1)) · · ·
· · · (x(k + 1)− x(k + 1))T ]

= AiE[ (x(k)− x(k))(x(k)− x(k))T ]AT
i + · · ·

· · ·E[ (w(k)− µi)(w(k)− µi)
T ]

= AiX(k)AT
i + Σi

for some i ∈ {1, · · · , N}, as described in [24]. Taking−→
X = vec(X) ∈ Rn2

and
−→
Σi = vec(Σi) ∈ Rn2

to be
the vectorizations of the state and disturbance covariance
matrices, we then have

−→
X (k + 1) = Ai

−→
X (k) +

−→
Σ i,

i ∈ {1, · · · , N},
(14)



where i ∈ {1, · · · , N} and Ai , Ai⊗Ai ∈ Rn2×n2

with ⊗
denoting the Kronecker product. In what follows, we refer to
the system (14) as the “augmentation” of the initial switched
system (1).

Importantly, the augmented system (14) is switched linear
affine, as was the case with (2). As such, we can now use Al-
gorithm 1 to compute a hyper-ellipsoidal over-approximation
of the attractor set of (14), thus providing a guaranteed bound
on the infinite time behavior of the state covariance matrix
X(k).

B. Numerical Examples

We consider a planar shifted rotating system, as in (10),
now with added Gaussian noise. In this setting, the system
(1) has the following system parameters

A1 = 0.9

[
cos(0.2) − sin(0.2)
sin(0.2) cos(0.2)

]
, Σ1 =

[
2 0
0 3

]
A2 = 0.9

[
cos(0.1) − sin(0.1)
sin(0.1) cos(0.1)

]
, Σ2 =

[
4 0
0 1

] (15)

To bound the covariance of the state, we first form the
switched affine system (14). Note that the mean µi of the
noise term wi does not affect the evolution of the state
covariance matrix X . Since the matrices given by (12) and
(13) are symmetric, the dimension of

−→
X can be reduced from

four to three. For this example, we reduce the dimension of
Ai and of

−→
Σ i accordingly and form the equivalent system
−→
X (k + 1) = Ãi

−→
X (k) +

−→
Σ i, i ∈ {1, 2} (16)

where, for entries ajk of Ai, j, k ∈ {1, 2}

Ãi =

 a211 2a11a12 a212
a21a11 a21a12 + a11a22 a22a12
a221 2a21a22 a222


and

−→
Σ i =


σ11
σ12
σ21
σ22

 =⇒
−→
Σ i =

σ11σ12
σ22


Much is known about how to similarly reduce the order of
higher-dimensional systems.

The resulting system (16) is input into Algorithm 1 with
the parameters

λ = 5.21, xc =

14.98
1.24
11.34


The algorithm computes a positive definite matrix P such
that (

−→
X )TP

−→
X = 1 is the three-dimensional invariant

ellipsoid which overapproximates the attractor set of the
switching system (16). For this example, Algorithm 1 was
able to find a minimal P satisfying (9) in 2.6 seconds. A plot
of the attractor set and the bounding ellipsoid is shown in
Figure 2. As seen in the Figure, the attractor set resembles
a fractal structure which seems to live on a plane, and the
ellipsoid tightly bounds it. All possible covariance matrices

(a) First view of ellipsoidal bound and (approximate) minimal
attractor of system (14), which features a fractal structure since the
state covariance matrix propagates with switched affine dynamics.

(b) Second view. The minimal attractor set is planar, so its
ellipsoidal bound is significantly compressed along one dimension.

Fig. 2: Bounding ellipsoid and approximate minimal attractor
set of the state covariances of (1) with parameters (15).

of the state x for the system (1) are contained within the
ellipsoid.

The choice of inputs λ and xc are clearly arbitrary; in this
case, a local line search on λ was performed to maximize
the function log det(P ), and a coordinate near the centroid
of the attractor set was chosen for xc.

Though the attractor set for the covariances of system
(1) with parameters (15) exists on a plane, that is not the



Fig. 3: Bounding ellipsoid and approximate (disconnected)
minimal attractor set of the state covariances of (1) with
parameters (17).

case in general. In the following example, the attractor set is
disconnected, yet an ellipsoidal bound is still computed by
Algorithm 1. With the following parameters for system (1),

A1 =

[
0.7 −0.7
0.2 0.7

]
Σ1 =

[
1 0
0 1

]
A2 =

[
0.6 −0.3
0.1 0.6

]
Σ2 =

[
1 0
0 1

] (17)

a bound on the state covariance matrix X is computed by
Algorithm 1 and plotted in Figure 3. The free parameters
λ = 1.8 and xc = [3.29, −0.36, 1.79]T were used.

IV. CONCLUSION

We studied the infinite-time behavior of a time-varying
linear system with additive Gaussian noise, formulating an
algorithm to compute a bound on the convariance matrix
of the system state. To generate the algorithm, a linear
affine difference equation which governs the evolution of the
state covariance matrix was derived. This is the augmented
system, the state of which approaches an attractor set in
infinite time. A bound on this attractor set is a bound on
the set of possible state covariance matrices for the originial
system. The bounding condition was transformed into a
matrix inequality such that an invariant ellipsoid can be
computed by an SDP solver.
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