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Abstract— When people pick routes to minimize their travel
time, the total experienced delay, or social cost, may be
significantly greater than if people followed routes assigned to
them by a social planner. This effect is accentuated when human
drivers share roads with autonomous vehicles. When routed
optimally, autonomous vehicles can make traffic networks
more efficient, but when acting selfishly, the introduction of
autonomous vehicles can actually worsen congestion. We seek
to mitigate this effect by influencing routing choices via tolling.
We consider a network of parallel roads with affine latency
functions that are heterogeneous, meaning that the increase in
capacity due to to the presence of autonomous vehicles may
vary from road to road. We show that if human drivers and
autonomous users have the same tolls, the social cost may be
arbitrarily worse than when optimally routed. We then prove
qualities of the optimal routing and use them to design tolls that
are guaranteed to minimize social cost at equilibrium. To the
best of our knowledge, this is the first tolling scheme that yields
a unique socially optimal equilibrium for parallel heterogeneous
network with affine latency functions.

I. INTRODUCTION

Road congestion in the United States alone costs billions
of dollars in wasted time and fuel, even neglecting the
associated environmental degradation and negative health
impacts [1]. Moreover, this cost is projected to only increase.
One potential way to mitigate this is through the introduction
of autonomous vehicles, which can increase throughput on
urban roads by a factor of two or three [2]. However, for
the foreseeable future, autonomous vehicles will share roads
with human drivers, rendering the mobility benefits less clear.

Moreover, it is important to consider that human drivers,
and likely the users of autonomous vehicles, will make selfish
decisions – they will pick routes that minimizes their travel
time without considering the effect of their choice on the
overall traffic congestion. This leads to a gap between the
overall traffic delay in selfish equilibria and the minimum
possible overall delay, which would occur if vehicles fol-
lowed directions from some benevolent social planner [3].
The gap between these costs can be bounded with a bound
that depends on the relationship between road delay and
the flow of vehicles on that road. However, this gap can
be much greater in networks with mixed autonomy than in
networks with a single vehicle type, and the gap may even
be unbounded [4].
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In a similar phenomenon, converting some fraction of
vehicles to be autonomous can make equilibria worse, even
though the presence of these vehicles increases the capacity
of roads [5]. This effect is related to Braess’ Paradox, in
which adding a road to a road network may increase the
equilibrium delay. These phenomena further complicate how
congestion in traffic networks will change as autonomous
vehicle manufacturers release their cars onto public roads.

To address this, we wish to somehow influence how people
choose their routes, and a natural mechanism to consider is
tolling. Beckmann et al. [6] found optimal tolls when there
is a single type of car on the road and others extend this
to when there are multiple vehicle types [7]. However, the
setting of mixed autonomy violates key assumptions made
in these classic works; consequently, optimality is no longer
guaranteed. Because of this, we investigate how to guarantee
socially optimal routing via tolling. We consider the case
of parallel roads and, motivated by previously established
capacity and delay models, we consider road delay functions
that are affine with respect to the flow of each type of vehicle.
We establish theoretical results about the optimal routing and
use these results to design an optimal tolling scheme.

Our contributions are as follows:

• We bound the increase in the overall latency when
autonomous vehicles are introduced to road networks,

• we show that optimal undifferentiated tolls yield equi-
libria that can be arbitrarily worse than the social
optima, and

• we prove qualities of the optimal routing for vehicles
on shared roads and use these results to design tolls
that yield a unique, socially optimal equilibrium.

Previous Work. Many works have shown how autonomous
vehicles can decrease congestion, either via platooning [2],
[8], by dissipating shockwaves in congested vehicle flow
[9], [10], or by managing merging vehicles at bottlenecks
[11], [12]. Other works characterize the capacity of a road
as a function of the fraction of vehicles on a road that
are autonomous [8], [13]. This allows the formulation of
a congestion game with mixed autonomy [14]. Many works
have studied aspects of congestion games, such as how to
optimally route vehicles of differing types [15], as well
as bound the Price of Anarchy (PoA), the maximum ratio
between total latency under selfish routing to that under
optimal routing [16]–[19]. The PoA has been bounded in
the case of mixed autonomy as well [4], [14]. Properties of
selfish routing were first introduced by Wardrop [20] and



have been expanded in many subsequent works [21]–[23].
In the case of a single vehicle type, marginal cost tolls

yield an essentially unique equilibrium that minimizes total
latency [6]. Under certain conditions, the same can be said
when there are multiple vehicle types on a road [7]. However,
these conditions are violated when the two vehicle types
are capable of maintaining different headways. Specifically,
[7] assumes that the Jacobians of the latency functions
are positive definite; the latency function derived in (3) in
Section II violate this assumption.

This is addressed in [24]; there the authors show by
example that in multicommodity networks (networks with
multiple source-destination pairs), if autonomous vehicles
and human drivers experience the same tolls, it is not
always possible to create an equilibrium that minimizes
social cost. However, they have positive results for a ho-
mogeneous network; a network in which all roads see the
same multiplicative increase in capacity from the presence
of autonomous vehicles. In this case, they show that through
proper tolling, all equilibria will minimize social cost. The
tolling used to achieve this is marginal cost tolling, in which
each user pays the value of the marginal increase in delay
they cause for all others who would be using that road
in the optimal routing. This means that human drivers and
autonomous users pay different amounts for traveling on a
road, since human drivers will generally contribute more to
congestion.

We are interested in the case in which the network is not
homogeneous, and different roads will see differing benefits
from autonomy. This is relevant as platooning may yield
greater capacity increases on highways than on urban roads.
For heterogeneous networks and affine cost function, we
develop the first tolling scheme that provably achieves a
unique socially optimal equilibrium.

On a broader level, we are motivated by the results of
[5], which show that converting some demand from human-
driven vehicles to autonomous vehicles can counterintuitively
worsen aggregate delay in equilibrium. In [25] the authors
bound the effect of this phenomena in homogeneous net-
works to be no greater than the PoA for the class of cost
functions with a single vehicle type. We extend this to
the heterogeneous case in Section III. Before doing so, we
describe the model for our network and the relationship
between vehicle flow and travel delay on the roads.

II. MODEL

In this section we specify the structure of the road network,
road latency functions, and the tolls considered, as well as
characteristics of equilibria. We consider n parallel roads
and use [n] = {1, 2, . . . , n} to denote the set of roads. We
use f h

i and f a
i respectively to denote the human-driven and

autonomous flow on road i; the vectors f h, f a ∈ Rn≥0 denote
the flow on all roads. We use the term routing to refer to a
flow pair (f h, f a).

We consider nonatomic flow, meaning each user controls
an infinitesimally small unit of the flow, and does not indi-
vidually change the travel delay on a road. We use f̄ h and f̄ a

to denote the flow demand of human-driven and autonomous
vehicles, respectively. This demand is considered nonelastic,
meaning that the demand is constant and independent of the
road latencies.

Each road has an associated delay function or latency
function, `i(f h

i , f
a
i ) : R2

≥0 → R≥0. A traveler who chooses
a road experiences a cost that is the sum of the latency
and the toll they pay to travel on the road; we assume that
all users have the same sensitivity to tolls. Human drivers
and autonomous users may have different tolls, respectively
denoted τ h

i and τ a
i . The experienced costs for the vehicle

types are then

ch
i (f

h
i , f

a
i ) = `i(f

h
i , f

a
i ) + τ h

i ,

ca
i(f

h
i , f

a
i ) = `i(f

h
i , f

a
i ) + τ a

i .

The social cost is the total negative consequence of a given
traffic pattern. We consider tolls that are recirculated back
into the public coffers, so the only harm incurred to society
is the latency experienced by the network users. The social
cost is then as follows:

C(f h, f a) =
∑
i∈[n]

(f h
i + f a

i )`i(f
h
i , f

a
i ) . (1)

A road’s latency function depends on the capacity of the
road, which in turn depends on the autonomy level αi, the
fraction of vehicles on road i that are autonomous. The road
capacity is the maximum vehicle flow that can travel on
that road. Let autonomous vehicles occupy M−1i meters,
including headway, when traveling at nominal velocity on
road i, and let human-driven vehicles occupy m−1i meters.
We denote the road length as di and the free-flow velocity
as vi. Then, as in [8], [13], the road capacity is as follows1.

qi(αi) = vidi/(αiM
−1
i + (1− αi)m−1i ) .

We use this in conjunction with the well known Bureau of
Public Roads road latency model [27], [28], as in [5], [14].
This yields the following road latency function.

`i(f
h
i , f

a
i ) = ti

(
1 + ρi

(
f h
i

mi
+
f a
i

Mi

)σi)
. (2)

In this paper, except for when bounding the Price of
Autonomy, we consider σi = 1 ∀i ∈ [n]. Then we combine
the parameters, with ai = tiρi/Mi and ki = Mi/mi. The
latency function is then affine with respect to the vehicle
flows,

`i(f
h
i , f

a
i ) = kiaif

h
i + aif

a
i + ti . (3)

Equilibria. We are concerned with characterizing Wardrop
Equilibria of a traffic network, meaning situations in which
no user has incentive to change their strategy [20]. We treat
equilibria as reasonable predictions of user behavior.

1This model assumes either that autonomous vehicles do not rely on
vehicle-to-vehicle communication and maintain the same headways behind
the vehicle that they follow regardless of vehicle types, or that the au-
tonomous vehicles can rearrange themselves to form one large platoon, as
in [26].



We consider both human drivers and autonomous users to
be selfish. This means that in Wardrop Equilibrium, if there
is positive human-driven flow on road i, this implies that

ch
i (f

h
i , f

a
i ) ≤ ch

i′(f
h
i′ , f

a
i′), ∀i′ ∈ [n],

and similarly, for autonomous flow, f a
i > 0 implies

ca
i(f

h
i , f

a
i ) ≤ ca

i′(f
h
i′ , f

a
i′), ∀i′ ∈ [n].

Since we consider parallel roads, all users of the same type
will experience the same cost.

As mentioned earlier, equilibria can often incur far greater
social cost than the optimal routing. Because of this, our goal
is to design tolls such that the only equilibrium that exists
minimizes the social cost.

III. EFFICIENCY AND TOLLING
To begin our discussion of tolling, we expand previous

results to bound how much worse equilibria can be when
some vehicles are autonomous as compared to when all
vehicles are human driven. Following this, we show that
tolling cannot help in any significant way when we are
forced to toll humans and autonomous vehicles identically.
We then develop properties of optimal routing and provide
a method for calculating optimal tolls.

Bounding the Price of Autonomy. As mentioned earlier,
[25] shows that converting some vehicles to be autonomous
may worsen the aggregate delay in equilibrium. This work
bounds this effect when a network is homogeneous, meaning
that there the multiplicative increase in capacity due to
autonomy is uniform on all roads, i.e. Mi/mi = Mi′/mi′

∀i, i′ ∈ [n]. In particular, [25] shows that the delay will not
increase by a factor more than the Price of Anarchy for that
class of cost functions with a single vehicle type. However,
if the roads have varying characteristics such as speed limits
and separation from pedestrian traffic, the network will not
be homogeneous and this bound will not hold. Motivated
by this, we bound this quantity for general (not necessarily
parallel) heterogeneous networks.

First we define the maximum degree of asymmetry

k = max
i∈[n]

Mi/mi

and the maximum polynomial degree

σ = max
i∈[n]

σi .

Let
ξ(σ) = σ(σ + 1)−(σ+1)/σ .

Proposition 1: Consider a general network with social
cost as defined in (1) and road latency functions of the form
(2), and let Mi/mi ≥ 1 ∀i ∈ [n]. Let (g̃h, 0) be a Wardrop
Equilibrium routing with human flow demand f̄ and zero
autonomous flow demand. Let (f̃ h, f̃ a) be an equilibrium
routing with human flow demand f̄ h and autonomous flow
demand f̄ − f̄ h, where f̄ h ∈ [0, f̄ ]. Then,

C(f̃ h, f̃ a) ≤ kσ

1− ξ(σ)
C(g̃h, 0) .

s t

`1(f h
1 , f

a
1) = kf h

1 + f a
1

`2(f h
2 , f

a
2) = f h

2 + kf a
2

Fig. 1: Example of the futility of undifferentiated tolling in a simple network.
Consider one unit of flow demand for each human-driven and autonomous
vehicles – equilibrium under the best undifferentiated toll may be arbitrarily
worse than the socially optimal routing.

Proof: Let (g*h, 0) denote the socially optimal routing
for human flow demand f̄ and zero autonomous demand, and
let (f *h, f *a) be a socially optimal routing for human flow
demand f̄ h and autonomous flow demand f̄ − f̄ h, where
f̄ h ∈ [0, f̄ ].

The results in [14] imply that

C(f̃ h, f̃ a) ≤ kσ

1− ξ(σ)
C(f *h, f *a) .

Then,

C(f *h, f *a) ≤ C(g*h, 0)

≤ C(g̃h, 0) ,

due to the assumption that Mi/mi ≥ 1 ∀i ∈ [n] and the
definition of optimal flow.

Together, these imply the proposition.
Note that the assumption that Mi/mi ≥ 1 ∀i ∈ [n] is

required for this proposition, but is not required for the
subsequent theoretical results.

This bound for the heterogeneous case is equal to the
Price of Anarchy bound for mixed autonomy in [14],
Theorem 1. Though the increase in inefficiency is bounded
with respect to k and σ, it grows with these parameters.
With this motivation, we look to mitigate this inefficiency
through tolling.

Undifferentiated tolls. First we consider whether we can
enforce optimal routing with undifferentiated tolls, meaning
a tolling scheme in which human drivers and autonomous
vehicles pay the same toll for a road. Can such a tolling
scheme yield a unique socially-optimal equilibrium?

Previous work has answered this question negatively – in
[24], the authors show an example of a network with multiple
source destination pairs in which undifferentiated tolls fail
to minimize social cost in equilibrium. In this section we
extend these results and show a simple two-road network in
which undifferentiated tolls fail. We further show that the
best undifferentiated tolling scheme in this network yields
an equilibrium with social cost that can be arbitrarily worse
than the social cost under optimal routing.

Consider the network in Fig. 1, with one unit of human-
driven flow demand and one unit of autonomous flow de-
mand. Let k ≥ 1. The socially-optimal routing has social



cost 2, with all autonomous flow on road 1 and all human-
driven flow on road 2. The worst-case equilibrium has this
routing reversed for a social cost of 2k.

Without loss of generality, we can consider a toll on just
one of the roads, since only the difference between the tolls
on the two roads will affect the equilibrium. This example
is symmetric, so without loss of generality let the top road
be the road with a positive toll. In the resulting worst-case
equilibrium, the top road has some of the human-driven flow
and the bottom road has the remainder of the human-driven
flow and all the autonomous flow. To investigate how well
the best toll can do, we derive the following.

min
f h
1∈[0,1]

f h
1`1(f h

1 , 0) + (1− f h
1 + 1)`2(1− f h

1 , 1)

= min
f h
1∈[0,1]

k(f h
1)2 + (1− f h

1 + 1)(1− f h
1 + k)

=
7k + 3

4
− 1

k + 1
< 2k .

We see that the toll decreases our cost from that of the worst-
case equilibrium. However, the worst-case equilibrium cost
increases linearly with k, as does the worst-case equilibrium
cost when using optimal undifferentiated tolls, while
the socially optimal cost is constant. Therefore, optimal
undifferentiated tolling can yield unboundedly worse social
cost than the socially optimal routing in mixed autonomy,
even in a two-road network with affine latency functions.
Because of this, we turn our attention to the case in which
we can leverage different tolls to the two vehicle types.

Differentiated tolls. What if we allow different tolls based
on the type of vehicle traveling on a road? In order to develop
this, we first present a result regarding the optimal routing of
our vehicle flows, which will be useful in considering how
to levy tolls

Theorem 1: Consider a network of parallel roads with
latency functions of the form (3) and assume that ki = 1 for
at most one road. Then, any routing which minimizes social
cost will have at most one road shared between human-driven
and autonomous vehicles.

Proof: We prove this by contradiction. Assume that
an optimal routing f∗ has positive human-driven and au-
tonomous flow on both roads i and j ∈ [n], i.e. f *h

i >
0, f *a

i > 0 and f *h
j > 0, f *a

j > 0, where i 6= j. We fix the
sum of the flow of each type on those two roads, denoting
f̄ h = f *h

i +f *h
j and f̄ a = f *a

i +f *a
j . To show the contradiction,

it is sufficient to show that there is a routing with lower social
cost, with the same fixed total flow on the two roads.

The cost of the flow on these two roads, as a function of
f h
i and f a

i and parameterized by the demands, is as follows.

J(f h
i , f

a
i , f̄

h, f̄ a) = (kiaif
h
i + aif

a
i + ti)(f

h
i + f a

i ) +

(kjaj(f̄
h − f h

i ) + aj(f̄
a − f a

i ) + tj)(f̄
h − f h

i + f̄ a − f a
i ) .

The fact that 0 < f *h
i < f̄ a and 0 < f *a

i < f̄ a implies
that there is a minimum in the feasible set, implying that
the Hessian of the cost function with respect to f *h

i and f *a
i

has positive eigenvalues at some point in the feasible set.
However, the Hessian is as follows:[

2aiki + 2ajkj (ki + 1)ai + (kj + 1)aj
(ki + 1)ai + (kj + 1)aj 2ai + 2aj

]
,

which has determinant −(ai(ki − 1) + aj(kj − 1))2, which
is negative if not both ki and kj equal one. This matrix has
both positive and negative eigenvalues, implying that no local
minimum exists that is not on the boundary, contradicting
the premise. Therefore, no two roads can have both positive
human-driven flow and autonomous flow.

Note that we haven’t shown that the optimal solution is
unique, rather we’ve established a property of any optimal
solution. To assist with our analysis, for a given optimal
routing f∗ we denote the set of roads without autonomous
vehicles as [nh] and the set of roads without human-driven
vehicles as [na]. Some of the roads may have no flow in f∗;
these roads will be in both sets.

We’ve shown that to minimize social cost we want to
separate the human-driven and autonomous flow as much
as possible. By exploiting this property, we will derive an
optimal tolling scheme. Conceptually, by using this property
and controlling which roads each vehicle type can use, we
can rule out the possible existence of suboptimal equilibria.
Since we can use differentiated tolls, we influence which
roads each vehicle type chooses by leveraging large tolls
to keep them off of roads on which they don’t travel
in the chosen optimal routing. We use tolls of the form
of Dafermos’ path tolls [7] for the remaining roads. We
formalize this in the following theorem.

Theorem 2: Consider a network of parallel roads with
latency functions of the form (3) and assume that ki = 1
for at most one road. Further, assume that latency is strictly
increasing with vehicle flow, i.e. ki > 0 and ai > 0 ∀i ∈ [n].
Solve for a socially optimal routing f∗, and use [nh] to denote
the set of roads without autonomous vehicles and use [na]
to denote the set of roads without human-driven vehicles in
f∗. Then levy the following tolls. Let

τ h
i = P if i ∈ [na]

µ− `i(f *h
i , f

*a
i ) otherwise

τ a
i = P if i ∈ [nh]

µ− `i(f *h
i , f

*a
i ) otherwise ,

(4)

for arbitrary µ and sufficiently large P . Then, all resulting
equilibria will have the same social cost, which is equal to
that of the socially optimal routing f∗.

Proof: First, Theorem 1 guarantees that a socially
optimal routing will have at most one mixed road. Now we
must prove 1) that f∗ is an equilibrium with the new tolls
and 2) that any equilibrium will have the same social cost as
f∗. The first follows directly from the construction of the toll
and the definition of an equilibrium. When following routing
f∗, all users will experience cost µ and any other option
would have cost at least µ, therefore satisfying conditions
for equilibrium.



Now we must prove essential uniqueness for this equilib-
rium, meaning that any other equilibrium will have the same
social cost as f∗. First note that for P sufficiently large, we
will never have an equilibrium with human-driven flow on
roads in [na] and similarly, there will never be autonomous
vehicles on roads [nh]. Now, first consider the case in which
there is no mixed road. In this case we can split the network
in two and consider each part separately – Dafermos [7]
(Proposition 3.2) ensures essential uniqueness on each part.

Next, consider the event that a mixed road exists, and use
m to denote its index. Now if we can fix the flow on m
to be (f *h

m , f
*a
m), we can again split the network in two and

consider each separately. But can we guarantee that road m
will have flow (f *h

m , f
*a
m)?

Let us denote the total human-driven and autonomous
vehicle flow as f̄ h and f̄ a, respectively. We split the flow
of each type into two: the flow on the mixed road, f h

m and
f a
m, and the remaining flow, f̄ h − f h

m and f̄ a − f a
m. There

exists a large enough P such that f a
i = 0 ∀i ∈ [nh] and

f h
i = 0 ∀i ∈ [na]. As established in Section II, all users of

the same type will experience the same cost. Accordingly,
all users on the roads [nh] will experience the same cost
which is increasing with respect to the flow demand – we
use ĉh : R≥0 → R≥0 to denote the cost experienced by the
users of roads [nh] as a function of the total flow on those
roads, and similarly with ĉa : R≥0 → R≥0 for the users of
roads [na]. Both of these functions will be strictly increasing
in their arguments as a result of our assumption that ki > 0
and ai > 0 ∀i ∈ [n]. Similarly, the cost on the mixed road
is increasing in both arguments.

Further, note that the experienced cost of the human
drivers and autonomous users on the mixed road will be the
same on the mixed road, since they have identical tolls on
that road. Formally,

ch
m(f h

m, f
a
m) = ca

m(f h
m, f

a
m) . (5)

Finally, note that that if there are human drivers on the mixed
road, then ch

m(f h
m, f

a
m) = ĉh(f̄ h − f h

m) and similarly for
autonomous vehicles.

Now, consider for the purpose of contradiction that there
exists a second equilibrium f̃ with greater social cost, i.e.
C(f̃ h, f̃ a) > C(f *h, f *a). Due to the properties of essential
uniqueness discussed above, to have a different social cost
the new equilibrium must have different flow on the mixed
road. We therefore first consider the case that f̃ h

m > f *h
m . If

f̃ a
m ≥ f *a

m there is an immediate contradiction, as

ĉh(f̄ h − f̃ h
m) < ĉh(f̄ h − f *h

m ) = ch
m(f *h

m , f
*a
m) < ch

m(f̃ h
m, f̃

a
m)

violating the equilibrium conditions for the human-driven
vehicles, contradicting the premise. If instead f̃ h

m > f *h
m and

f̃ a
m < f *a

m ,

ĉh(f̄ h − f̃ h
m) < ĉh(f̄ h − f *h

m ) = ch
m(f *h

m , f
*a
m) = ca

m(f *h
m , f

*a
m)

= ĉa(f̄ a − f *a
m) < ĉa(f̄ a − f *a

m) ,

and the equilibrium conditions with (5) yield

ĉh(f̄ h − f̃ h
m) = ch

m(f̃ h
m, f̃

a
m) = ca

m(f̃ h
m, f̃

a
m) .

s t

`1(f h
1 , f

a
1) = 4f h

1 + f a
1 + 0.5

`2(f h
2 , f

a
2) = 2f h

2 + f a
2 + 1

`3(f h
3 , f

a
3) = f h

3 + 3f a
3 + 0.5

Fig. 2: An example of a network that benefits from the tolling scheme
described in this paper. Consider human-driven flow demand f̄h = 2.625
and autonomous flow demand f̄ a = 2.5.

Together this implies that ca
m(f̃ h

m, f̃
a
m) < ĉa(f̄ a−f *a

m) violat-
ing the conditions for equilibrium for f̃ . The same analysis
can be done with switching autonomous and human-driven
vehicles. The contradiction then proves that all equilibria will
have the same flow on the mixed road, completing the proof.

Remark 1: We have a degree of freedom in choosing µ.
One would likely choose µ to be greater than the maximum
latency in f∗ so as to avoid paying anyone to travel on a
road.

Remark 2: We could relax the assumption that ki = 1 for
at most one road, since it would only matter if those roads
were the mixed roads. If they are, then we have essential
uniqueness there as well and a more complicated version of
the proof would hold.

Example. We provide the following example to demon-
strate the benefit of the tolling scheme described above.
Consider the heterogeneous network in Fig. 2, which has
three roads with varying characteristics. One can consider
the top road to be a highway, on which autonomous vehicle
platooning offers significant benefits, the middle road to
be an urban road, and the bottom road to be a road in a
residential community with many bike paths and pedestrian
crossings. Let the human-driven flow demand be f̄ h = 2.625
and autonomous flow demand be f̄ a = 2.5.

We list the numerical values for the worst-case equilibrium
routing, the optimal routing, and the tolls that yield optimal
routing in Table I. We choose our free variable for tolling
to be µ = 3 to keep the tolls relatively low. In summary, in
the worst-equilibrium routing, road 1 has only human-driven
vehicles and road 3 has only autonomous vehicles; in the
optimal routing this is reversed. As expected from Thm. 1,
in the optimal routing there is only one mixed road, which is
road 2. In the worst-case equilibrium all roads have positive
flow and therefore have the same latency, which is 5; the
social cost is then 25.625. In the optimal routing, which is
enforced by the tolls provided, road latency varies but all
latencies are well below 5, and the social cost is 12.92 – an
improvement by approximately a factor of 2.



TABLE I: Routings, Latency, and Tolls for the Example Network

Worst eq. routing, Opt. routing, Opt. Tolls
social cost: 25.625 social cost: 12.92

Road Human Aut. ` Human Aut. ` τ h τ a

1 1.125 0 5 0 1.65 1.67 P 1.33
2 1.5 1 5 0.37 0.85 2.58 0.42 0.42
3 0 1.5 5 2.26 0 2.76 0.24 P

IV. CONCLUSION AND FUTURE WORK

In this paper we investigated tolling for roads with a
mixture of human-driven and autonomous vehicles. We
showed that if human drivers and autonomous vehicles are
given the same tolls, the resulting equilibrium may have
unboundedly worse total delay than the best-case routing.
Allowing ourselves to toll human drivers and autonomous
vehicles differently, we first established theoretical properties
of the optimal routing of this mixed traffic on parallel roads,
then used these results to find an optimal tolling scheme.

There is room for expanding these results, specifically in
the following directions.
• This work deals with affine latency functions; the BPR

model used generalizes easily to higher-order polyno-
mials. It would be worthwhile to investigate tolling with
these higher-order functions.

• This work could be expanded by analyzing more general
network models, including those with multiple popula-
tions, each with its own source-destination pair.

• One can consider the Stackelberg case, assuming the
routing for autonomous vehicles can be directly con-
trolled. It may be fruitful to develop a unified Stackel-
berg (for autonomous vehicles) and tolling (for human-
driven vehicles) scheme.

These would result in further steps towards ensuring the
efficient operation of traffic networks with the emergence
of autonomous vehicles.
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