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Abstract— We study routing behavior in transportation net-
works with mixed autonomy, that is, networks in which a frac-
tion of the vehicles on each road are equipped with autonomous
capabilities such as adaptive cruise control that enable reduced
headways and increased road capacity. Motivated by capacity
models developed for such roads with mixed autonomy, we
consider transportation networks in which the delay on each
road or link is an affine function of two quantities: the number
of vehicles with autonomous capabilities on the link and the
number of regular vehicles on the link.

We particularly study the price of anarchy for such networks,
that is, the ratio of the total delay experienced by selfish routing
to the socially optimal routing policy. Unlike the case when all
vehicles are of the same type, for which the price of anarchy is
known to be bounded, we first show that the price of anarchy
can be arbitrarily large for such mixed autonomous networks.
Next, we define a notion of asymmetry corresponding to the
maximum possible travel time improvement due to the presence
of autonomous vehicles. We show that when the degree of
asymmetry of all links in the network is bounded by a factor
less than 4, the price of anarchy is bounded. We also bound
the bicriteria, which is a bound on the cost of selfishly routing
traffic compared to the cost of optimally routing additional
traffic. These bounds depend on the degree of asymmetry and
recover classical bounds on the price of anarchy and bicriteria
in the case when no asymmetry exists. Further, we show with
examples that these bound are tight in particular cases.

I. INTRODUCTION

Automobiles are increasingly equipped with autonomous
and semi-autonomous technologies such as adaptive cruise
control and automated lane-keeping. These technologies are
often marketed to consumers as safety or convenience fea-
tures, but it is apparent that increasing numbers of these
smart vehicles will have dramatic impact on network-level
mobility factors such as traffic congestion and travel times
[1]. A primary mechanism whereby such autonomous ca-
pabilities can improve mobility is by enabling platooning
of groups of smart vehicles along the roadway. A platoon
consists of two or more vehicles which are able to automat-
ically maintain short headways between them using, e.g.,
adaptive cruise control (ACC), which allows a vehicle to
use radar or LIDAR to automatically maintain a specified
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distance to the preceding vehicle, or cooperative adaptive
cruise control (CACC) which augments ACC with vehicle-
to-vehicle communication.

When all vehicles in the system are smart, platooning has
the potential to increase network capacity by as much as
three-fold [2]. Platooning can help to smooth traffic flow
and avoid shockwaves of slowing vehicles [3], [4], [5],
[6], [7], [8], and at signalized intersections, platoons can
synchronously accelerate at green lights [2], [9]. However,
in a mixed autonomy setting—where only a fraction of the
vehicles are smart and the remainder are regular, human-
driven vehicles—the benefits of platooning are less clear.
On freeways, simulation results suggest that high penetration
rates of smart vehicles are required to realize significant
improvement in traffic flow [10], [11], [12], [13], [14], [15].

In our prior research, we developed an analytic model
for the capacity of roads at signalized intersections with
mixed autonomous traffic [16]. There, we consider a queue
of vehicles at an intersection and suppose that smart vehicles
platoon opportunistically, that is, if a smart vehicle queues
behind another smart vehicle, they maintain a short headway
along the road. We also proposed and studied a second model
in which each smart vehicle maintains a short headway
to the preceding vehicle, whether it is also smart or not.
Such a scenario may be increasingly possible as adaptive
cruise control with passive sensing continues to improve. Our
capacity models describe the maximum possible flow rate of
vehicles through an intersection as a nonlinear function of
the level of autonomy of the road, that is, the fraction of
smart vehicles on the road.

In this work, we use the capacity models based on one we
developed in [16] in order to study routing behavior on road
networks. We make the assumption that the additional travel
time caused by congestion on a road is inversely related to
capacity and proportional to the total number of vehicles
on the road. Given a network of roads leading from origins
to destinations, selfish vehicles will choose the route that
minimizes total delay, achieving a Wardrop equilibrium [17],
[18]. It has long been known that a Wardrop equilibrium
may be suboptimal in the sense that a social planner is able
to prescribe routes that achieve a lower total delay for all
vehicles in the network. The ratio of the socially optimal
delay to the worst possible Wardrop equilibrium is called
the price of anarchy [19], [20]. For affine separable cost
functions, when only one type of vehicle is present (i.e., no
smart vehicles), it is known that the price of anarchy cannot
exceed 4/3 [21].

In a mixed autonomy setting, however, a social planner is



able to route smart vehicles differently than regular vehicles
to maximize capacity. In this paper, we first show that this
increased flexibility leads, remarkably, to an unbounded price
of anarchy. Next, we make the assumption that the possible
travel time improvement due to the presence of autonomous
vehicles is bounded by a factor k < 4. We call this factor the
degree of asymmetry of the network. Under this assumption,
we prove that the price of anarchy cannot exceed 4

4−k , which
recovers the classical bound when k = 1, i.e., the case when
smart vehicles do not enable any improvement in travel time.
We show via examples that this bound is tight for k = 1 and
k = 2.

Next, we provide a bound on the cost of selfish routing
relative to the cost of optimally routing additional traffic,
called the bicriteria bound [21], [22]. We prove that traffic at
a Wardrop Equilibrium will not exceed the cost of optimally
routing 1 + k

4 as much traffic of each type, where k is
the degree of asymmetry in the network. We demonstrate
by example that the bicriteria bound is tight for k = 4.
Similar to the price of anarchy, when the asymmetry is
unbounded we show that the bicriteria is unbounded as well.
This runs counter to the case of single-type traffic where the
bicriteria is bounded by 2 for any separable continuous and
nondecreasing cost function in which the delay on a road
depends only on the traffic on that road [21].

II. PREVIOUS WORKS

In this section, we address related models in the literature
and highlight the difference between these and our model.
Due to the breadth of the field, we give a limited overview of
the literature on the price of anarchy – see [23] for a broader
survey of literature related to Wardrop equilibria and [24] for
a wider background on the price of anarchy in transportation
networks. For definitions of the terms used in this section see
Section III-C.

Roughgarden and Tardos [21] bound price of anarchy and
bicriteria for separable monotonic cost functions, and Rough-
garden [25] gives a more general method for determining
price of anarchy in the separable case.

Chau and Sim [26] bound the price of anarchy for symmet-
ric cost operators with convex social cost for both nonelastic
and elastic demands. Perakis discusses nonseparable, asym-
metric, nonlinear costs in [27], though only for monotone
latencies i.e. satisfying the property

〈c(z)− c(v), z − v〉 ≥ 0 , (1)

where 〈·, ·〉 denotes the inner product of two vectors.
Correa et. al [28] present a unified framework for deriving

price of anarchy and bicriteria for nonseparable monotone
functions. Sekar et. al [29] analyze the price of anarchy when
users have different beliefs about the delay on a road, but
experience the same actual cost, dictated by a monotone cost
function.

Unlike these previous works, we present a price of anarchy
and bicriteria bound for a class of nonmonotone and pairwise
separable affine cost functions. We show that our bound
simplifies to the classic bounds for affine monotone cost
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c1(x, y) = 1

c2(x, y) = ζx

Fig. 1: Example of a road network with price of anarchy and bicriteria that
grow unboundedly with ζ.

functions in [21], [26], and [28] when there is no asymmetry
in how the vehicle types affect congestion.

III. MOTIVATION AND MATHEMATICAL
FORMULATION

In this section we motivate our cost function for traffic in
mixed autonomy. In Section III-A, we show that the price of
anarchy and bicriteria are unbounded for congestion games
with affine cost functions in mixed autonomy, described in
Section III-B. Prompted by our negative result, in Section
III-C we describe a pairwise separable cost function that is
parameterized by the degree of asymmetry, as well as a more
general class of nonseparable cost function.

A. Motivation

We provide a brief example of unbounded price of anarchy
and bicriteria for congestion games under mixed autonomy.
This example is similar in design to Pigou’s example, as in
[21], [30], and [24].

Example 1: Consider the traffic network in Fig. 1, in
which 1

ζ unit of regular traffic and 1 unit of smart traffic
need to travel from node s to node t, where ζ ≥ 1. The cost
on road i, or the delay a car experiences from traveling on
that road, is denoted ci(x, y).

The routing with all traffic on the bottom road is at
Wardrop Equilibrium, with a price of CEQ = ( 1ζ ζ)(

1
ζ +1) =

1
ζ +1. The optimal routing has the regular traffic on the top
and smart traffic on the bottom with a cost of COPT =
1
ζ · 1+

1
2 · 0 = 1

ζ . This results in a price of anarchy of ζ +1.
For the bicriteria, consider a situation in which we have

a mass of a
ζ units of smart cars and a units of regular cars

to route. We want to find the a that corresponds to, under
optimal routing, a cost equaling that of CEQ above. The
optimal routing will have cost a

ζ , which equals 1
ζ + 1 when

a = ζ + 1.
Here we see that both the price of anarchy and the

bicriteria bound grow unboundedly with ζ. Due to this result,
we state the following proposition:

Proposition 1: The price of anarchy and bicriteria are
unbounded for networks of mixed autonomy with pairwise
separable affine functions.

Because of this negative result, to provide a bounded price
of anarchy and bicriteria in mixed autonomy, we develop a
class of cost functions with bounded asymmetry.



B. Affine Congestion Game Overview

Consider a network of n roads, with m origin-destination
pairs, each with an associated mass of regular vehicles of
volume αi and mass of smart vehicles of volume βi. Since
we are considering a nonatomic congestion game, each user
controls an infinitesimally small portion of that mass. We
denote X as the set of feasible strategies which result in
the entirety of each mass being routed from its origin to its
destination, without violating conservation of flow (see [31]
for a more detailed explanation).

The vector of all flows on the n roads is denoted by

z =
[
x1 y1 x2 y2 . . . xn yn

]T
,

where xi and yi represent the mass of regular and smart
vehicles, respectively, on road i. In this paper, we consider
affine cost functions, meaning the cost on the roads resulting
from a routing z ∈ X can be written as

c(z) = Az + b ,

where A ∈ R2n
≥0 and b =

[
b1 b1 b2 b2 . . . bn bn

]T
.

This yields social cost

C(z) = 〈c(z), z〉 = (Az + b)T z ,

and the social cost at optimal routing is then COPT =
infz∈X C(z). Vector b contains the constant terms; matrix A
is the Jacobian of the road cost operator, and is not in general
positive semidefinite, so the optimization is not convex.

C. Separability and Monotonicity

Having described the basic structure of the congestion
game with affine costs, we describe the separability and
monotonicity of our model. To do so, we define three notions
of separability.

Definition 1: A cost function c(z) = Az + b is separable
if A is a diagonal matrix.

Definition 2: A cost function c(z) = Az + b is pairwise
separable if A is a blockwise diagonal matrix with 2x2
blocks.

Definition 3: A cost function is nonseparable if it is
neither separable nor pairwise separable.

It is clear that separable costs do not model mixed au-
tonomy if regular and smart cars affect delay differently but
experience it identically. The slightly more general class of
pairwise separable costs does provide a useful model, which
we motivate as follow, using a capacity model similar to
those in [9], [32], [16].

Consider a road of length d with regular car flow x and
smart car flow y. Let ` be the (uniform) vehicle length, hs
the headway in front of a smart car, hl the headway in front
of a regular car, and autonomy level α = y

x+y . We consider
the capacity on this road as the number of cars that can be
packed onto the road: g(α) = d

αhs+(1−α)hl+`
. We propose

a road cost function in which delay is an affine function of
vehicles on the road: c(x, y) = b+r x+y

g(x,y) = b+ r
` (hl+`)x+

r
` (hs + `)y. Here bi represents the time it takes to traverse

a road in free-flow traffic and ri determines how congestion
scales as road utilization increases with respect to capacity.

To capture a notion of asymmetry in how the types of
vehicles affect traffic, let a , ri(hs+`)

` and k , hl+`
hs+`

.
Indexing these values to be on road i,

ci(xi, yi) = bi + kiaixi + aiyi . (2)

This leads to a cost function of the following form:

c(z) = Az + b

=


A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . An

 z + b

where A is a block-diagonal matrix with blocks Ai =[
kiai ai
kiai ai

]
.

The parameter ki allows us to represent the degree of
asymmetry between the effect of regular and smart traffic on
congestion on a specific road. Since in [16], [33], and [2],
we see that vehicles not in a platoon require approximately
2.5 times more headway than vehicles in a platoon, we allow
ki to differ between roads, but generally expect it to be in
the range ki ∈ [1, 4].

We find it useful to parameterize a class of cost functions
by its maximum degree of asymmetry, as follows:

Definition 4: Let Ck denote the class of pairwise separable
cost functions for which max(ki,

1
ki
) ≤ k ∀i for some

constant k. We call k the maximum degree of asymmetry
of this class of cost functions.

In the more general model explored in Section IV-C, the
delay on one road may depend on the flows on other roads.
For example, if one road is fully congested, the roads feeding
it will have additional delay. If this is the case, then (2) does
not hold and the matrix A is not of block-diagonal form. In
Section IV-C we provide bounds for this model under certain
conditions.

Throughout this paper, we deal with cost functions that
satisfy element-wise monotonicity, defined as follows:

Definition 5: A class of cost functions C is elementwise
monotone if for all cost functions c(v) drawn from C,
∂cj
∂vi

(v) ≥ 0 ∀i, j.
In other words, a cost function is element-wise monotonic

if increasing any flow of vehicles will not decrease the delay
on any road. This will be the case for a class of cost functions
of the form c(z) = Az+b for which A has only nonnegative
entries. Note that this is different from the general notion of
monotonicity described in Section II1.

IV. BOUNDING THE PRICE OF ANARCHY

In this section we present bounds for the price of anarchy
and bicriteria. We proceed along the lines proposed in [28],

1Our case is not in general monotone: consider a single road with c(z) =[
3 1
3 1

]
z, with x =

[
1 0

]T and y =
[
0 2

]T . This results in 〈c(x)−
c(y), x− y〉 = −1.



reviewing that work in Section IV-A and highlighting the
differences that arise for a nonmonotone cost function. We
then derive our bounds for nonmonotone pairwise separable
costs in Section IV-B, and give bounds for nonseparable costs
in Section IV-C.

A. Preliminaries
Smith [34] shows that any flow zEQ at Wardrop equilib-

rium – in which all users sharing an origin and destination
use paths of equal cost and no unused path has a smaller cost
– satisfies the variational inequality for any feasible flow z:

〈c(zEQ), zEQ − z〉 ≤ 0 . (3)

A simple proof of this is provided in [31].
Correa et. al. [28] use this result to develop a general tool

for finding price of anarchy and bicriteria. To that end, they
introduce the following parameters:

β(c, v) := max
z∈R2n

≥0

〈c(v)− c(z), z〉
〈c(v), v〉

,

β(C) := sup
c∈C,v∈X

β(c, v) ,

where 0/0=0 by definition, C represents a class of cost
functions, and X is the set of feasible routings.

In the following theorem, we adapt Correa et. al’s Theorem
4.2 [28] to when the cost function is not monotone. In the
nonmonotone case β(C) can be greater than 1, leading to an
unbounded price of anarchy. For completeness, we overview
the proof of Theorem 4.2 in [28].

Theorem 1: Let zEQ be an equilibrium of a nonatomic
congestion game with cost functions drawn from a class C of
nonseparable nonmonotone but elementwise monotone cost
functions.
(a) If zOPT is a social optimum for this game, and β(C) <

1, then C(zEQ) ≤ (1− β(C))−1C(zOPT ).
(b) If wOPT is a social optimum for the same game with

1 + β(C) times as many players of each type, then
C(zEQ) ≤ C(wOPT ).
Proof: To prove part (a),

〈c(zEQ), z〉 = 〈c(z), z〉+ 〈c(zEQ)− c(z), z〉
≤ 〈c(z), z〉+ β(c, zEQ)〈c(zEQ), zEQ〉
≤ C(z) + β(C)C(zEQ) (4)

and C(zEQ) ≤ 〈c(zEQ), z〉. Completing the proof requires
that β(C) ≤ 1.

To prove part (b), element-wise monotonicity implies the
feasibility of (1 + β(C))−1wOPT , and using (3),

〈c(zEQ), zEQ〉 ≤ 〈c(zEQ), (1 + β(C))−1wOPT 〉 . (5)

Then,

C(zEQ) = (1 + β(C))〈c(zEQ), zEQ〉
− β(C)〈c(zEQ), zEQ〉 (6)

≤ (1 + β(C))〈c(zEQ), (1 + β(C))−1wOPT 〉
− β(C)〈c(zEQ), zEQ〉 (7)

≤ C(wOPT ) , (8)

where (7) uses (5) and (8) uses (4).

B. Pairwise Separable Costs

We now present a bound for the price of anarchy and
bicriteria for the pairwise separable affine cost function when
k, the maximum degree of asymmetry of the cost function,
is bounded. In particular, when k < 4, the price of anarchy
is bounded, and the bicriteria is bounded for any k. This is
formalized as follows:

Theorem 2: Let zEQ be an equilibrium of a nonatomic
congestion game with cost functions drawn from a class
Ck of affine, pairwise separable, nonmonotone, elementwise
monotone cost functions, where k parameterizes the maxi-
mum degree of asymmetry in the cost functions.
(a) If zOPT is a social optimum for this game, and k < 4,

then C(zEQ) ≤ 4
4−kC(z

OPT ).
(b) If wOPT is a social optimum for the same game with 1+

k
4 times as many players of each type, then C(zEQ) ≤
C(wOPT ).
Proof: To prove this, we will show β(Ck) ≤ k

4 and
then apply Theorem 1. For ease of notation, let zEQ ,[
x∗1 y∗1 x∗2 y∗2 . . . x∗n y∗n

]
.

Without loss of generality, and with a slight abuse of
notation, we order the roads such that for 1 ≤ i ≤ `,
ci(xi, yi) = kiaixi + aiyi and for roads ` < i ≤ n,
ci(xi, yi) = aixi + kiaiyi, where ki ≥ 1. Then,

β(c, z∗) = max
z∈R2n

≥0

〈c(z∗)− c(z), z〉
〈c(z∗), z∗〉

≤
maxz∈R2n

≥0
〈A(z∗ − z), z〉

〈Az∗, z∗〉

=

∑`
i=1 aimaxxi,yi≥0(ki(x

∗
i − xi) + (y∗i − yi))(xi + yi)

〈Az∗, z∗〉

+

∑n
i=`+1 aimaxxi,yi≥0((x

∗
i − xi) + ki(y

∗
i − yi))(xi + yi)

〈Az∗, z∗〉
.

(9)

We will bound the first term in (9), and the same can be
done for the second term as well. Denote the inner term γ,
so γ(xi, yi) = (ki(x

∗
i − xi) + (y∗i − yi))(xi+ yi). This term

is not concave, but is concave with respect to both xi and
yi individually. Then, we use f(xi) to denote the function
that maximizes γ with respect to yi by solving ∂γ

∂yi
(xi, yi) =

0, and g(yi) to denote the function that maximizes γ with
respect to xi by solving ∂γ

∂xi
(xi, yi) = 0. This yields

f(xi) =
kix
∗
i + y∗i
2

− ki + 1

2
xi ,

g(yi) =
kix
∗
i + y∗i
2ki

− ki + 1

2ki
yi .

Then, for any fixed xi, the optimal yi is determined by yi =
f(xi), and for any fixed yi, the optimal xi is determined by
xi = g(yi). Then, define x̃i and ỹi as follows:

x̃i = argmax
xi≥0, f(xi)≥0

γ(xi, f(xi)) ,

ỹi = argmax
yi≥0, g(yi)≥0

γ(g(yi), yi) .



We see that γ(xi, f(xi)) and γ(g(yi), yi) are convex, and
γ(x̃i, f(x̃i)) ≥ γ(g(ỹi), ỹi), where x̃i = 0. Therefore,

max
xi≥0,yi≥0

γ(xi, yi) = γ(x̃i, f(x̃i)) =
(kix

∗
i + y∗i )

2

4
.

After applying a similar analysis for roads ` < i ≤ n,

β(c, z∗)

≤ 1

4

∑`
i=1 ρi(kix

∗
i + y∗i ) +

∑n
i=`+1 σi(x

∗
i + kiy

∗
i )∑`

i=1 ρi(x
∗
i + y∗i ) +

∑n
i=`+1 σi(x

∗
i + y∗i )

=
k

4

∑`
i=1 ρi(kix

∗
i + y∗i ) +

∑n
i=`+1 σi(x

∗
i + kiy

∗
i )∑`

i=1 ρi(kx
∗
i + ky∗i ) +

∑n
i=`+1 σi(kx

∗
i + ky∗i )

≤ k

4
, (10)

where ρi , ai(kix
∗
i + y∗i ) and σi , ai(x

∗
i + kiy

∗
i ). The fact

that
∑n

i=1 wi∑n
i=1 vi

≤ 1 when 0 ≤ wi ≤ vi implies Equation (10),
since k ≥ ki ≥ 1 ∀i. We apply Theorem 1 to find a price of
anarchy bound of 4

4−k and bicriteria bound of 1 + k
4 .

C. Nonseparable costs

Having discussed pairwise separable costs (Definition 2),
where the delay on each road depends only on the vehicles on
that road, we now consider nonseparable costs (Definition 3).
As an example, consider a series of roads, each one feeding
into the next; if one road is fully congested, this will increase
the delay on the roads feeding it, resulting in cascading
congestion. Another scenario of nonseparable costs is when
intersecting streets affect the traffic on each other [23], such
as in a signalized intersection that senses traffic and adjusts
its duty cycle accordingly. In that case, the volume of traffic
on a road will affect the delay on the perpendicular road.

To put this in more concrete terms, consider a road feeding
into another narrower road. We model the congestion on the
second road as comparatively affecting that on the first road
by a factor of µ. This results in a cost function of

c(z) =


k1a1 a1 µk2a2 µa2
k1a1 a1 µk2a2 µa2
0 0 k2a2 a2
0 0 k2a2 a2

 z + b .

With this motivation, we consider the affine cost functions
c(x) = Ax+ b, where A is no longer a 2x2 block-diagonal
matrix. We consider the case that A can be written as the
sum of Q, a (2x2) block diagonal matrix with strictly positive
block diagonal entries, and P , a positive definite matrix.2

2Note that if P is a diagonal dominant mapping, i.e. Pii >
1
2

∑
j 6=i |Pij + Pji|, then it is positive definite [31]. In this case, in order

to also guarantee that the block diagonal components of Q have strictly
positive entries, we require

Aii >
1

2

∑
j 6=i,i−1

|Aij +Aji| for i even ,

Aii >
1

2

∑
j 6=i,i+1

|Aij +Aji| for i odd .

This, however, is a sufficient but not necessary condition.

We describe the bounds we can establish under these
conditions in the following theorem:

Theorem 3: Let zEQ be an equilibrium of a nonatomic
congestion game with cost function c(z) = Az+ b. Suppose
A can be split into Q, which is a (2x2) block diagonal matrix
with strictly positive entries on the block diagonal, and P ,
which is positive definite, such that A = Q+P . Let k be the
maximum degree of asymmetry for the cost function defined
by Q.

(a) If zOPT is a social optimum for this game, and if k <
4, then C(zEQ) ≤ ( 4

4−k + η2)C(zOPT ), where η2 =

λmax(S
−1/2PTS−1PS−1/2) and S = (P + PT )/2.

(b) If wOPT is a social optimum for the same game with 2+
k
4 times as many players of each type, then C(zEQ) ≤
C(wOPT ).
Proof: For part (a), we split the price of anarchy into

two components, as

CEQ

COPT
= sup
z∈X

(AzEQ + b)T zEQ

(Az + b)T z

= sup
z∈X

((Q+ P )zEQ + b)T zEQ

((Q+ P )z + b)T z

≤ sup
z∈X

(QzEQ + b)T zEQ

(Qz + b)T z
+ sup
z∈X

(PzEQ)T zEQ

(Pz)T z
(11)

≤ 1

1− β(Ck)
+ η2 (12)

=
4

4− k
+ η2 . (13)

Inequality (11) follows from all latencies being nonnega-
tive, (12) follows from [28] and [27] (see the comment on
page 2 about the price of anarchy for costs with no constant
term), and the (13) is proved in the proof of Theorem 2.

For part (b), we use the same notion of β(C) as in the
proofs for Theorems 1 and 2, as follows:

β(c, v) = max
z∈R2n

≥0

〈c(v)− c(z), z〉
〈c(v), v〉

=
maxz∈R2n

≥0
〈(Q+ P )(v − z), z〉

〈(Q+ P )v + b, v〉

≤
maxz∈R2n

≥0
〈Q(v − z), z〉

〈(Q+ P )v + b, v〉
+

maxz∈R2n
≥0
〈P (v − z), z〉

〈(Q+ P )v + b, v〉

≤
maxx∈R2n

≥0
〈Q(v − z), z〉

〈Qv + b, v〉
+

maxz∈R2n
≥0
〈P (v − z), z〉

〈Pv + b, v〉
= β(c1, v) + β(c2, v)

Here c1 and c2 represent cost functions drawn from Ck and C̃,
respectively, where k is the maximum degree of asymmetry
of the cost function c(z) = Qz + b and C̃ denotes the set of
monotone cost functions.

De Palma and Nesterov [31] show that a cost function
c(z) is monotone if c′(z) is positive definite. Furthermore,
Correa et. al. show that a class C consisting of monotone
cost functions has β(C) ≤ 1. This is easily demonstrated as



s t

c1(x, y) = kx+ y

c2(x, y) = x+ ky

Fig. 2: Example of a road network with two-sided asymmetry.

follows. Using (1) with z, v ∈ R2n
≥0,

1 ≥ 〈c(v)− c(z), z〉
〈c(v)− c(z), v〉

≥ 〈c(v)− c(z), z〉
〈c(v), v〉

≥ β(c, v) .

Because of this,

β(C) = sup
c∈C,v∈X

β(c, v)

≤ sup
c∈Ck,v∈X

β(c, v) + sup
c∈C̃,v∈X

β(c, v)

≤ k

4
+ 1 .

Here C̃ denotes monotone cost functions. Applying Theo-
rem 1 completes the proof.

V. TIGHTNESS OF THE BOUND

In this section, we discuss the tightness of the bound
derived in Section IV-B. In Section V-A we provide two
examples: Example 2 shows that our price of anarchy is
tight for k = 2 and our bicriteria bound is tight for k = 4
when there can be two-sided asymmetry, i.e. ki can be
greater or less than 1. In a more realistic scenario, we expect
autonomous vehicles to result in the same amount or less
congestion than regular cars for all roads. In light of this,
we provide Example 2 of one-sided asymmetry, in which
ki ≥ 1 ∀i. In Section V-B, we discuss the tightness of the
bound with respect to both of these scenarios.

A. Examples

Example 2: Consider the traffic network in Fig. 2, which
is parameterized by the degree of asymmetry, k. We wish to
transport 1 unit regular traffic and 1 unit smart traffic across
the network.

The worst-case Nash equilibrium has all regular traffic on
the top link and all the smart traffic on the bottom link, for
a cost of CEQ = 2k. The optimal routing has this routing
reversed, for a cost of COPT = 2. This gives us CEQ

COPT = k.
We find the bicriteria by finding how much traffic we could

optimally route for a cost of 2k. Consider p units regular and
p units of smart vehicles, which would have optimal routing
cost 2p2. Setting 2p2 = 2k, we find the bicriteria is

√
k.

Example 3: Consider the traffic network in Fig. 3, which
is parameterized by k. Here we wish to transport 1√

k
units

regular traffic and 1 unit smart traffic across the network.
At the Wardrop Equilibrium, all traffic will take the bottom

route for a delay of 1, which gives us cost CEQ = 1√
k
+ 1.

In optimal routing we have regular traffic on top and smart

s t

c1(x, y) = 1

c2(x, y) =
k√
k+1

x+ 1√
k+1

y

Fig. 3: Example of a road network with one-sided asymmetry.
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Fig. 4: Tightness of the bounds for price of anarchy and bicriteria. The PoA
bound is tight for k = 1, 2 and the bicriteria bound is tight for k = 4.

traffic on the bottom. This gives us COPT = 1√
k
+ 1√

k+1
,

giving us a PoA of 1 + k
2
√
k+1

.
We find the bicriteria by setting the cost of routing p

times as much traffic optimally equal to the original cost

at equilibrium. This gives us p = (−1+
√

1+4
√
k)(1+

√
k)

2
√
k

.

B. Discussion

We begin by discussing the price of anarchy. Our bound
for price of anarchy is 4

4−k , and example 2 shows a price
of anarchy of k and example 3 shows a price of anarchy of
1 + k

2
√
k+1

. For the bicriteria, our bound is 1 + k
4 . Example

1 provides a bicriteria of
√
k and example 2 has a bicriteria

that scales with k1/4.
When k = 1, price of anarchy bound recovers the classical

bound found in [21]. Further, the examples show that the
price of anarchy bound is tight for k = 2 and the bicriteria
bound is tight for k = 4.

Figure 4 illustrates these comparisons. In both cases, our
upper bound diverges from these lower bounding examples
for large k. Therefore, it is unknown if our bound is tight
in that regime. However, realistic circumstances lead to k ≈
2.5, which is in the near-tight region for both price of anarchy
and bicriteria.

It is worth noting that under the construction in [28] and in
Theorem 1, there can be no bound on the price of anarchy
for networks with k ≥ 4. Observe that in Example 2 for
k = 4, the bicriteria is 2. This means that β(Ck=4) ≥ 1, so
the bound on the price of anarchy does not hold.



VI. CONCLUSIONS

In this paper, we have presented pairwise separable and
nonseparable cost functions for traffic networks under mixed
autonomy. We demonstrate that the price of anarchy and
bicriteria is unbounded without constraints on the asymmetry
in the difference in how the additon of smart and regular
vehicles affects congestion. We then established bounds for
the price of anarchy and bicriteria, parameterized by the
degree of asymmetry of the network, for both the case of
pairwise separable and nonseparable costs, under certain
conditions. We analyze the tightness of the bounds for the
pairwise separable case and demonstrate that they are tight
for certain degrees of asymmetry of the network.
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