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Abstract— We consider contractive systems whose trajecto-
ries evolve on a compact and convex state-space. It is well-
known that if the time-varying vector field of the system is
periodic then the system admits a unique globally asymptoti-
cally stable periodic solution. Obtaining explicit information on
this periodic solution and its dependence on various parameters
is important both theoretically and in numerous applications.
We develop an approach for approximating such a periodic
trajectory using the periodic trajectory of a simpler system
(e.g. an LTI system). Our approximation includes an error
bound that is based on the input-to-state stability property
of contractive systems. We show that in some cases this error
bound can be computed explicitly. We demonstrate our results
using several examples from systems biology.

I. INTRODUCTION

A dynamical system is called contractive if any two
trajectories approach each other [1], [2]. This is a strong
property with many important implications. For example, if
the trajectories evolve on a compact and convex state-space Ω
then the system admits an equilibrium point e ∈ Ω, and since
every trajectory converges to the trajectory emanating from e,
e is globally asymptotically stable. Note that establishing this
does not require an explicit description of e.

More generally, contractive systems with a periodic exci-
tation entrain, that is, their trajectories converge to a periodic
solution with the same period as the excitation. However, the
proof of the entrainment property of contractive systems is
based on implicit arguments (see, e.g. [3]) and provides no
explicit information on the periodic trajectory (except for its
period).

Contraction theory has found numerous applications in
systems and control theory, systems biology [4], and more
(see e.g. the recent survey [2]). A particularly interesting
line of research is based on combining contraction theory
and graph theory in order to study various networks of
multi-agent systems (see, e.g. [5], [6], [7], [8]). Contraction
theory has also been used to obtain convergence bounds for
singularly perturbed systems [9], [10].

As already noted by Desoer and Haneda [11], contractive
systems satisfy a special case of the input-to-state stabil-
ity (ISS) property (see the survey paper [12]). Desoer and
Haneda used this to derive bounds on the error between
trajectories of a continuous-time contractive system and its
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time-discretized model. This is important when computing
solutions of contractive systems using numerical integration
methods [13]. Sontag [14] has shown that contractive sys-
tems satisfy a “converging-input converging output” prop-
erty. A recent paper [15] used the ISS property to derive a
bound on the error between trajectories of a continuous-time
contractive system and those of some “simpler” continuous-
time system (e.g. an LTI system). This bound is particularly
useful when the simpler model can be solved explicitly.

Here, we derive new bounds on the distance between the
periodic trajectory of a contractive system and the periodic
trajectory of a “simpler” system, e.g. an LTI system with a
periodic forcing. We show several cases where the periodic
trajectory of the simpler system is explicitly known and the
bound is also explicit, so this provides considerable infor-
mation on the unknown periodic trajectory of the contractive
system.

Due to space limitations, all the proofs of our results are
omitted. See [16] for an extended version of this paper with
the proofs.

II. PRELIMINARIES

Consider the time-varying dynamical system

ẋ(t) = f(t, x(t)), (1)

with the state x evolving on a positively invariant convex
set Ω ⊆ Rn. We assume that f(t, x) is differentiable with
respect to x, and that both f(t, x) and its Jacobian J(t, x) :=
∂f
∂x (t, x) are continuous in (t, x). Let x(t, t0, x0) denote the
solution of (1) at time t ≥ t0 for the initial condition x(t0) =
x0. For the sake of simplicity, we assume from here on
that x(t, t0, x0) exists and is unique for all t ≥ t0 ≥ 0 and
all x0 ∈ Ω.

The system (1) is said to be contractive on Ω with respect
to a vector norm | · | : Rn → R+ if there exists η > 0 such
that

|x(t, t0, a)− x(t, t0, b)| ≤ e−(t−t0)η|a− b| (2)

for all t ≥ t0 ≥ 0 and all a, b ∈ Ω. This means that any two
trajectories approach one another at an exponential rate η.
This implies in particular that the initial condition is “quickly
forgotten”.

Note that contraction can be defined in a more general
way, for example with respect to a time- and space-varying
norm [1] (see also [17]). We focus here on exponential
contraction with respect to a fixed vector norm because there
exist easy to check sufficient conditions, based on matrix
measures, guaranteeing that (2) holds. A vector norm | · | :
Rn → R+ induces a matrix measure µ : Rn×n → R defined



by

µ(A) := lim
ε↓0

1

ε
(||I + εA|| − 1),

where || · || : Rn×n → R+ is the matrix norm induced by | ·
|. For example, for the `1 vector norm, denoted | · |1, the
induced matrix norm is the maximum absolute column sum
of the matrix, and the induced matrix measure is µ1(A) =
max{c1(A), . . . , cn(A)}, where cj(A) := Ajj+

∑
i 6=j |Aij |,

i.e., the sum of the entries in column j of A, with non-
diagonal elements replaced by their absolute values.

If the Jacobian of f satisfies

µ(J(t, x)) ≤ −η, for all x ∈ Ω and all t ≥ t0 ≥ 0, (3)

then (2) holds (see [3] for a self-contained proof). This is in
fact a particular case of using a Lyapunov-Finsler function to
prove contraction [17]. We will focus on the case where η >
0, but some of our results hold when η ≤ 0 as well. In this
case, (2) provides a bound on how quickly can trajectories
of (1) separate from one another.

Often it is useful to work with scaled vector norms (see,
e.g. [18], [19]). Let | · |∗ : Rn → R+ be some vector norm,
and let µ∗ : Rn×n → R denote its induced matrix measure.
If D ∈ Rn×n is an invertible matrix, and | · |∗,D : Rn → R+

is the vector norm defined by |z|∗,D := |Dz|∗, then the
induced matrix measure is µ∗,D(A) = µ∗(DAD

−1).
The next result describes an ISS property of contractive

systems with an additive input.

Theorem 1 [11] Consider the system

ẋ(t) = f(t, x(t)) + u(t), (4)

where y → f(t, y) is C1 for all t ≥ t0. Fix some vector
norm | · | : Rn → R+ and suppose that (3) holds for
the induced matrix measure µ(·). Then the solution of (4)
with x(t0) = x0 satisfies, for all t ≥ t0,

|x(t, t0, x0)| ≤ e−η(t−t0)|x0|+
∫ t

t0

e−η(t−s)|u(s)| ds.

Ref. [15] has applied the ISS property to derive a bound
on the error between trajectories of the contractive system (1)
and those of a “simpler” dynamical system ẏ = g(t, y(t)).
For such a system, pick y0 ∈ Ω, and let τ ≥ t0 be such that
the solution y(t, t0, y0) belongs to Ω for all t ∈ [t0, τ ]. Then
the difference between the trajectories of the two systems
d(t) := x(t, t0, x0)− y(t, t0, y0) satisfies

|d(t)| ≤ e−η(t−t0)|x0 − y0|

+

∫ t

t0

e−η(t−s)|f(s, y(s, t0, y0))− g(s, y(s, t0, y0))|ds

(5)

for all t ∈ [t0, τ ]. The proof of this result is based on noting
that

ḋ(t) = f(t, x(t))− f(t, y(t)) + f(t, y(t))− g(t, y(t))

= M(t)d+ u(t),

where M(t) :=
∫ 1

0
J(t, sx(t) + (1− s)y(t)) ds, and u(t) :=

f(t, y(t))−g(t, y(t)). Since y(t) ∈ Ω for all t ∈ [0, τ ] and Ω
is convex, sx(t)+(1−s)y(t) ∈ Ω for all t ∈ [0, τ ] and all s ∈
[0, 1]. Using (3) and the subadditivity of matrix measures
[20], [11], which, by continuity, extends to integrals, yields
µ(M(t)) ≤ −η for all t ∈ [0, τ ]. Summarizing, ḋ(t) =
M(t)d(t) + u(t) is a contractive system with an additive
“disturbance” u and applying the ISS property of contractive
systems yields (5).

Note that the integrand in (5) depends on the difference
between the vector fields f and g evaluated along the
trajectory of the y system. This is useful, for example, when
the trajectory of the y system is explicitly known.

The applications studied in [15] were contractive sys-
tems with time-invariant vector fields approximated by time-
invariant LTI systems. Here, we consider a different case,
namely, when the vector field f(t, x) is time-varying and T -
periodic for some T > 0, that is,

f(t, z) = f(t+ T, z)

for all t ≥ t0 and all z ∈ Ω. It is well-known that in this
case every trajectory of (1) converges to a unique periodic
solution γ(t) of (1) with period T (see [3] for a self-
contained proof). This entrainment property is very important
in applications (see, e.g. [21], [3]). However, the proof of
entrainment is based on implicit arguments and provides
no information on the properties of the periodic trajectory
(except for its period). Our goal here is to develop a suitable
bound for the difference between γ(t) and the periodic
solution κ(t) of some simpler approximating y system and
to suggest suitable approximating systems.

III. BOUNDS ON THE DIFFERENCE BETWEEN TWO
PERIODIC TRAJECTORIES

In this section, we consider the T -periodic orbit of a
T -periodic contractive system. Theorem 2 below is our
main result in this section, and provides a bound on the
distance of this periodic orbit to a T -periodic orbit of some
approximating system.

Theorem 2 Consider the system

ẋ = f(t, x) (6)

whose trajectories evolve on a compact and convex state-
space Ω ⊆ Rn. Suppose that f(t, x) is T -periodic and
that f(t, x) and J(t, x) are continuous in (t, x). Let | · |
be some vector norm on Rn and µ(·) its induced matrix
measure, and suppose that µ(J(t, x)) ≤ −η < 0 for all t ≥ 0
and all x ∈ Ω. Let γ(t) be the unique periodic trajectory of
(6) with period T . Consider another time-varying system

ẏ = g(t, y) (7)

and suppose that g(t, y) is also T -periodic and that κ(t) is a
T -periodic trajectory of (7) with κ(t) ∈ Ω for all t ∈ [0, T ].



Define c : R+ → R+ by

c(α) :=

∫ α

0

e−η(α−s)|f(s, κ(s))− g(s, κ(s))|ds. (8)

Then the difference between the two periodic trajectories
satisfies

|γ(τ)− κ(τ)| ≤ e−ητ

1− e−ηT
c(T ) + c(τ) (9)

for all τ ∈ [0, T ].

Note that the bound here depends on the difference be-
tween the vector fields f and g evaluated along the periodic
trajectory κ(s) of the “simpler” y system. This is useful for
example when the y system is an asymptotically stable LTI
system with a sinusoidal forcing term, as then κ(t) is known
explicitly.

We now derive a simpler (and less tight) bound. By the
definition of c(·), c(α) ≤ 1−e−ηα

η maxt∈[0,α] |f(t, κ(t)) −
g(t, κ(t))| for all α ≥ 0, and combining this with (9) yields
the following result.

Corollary 1 Under the hypotheses of Theorem 2,

|γ(τ)− κ(τ)| ≤ 1

η
max
t∈[0,T ]

|f(t, κ(t))− g(t, κ(t))|

for all τ ≥ 0.

This bound is useful in cases where one can establish a
bound on the difference between the vector fields f and g
along the periodic trajectory κ of the approximating system.
Note that the bound here demonstrates a clear tradeoff: if g
is “close” to f then the error f − g will be small, yet κ
may be an unknown, complicated trajectory (as we assume
that f is a nonlinear vector field). On the other hand, if g
is relatively simple (e.g., the vector field of an LTI system)
then κ may be known explicitly yet the difference |f − g|
may be large.

To summarize, Theorem 2 and Corollary 1 provide a
bound on the distance of the unique T -periodic trajectory
of a contractive system and some T -periodic trajectory of
an approximating system. The next step is to determine
a suitable approximating system. We propose two natural
approximating systems for the case where the periodic vector
field arises via a periodic forcing function. The first approx-
imating system considers the time-averaged periodic forcing
function to arrive at an autonomous dynamical system with
an equilibrium. The second approximating system results
from a linearization of the dynamics, keeping the periodic
excitation as is.

IV. APPROXIMATING SYSTEMS

From hereon, we consider a special case of the contractive
system (6) with the form

ẋ(t) = f(t, x(t)) = F (x(t), u(t))

where u(t) is a given m-dimensional, T -periodic excitation.

A. Averaging the input

Our first result is based on using a “simpler” y system
derived by averaging the excitation u over a period. The
excitation in the y system is thus constant. We assume that
the y system admits an equilibrium point e ∈ Ω, and apply
Theorem 2 to derive a bound on the distance between the
periodic trajectory γ(t) of the original x system and the
point e.

Theorem 3 Consider the system

ẋ = F (x, u), (10)

where u is an m-dimensional periodic excitation with pe-
riod T ≥ 0. Suppose that the trajectories of (10) evolve on
a compact and convex state space Ω ⊂ Rn. Assume that
for some vector norm | · | : Rn → R+ and induced matrix
measure µ : Rn×n → R,

µ

(
∂F

∂x
(x, u(t))

)
≤ −η < 0

for all t ≥ 0 and all x ∈ Ω. Let γ(t) be the unique, attracting,
T -periodic orbit of (10) in Ω. Then, for any z ∈ Ω,

|x(t, 0, z)− z| ≤
∫ t

0

e−η(t−s)|F (z, u(s))|ds (11)

for all t ≥ 0. In particular, for all t ≥ 0,

|x(t, 0, z)− z| ≤ (1− e−ηt)c/η,

where c := maxt∈[0,T ] |F (z, u(t))|. Moreover, for all τ ∈
[0, T ],

|γ(τ)− z| ≤ e−ητ

1− e−ηT

∫ T

0

e−η(T−s)|F (z, u(s))|ds

+

∫ τ

0

e−η(τ−s)|F (z, u(s))|ds (12)

≤ c/η. (13)

The next two examples demonstrate that a natural choice
for z in Theorem 3 is the equilibrium point induced by the
average of the periodic excitation.

Example 1 Our focus here is on nonlinear dynamical sys-
tems, but it is still useful to begin by considering the linear
system

ẋ = Ax+Bu, (14)

where A ∈ Rn×n is Hurwitz, B ∈ Rn×m, and u is an m-
dimensional T -periodic control. It is well-known that such a
system is contractive [2], [22]. For the sake of completeness
we repeat the argument here. We use the notation Q > 0 to
denote that a matrix Q is symmetric and positive-definite.
Since A is Hurwitz, there exist η > 0 and Q > 0 such that

QA+A′Q ≤ −2ηQ. (15)

Let P > 0 be a matrix such that P 2 = Q. Then multiply-
ing (15) by P−1 on the left and on the right yields

PAP−1 + P−1A′P ≤ −2ηI. (16)



This means that the Jacobian A of (14) satisfies µ2,P (A) ≤
−η, where µ2,P is the matrix measure induced by the scaled
Euclidean norm |z|2,P := |Pz|2.Thus, (14) is contractive
with respect to this scaled norm with contraction rate η, and
every solution of (14) converges to the unique T -periodic
solution γ(t) of (14). Let ū := 1

T

∫ T
0
u(s)ds and choose z =

A−1Bū =: e, the equilibrium of the time-invariant system
with input equal to ū.

To apply the bound (13), note that F (e, u(s)) =
Ae + Bu(s) = B(u(s) − ū). Thus, |F (e, u(s))|2,P =

((u(s)− ū)′B′P ′PB(u(s)− ū))
1/2

, and the bound (13)
yields

|γ(τ)− e|2,P

≤ 1

η
max
t∈[0,T ]

((u(t)− ū)′B′P ′PB(u(t)− ū))
1/2 (17)

for all τ ∈ [0, T ].
Of course, for linear systems the periodic solution cor-

responding to sinusoidal excitations is known explicitly
in terms of the system’s frequency response. Neverthe-
less, (17) seems to be new and provides considerable in-
tuition: the bound on the distance between γ(t) and e
decreases when: the contraction rate η increases; the input
channel B becomes “more orthogonal” to the matrix P
in (16); or maxt∈[0,T ] |u(t) − ū| decreases, that is, the
periodic excitation becomes more similar to its mean. �

Example 2 The ribosome flow model (RFM) [23] is a
nonlinear compartmental model describing the unidirectional
flow of particles along a 1D chain of n sites using n non-
linear first-order differential equations. Recently, the RFM
has been used to model and analyze the flow of ribosomes
(the particles) along groups of codons (the sites) along the
mRNA molecule during translation (see, e.g. [24], [25], [26],
[21], [27], [28], [29], [30], [31]).

Consider the RFM with n = 2 and a time-varying
initiation rate u0(t), that is,

ẋ1 = (1− x1)u0 − λ1x1(1− x2),

ẋ2 = λ1x1(1− x2)− λ2x2, (18)

where λ1, λ2 are positive constants. Suppose that u0(t) =
λ0 + sin(2πt/T ), with λ0 > 1, T > 0, i.e. the initiation
rate is a strictly positive periodic function with (minimal)
period T . The state space here is Ω := [0, 1]2. The Jacobian

of (18) is J(t, x) =

[
−u0(t)− λ1(1− x2) λ1x1

λ1(1− x2) −λ1x1 − λ2

]
.

The off-diagonal terms are non-negative for any x ∈ [0, 1]2,
so µ1(J(t, x)) = max{−u0(t),−λ2} for all t ≥ 0 and
all x ∈ [0, 1]2. Thus, the system is contractive with respect to
the `1 norm with contraction rate η := min{λ0−1, λ2} > 0.
Let γ ∈ [0, 1]2 denote its unique, attracting, T -periodic
solution. Entrainment in mRNA translation is important
as biological organisms are often exposed to periodic ex-
citations, for example the periodic cell division process.
Proper biological functioning requires entrainment to such
excitations [21].
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Fig. 1: RFM in Example 2. The error |γ(t)−e|1 (solid line) and the bounds
in Theorem 3: the bound (21) (dashed line) and the bound (22) (dotted line).
These bounds can be obtained analytically for this example.

Let ū0 = 1
T

∫ T
0
u0(s) ds = λ0 and consider the system

ẏ1 = λ0(1− y1)− λ1y1(1− y2),

ẏ2 = λ1y1(1− y2)− λ2y2. (19)

This system admits an equilibrium point

e =
[
λ0λ1−λ0λ2−λ1λ2+

√
d

2λ0λ1

λ0λ1+λ0λ2+λ1λ2−
√
d

2λ1λ2

]′
∈ (0, 1)2,

(20)
where d := 4λ20λ1λ2 + (λ0λ1 − λ0λ2 − λ1λ2)2.

Here,

F (e, u(s)) =

[
(λ0 + sin(2πs/T ))(1− e1)− λ1e1(1− e2)

λ1e1(1− e2)− λ2e2

]
,

and since e is an equilibrium point of (19), F (e, u(s)) =[
(1− e1) sin(2πs/T ) 0

]′
. Thus, (12) yields

|γ(τ)− e|1 ≤

(1− e1)
e−ητ

1− e−ηT

∫ T

0

e−η(T−s)| sin(2πs/T )|ds

+ (1− e1)

∫ τ

0

e−η(τ−s)| sin(2πs/T )|ds (21)

for all τ ∈ [0, T ]. Furthermore, |F (e, u(t))|1 = (1 −
e1)| sin(2πt/T )| ≤ 1 − e1, so (13) implies the simpler yet
more conservative bound

|γ(τ)− e|1 ≤ (1− e1)/η, for all τ ∈ [0, T ]. (22)

Note that the bounds above can be computed analytically
so that we obtain considerable explicit information on the
periodic trajectory γ.

Fig. 1 illustrates the bounds on the periodic trajectory
for the case λ0 = 4, λ1 = 1/2, λ2 = 4, and T = 2. It
may be seen that these bounds indeed provide a reasonable
approximation for the `1 distance between the unknown
periodic trajectory and the point e. �

Thm. 3 is based on averaging the excitation over a period,
thus obtaining a constant input. Such an approximation is
not always suitable. For example, when u(t) = sin(2πt/T )

then ū := 1
T

∫ T
0
u(t)dt = 0 for all T . This may obscure

the effect of the frequency of the excitation in the derived
bounds. The approach in the next subsection tries to over-
come this using a different approximating system, namely,
an LTI system that is excited by the original periodic input.



B. An LTI approximation

Theorem 4 Consider the system

ẋ = F (x, u), (23)

where u is an m-dimensional periodic excitation with pe-
riod T > 0. Suppose that the trajectories of (23) evolve on
a compact and convex state space Ω ⊂ Rn. Assume that for
some vector norm | · | : Rn → R+ and the induced matrix
measure µ : Rn×n → R,

µ

(
∂F

∂x
(x, u(t))

)
≤ −η < 0

for all t ≥ 0, all x ∈ Ω. Let γ(t) be the unique, attracting,
T -periodic orbit of (23) in Ω.

Suppose also that for the unforced dynamics, i.e. ẋ =
F (x, 0), there exists a locally stable equilibrium point e ∈ Ω,
and without loss of generality, that e = 0. Let A := ∂F

∂x (0, 0)
and B := ∂F

∂u (0, 0), and consider the LTI approximating
system

ẏ = Ay +Bu := G(y, u). (24)

Pick x0, y0 ∈ Ω and let τ ≥ 0 be such that y(t) ∈ Ω
for all t ∈ [0, τ ] where y(t) is the solution of (24) with
y(0) = y0. Then

|x(t)− y(t)| ≤ e−ηt|x0 − y0|

+

∫ t

0

e−η(t−s)|H(y(s), u(s))|ds

for all t ∈ [0, τ ] where H(z, v) := F (z, v) − G(z, v).
Moreover, let κ(t) be the unique T -periodic trajectory of
(24) and assume that κ(t) ∈ Ω for all t. Then, for all
τ ∈ [0, T ],

|γ(τ)− κ(τ)| ≤ e−ητ

1− e−ηT

∫ T

0

e−η(T−s)|H(κ(s), u(s))|ds

+

∫ τ

0

e−η(τ−s)|H(κ(s), u(s))|ds (25)

≤ 1

η
max
t∈[0,T ]

|H(κ(t), u(t))|. (26)

We emphasize again that the advantage of the bounds
here is that the integrand depends on the difference between
the vector fields F and G evaluated along the solution κ
of the LTI system (24). Note that our assumptions imply
that A is Hurwitz and thus, for any initial condition, y(t)
converges to the periodic trajectory κ(t). In some cases,
this solution can be written explicitly, and the integral can
be computed explicitly. For example, if u(t) is a complex
exponential, then κ(t) is also a complex exponential and
can be easily computed using a Fourier transform. Then a
bound on |F (κ(t), u(t))−G(κ(t), u(t))|, t ∈ [0, T ], may be
straightforward to establish, as in the example below.

Example 3 We again consider the RFM with n = 2 and
the periodic initiation rate u0(t) := λ0 + u(t), with λ0 >
1 and u(t) = sin(2πt/T ). Again, let e be the unique
equilibrium of the system when the initiation rate is λ0
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Fig. 2: RFM in Example 3. The equilibrium e for λ0 = 4 is marked
by a dot. The periodic trajectory γ(t) of the RFM (solid line) and the
periodic trajectory κ(t) of the linearized system (dashed line) when u0(t) =
4 + sin(2πt/T ).

(see (20)). Let δx := x − e. Then the linearized system
is ˙δx = Aδx+ bu, where

A =

[
−λ0 − λ1(1− e2) λ1e1

λ1(1− e2) −λ1e1 − λ2

]
, b =

[
1− e1

0

]
.

Note that µ1(A) = max{−λ0,−λ2} < 0, so, in particular, A
is Hurwitz. Thus, the approximating system is

ẏ = A(y − e) + bu =: G(y, u), u(t) = sin(2πt/T ).
(27)

The difference between the vector fields evaluated along a
solution of the y system is

F (y, sin(2πt/T ))−G(y, sin(2πt/T )) =[
λ1(y1 − e1)(y2 − e2)− (y1 − e1) sin(2πt/T )

−λ1(y1 − e1)(y2 − e2)

]
.

Let ĝ(s) :=

[
ĝ1(s)
ĝ2(s)

]
= (sI − A)−1b, and let κ(t) : R →

R2 be the unique periodic trajectory of (27) defined for all
−∞ < t <∞. Then

κ(t)− e =

[
|ĝ1(jω)| sin(ωt+ ∠ĝ1(jω))
|ĝ2(jω)| sin(ωt+ ∠ĝ2(jω))

]
,

with ω := 2π/T . The bound (26) yields

|γ(t)− κ(t)|1 =
1

η
(2λ1|ĝ1(jω)||ĝ2(jω)|+ |ĝ1(jω)|) (28)

where η := min{λ0 − 1, λ2} as before. Note that the bound
here depends on the frequency of the periodic excitation. The
more exact bound in (25) can be computed numerically.

For the parameters λ1 = 1/2, λ2 = 4, and T = 2,
Figure 2 shows the equilibrium point when λ0 = 4, the
periodic trajectory for the case when the initiation rate
is u0(t) = 4 + sin(2πt/T ), and the periodic trajectory of
the linearized system. Figure 3 illustrates the bounds from
Theorem 4. It may be observed that these bounds provide a
reasonable estimate of the error. �

The bound (28) has some interesting implications. For
example, if ĝ1(jω) = 0 for some ω then (28) implies
that γ(t) ≡ κ(t) for a sinusoidal excitation with frequency ω.
Similarly, if limω→∞ ĝ1(jω) = 0 then (28) implies that for
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Fig. 3: RFM in Example 3. The error |γ(t) − κ(t)|1 (solid line) and the
bounds (25) (dashed lines) and (28) (dotted line).

a high frequency sinusoidal forcing term, γ will approach κ.
Note that the conclusions on γ here are based on properties
of the LTI system.

V. CONCLUSIONS

Contractive systems entrain to periodic excitations. Ana-
lyzing the corresponding periodic solution of the contractive
system and its dependence on various parameters is an
important theoretical question with many potential applica-
tions. We developed approximation schemes for this periodic
solution using LTI systems and, using the ISS property of
contractive systems, provided bounds on the approximation
error. An important advantage of these bounds is that in some
cases they can be computed explicitly.
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