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Abstract—This paper over-approximates the reachable sets
of a continuous-time uncertain system using the sensitivity of
its trajectories with respect to initial conditions and uncertain
parameters. We first prove the equivalence between an existing
over-approximation result based on the sign-stability of the
sensitivity matrices and a discrete-time approach relying on
a mixed-monotonicity property. We then present a new over-
approximation result which scales at worst linearly with the
state dimension and is applicable to any continuous-time system
with bounded sensitivity. Finally, we provide a simulation-
based approach to estimate these bounds through sampling and
falsification. The results are illustrated with numerical examples
on traffic networks and satellite orbits.

Index Terms—Numerical algorithms, Uncertain systems.

I. INTRODUCTION

REACHABILITY analysis deals with the problem of com-
puting the set of all possible successors of a system given

its sets of initial conditions and admissible disturbance and
uncertainty values (see e.g. [4], [15]). Since exact computation
of the reachable set is rarely possible, we instead evaluate an
over-approximation to guarantee that the obtained set contains
all possible successors of the system. Various methods and
representations exist for these over-approximations, including
ellipsoids [13], polytopes [5], zonotopes [2], level-sets [14]
and unions of intervals [10]. Their main focus is on obtaining
over-approximations as close as possible to the actual reach-
able set, which can then be used for safety verification to
ensure that a bad set is never crossed (see e.g. [9]).

Alternatively, methods using a single interval such as [16]
focus less on the quality of the over-approximations and more
on the simplicity of implementation, including features such
as low memory usage (only two states) and low complexity
of the reachability analysis (at best constant for monotone
systems [3], at worst linear in the state dimension [18]).
These properties are particularly important in the context of
abstraction-based control synthesis (see, e.g., [7]) where a
large number of over-approximations have to be computed,
stored and intersected with other intervals.

This paper focuses on the computation of interval over-
approximations of reachable sets for a continuous-time un-
certain system. As opposed to monotonicity-based approaches
relying on the sign of the Jacobian matrices [16], [7], the
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proposed approach uses the sensitivity matrices (partial deriva-
tives of the system trajectories with respect to the initial state
or uncertain parameters). Such an approach was introduced
in [18] for the case of systems whose sensitivity matrix is
sign-stable over the set of initial states.

This paper presents three main contributions. 1) In Sec-
tion III, we prove the equivalence between the sign-stable
sensitivity approach in [18] for continuous-time systems and
the one based on mixed-monotonicity for discrete-time sys-
tems in [7]. 2) We next propose in Section IV a gen-
eralized sensitivity-based reachability analysis applicable to
any continuous-time system whose sensitivity matrices are
bounded. This generalization is motivated by the one intro-
duced in [19] for continuous-time mixed-monotone systems.
3) Since the proposed approach is based on the system trajec-
tories and sensitivity, which are unknown for most continuous-
time systems, we lastly present a simulation-based method to
estimate the sensitivity bounds using sampling and falsification
in Section V. Section VI then illustrates these results through
an example of traffic flow on a road network and an example
of a satellite orbit.

II. PROBLEM FORMULATION

Let R be the set of reals and I ⊆ 2R the set of closed real
intervals, i.e., for all X ∈ I, there exist x, x ∈ R such that
X = [x, x] = {x ∈ R | x ≤ x ≤ x} ⊆ R. In and In×q
then represent the sets of interval vectors in Rn and interval
matrices in Rn×q , respectively.

We consider a continuous-time, time-varying system

ẋ = f(t, x, p), (1)

with state x ∈ Rn, uncertain parameter p ∈ Rq and continu-
ously differentiable vector field f : R × Rn × Rq → Rn. We
denote as Φ(t; t0, x0, p) ∈ Rn the state reached by (1) at time
t ≥ t0 from initial state x0 with parameter p. The variable
p can also represent control or disturbance parameters that
remain constant over the considered time interval [t0, t]. Given
sets X0 ⊆ Rn and P ⊆ Rq of initial states and parameters,
respectively, the reachable set of (1) at time t ≥ t0 is denoted
as

R(t; t0, X0, P ) = {Φ(t; t0, x0, p) | x0 ∈ X0, p ∈ P}. (2)

The sensitivity of the trajectories of (1) with respect to the
initial conditions and parameters are defined as

sx(t; t0, x0, p) =
∂Φ(t; t0, x0, p)

∂x0
∈ Rn×n, (3)

sp(t; t0, x0, p) =
∂Φ(t; t0, x0, p)

∂p
∈ Rn×q. (4)



The sensitivities defined in (3) and (4) thus represent the
differential influence of the initial conditions and parameters,
respectively, on the successor of (1) at time t.

Our objective is to compute an over-approximation of the
reachable set (2) at time T ≥ t0 for intervals of initial
conditions X0 ⊆ Rn and of possible parameters P ⊆ Rq .

Problem 1. Given times t0 ∈ R and T ≥ t0 and intervals
X0 ∈ In and P ∈ Iq , find a set R̄(T ; t0, X0, P ) ⊆ Rn such
that R(T ; t0, X0, P ) ⊆ R̄(T ; t0, X0, P ).

III. REACHABILITY WITH SIGN-STABLE SENSITIVITY

In this section, we review the over-approximation approach
presented in [18] with the aim of connecting it in Section III-B
to discrete-time mixed-monotonicity from [7].

A. Sensitivity-based reachability analysis

Reference [18] provides a method to obtain an interval
over-approximation of the reachable set for an autonomous
system ẋ = f(x) whose sensitivity matrix sx(T, x0) at time
T ≥ 0 is sign-stable over the set of initial states X0. For the
purpose of the comparison in Section III-B, these results are
reviewed here in a more general framework where the system
(1) depends on both time and an uncertain parameter.

We assume that the sensitivity matrices defined in (3) and
(4) at time T are sign-stable over the sets X0 and P , i.e. their
entries do not change sign when the initial state and parameter
vary in X0 and P . This is formalized as follows.

Assumption 2. For all x0, x̃0 ∈ X0, p, p̃ ∈ P , i, j ∈
{1, . . . , n}, k ∈ {1, . . . , q}, we have{

sxij(T ; t0, x0, p)s
x
ij(T ; t0, x̃0, p̃) ≥ 0,

spik(T ; t0, x0, p)s
p
ik(T ; t0, x̃0, p̃) ≥ 0.

As X0 and P are intervals, let x0, x0 ∈ Rn and p, p ∈ Rq
be such that X0 = [x0, x0] and P = [p, p]. For each
i ∈ {1, . . . , n}, define states ξi, ξ

i ∈ X0 (with, e.g.,
ξi = [ξi

1
; . . . ; ξi

n
]) and parameters πi, πi ∈ P as diagonally

opposite vertices of X0 and P , respectively, where for each
j ∈ {1, . . . , n} (resp. k ∈ {1, . . . , q}), their entries ξi

j
, ξ

i

j

(resp. πik, πik) are allocated to x0j
or x0j (resp. p

k
or pk)

based on the sign of the sensitivity sxij (resp. spik):

(ξi
j
, ξ
i

j) =

{
(x0j

, x0j) if sxij(T ; t0, x0, p) ≥ 0,

(x0j , x0j
) if sxij(T ; t0, x0, p) < 0,

(πik, π
i
k) =

{
(p
k
, pk) if spik(T ; t0, x0, p) ≥ 0,

(pk, pk) if spik(T ; t0, x0, p) < 0.

(5)

From (5) and the sensitivity definitions in (3) and (4), the
successor Φ(T ; t0, ξ

i, πi) (resp. Φ(T ; t0, ξ
i
, πi)) is guaranteed

to define the lower bound (resp. upper bound) of the reachable
set R(T ; t0, X0, P ) on dimension i.

Lemma 3 ([18]). Under Assumption 2, an over-approximation
R̄(T ; t0, X0, P ) ∈ In of the reachable set is given in each
dimension i ∈ {1, . . . , n} by

R̄i(T ; t0, X0, P ) = [Φi(T ; t0, ξ
i, πi),Φi(T ; t0, ξ

i
, πi)] ∈ I.

Remark 4. Lemma 3 requires computing the full successor Φ

of (1) for each pair (ξi, πi), (ξ
i
, πi) ∈ X0 × P even though

only the ith entry Φi is used in the over-approximation. More
than one entry of a successor Φ may be used when there
exists less than 2n distinct pairs. The computational burden
can thus go from at most 2n successors when all the above
pairs are distinct, to at least 2 successors when there exist
x̃, x̂ ∈ X0 and p̃, p̂ ∈ P such that (ξi, ξ

i
, πi, πi) = (x̃, x̂, p̃, p̂)

or (ξi, ξ
i
, πi, πi) = (x̂, x̃, p̂, p̃) for all i ∈ {1, . . . , n}. The

latter case corresponds to continuous-time monotonicity of (1)
with respect to orthants, as described in [3].

Note also that the over-approximation obtained in Lemma 3
is tight in the sense that R̄(T ; t0, X0, P ) is the smallest interval
in In containing the reachable set.

Corollary 5. For all X ∈ In, if R(T ; t0, X0, P ) ⊆ X then
R̄(T ; t0, X0, P ) ⊆ X .

Proof. For all i ∈ {1, . . . , n} we have ξi, ξ
i ∈ X0 and πi, πi ∈

P from (5), thus leading to Φ(T ; t0, ξ
i, πi) ∈ R(T ; t0, X0, P )

and Φ(T ; t0, ξ
i
, πi) ∈ R(T ; t0, X0, P ). Since components i of

these reachable states define R̄i(T ; t0, X0, P ) in Lemma 3, any
interval X ∈ In strictly contained in R̄(T ; t0, X0, P ) cannot
contain the whole reachable set R(T ; t0, X0, P ).

B. Comparison with discrete-time mixed-monotonicity

In this section, we show that the approach described
in Section III-A for the over-approximation of continuous-
time systems with sign-stable sensitivity is equivalent to the
method presented in [7] for discrete-time systems satisfying
a mixed-monotonicity property. A mixed-monotone system
x+ = F (t, x, p) is one that is decomposable into its increasing
and decreasing components and can be characterized as having
sign-stable Jacobian matrices ∂F/∂x and ∂F/∂p. The reader
is referred to [7] for the formal definition of a mixed-monotone
system and its over-approximation method.

Theorem 6. Under Assumption 2 and given the discrete-time
system x+ = F (t, x, p) with F (t, x, p) = Φ(T ; t, x, p), the
over-approximations of R(T ; t0, X0, P ) in Lemma 3 and of
F (t0, X0, P ) in [7] are equivalent.

Proof. The sign-stability in Assumption 2 implies that x+ =
F (t, x, p) is mixed-monotone as in [7]. The equivalence then
follows from the facts that both methods result in a tight in-
terval over-approximation of the reachable set F (t0, X0, P ) =
R(T ; t0, X0, P ) ([7, Proposition 2] and Corollary 5) and such
tight interval is uniquely defined.

IV. REACHABILITY WITH BOUNDED SENSITIVITY

We now extend the over-approximation method described
in (5) and Lemma 3 after relaxing Assumption 2. The new
assumption (formalized below) is very mild as it now only
requires each entry of the sensitivity matrices at time T to lie
in a bounded interval when the initial state and parameter vary
in X0 and P . Unlike Assumption 2, each of these intervals is
allowed to contain the value 0 in its interior. This modification



is motivated by an extension of the definition of mixed-
monotonicity for continuous-time systems in [19].

Assumption 7. For all i, j ∈ {1, . . . , n}, k ∈ {1, . . . , q}, there
exist sxij , s

x
ij , s

p
ik, s

p
ik ∈ R such that for all x0 ∈ X0, p ∈ P

we have sxij(T ; t0, x0, p) ∈ [sxij , s
x
ij ] and spik(T ; t0, x0, p) ∈

[spik, s
p
ik].

Since X0 and P are bounded sets, Assumption 7 is natu-
rally satisfied by any system whose trajectory function Φ is
continuously differentiable in its initial state and parameter.

Denoting the center of [sxij , s
x
ij ] and [spik, s

p
ik] as sx∗ij and

sp∗ik , respectively, we update the definition of the states ξi, ξ
i ∈

X0 and parameters πi, πi ∈ P in (5) by replacing the right-
hand side conditions on the sign of the sensitivity by the same
conditions on the center of the sensitivity bounds:

(ξi
j
, ξ
i

j) =

{
(x0j

, x0j) if sx∗ij ≥ 0,

(x0j , x0j
) if sx∗ij < 0,

(πik, π
i
k) =

{
(p
k
, pk) if sp∗ik ≥ 0,

(pk, pk) if sp∗ik < 0.

(6)

Note that the condition sx∗ij ≥ 0 in the first line of (6) covers
both cases where the whole interval [sxij , s

x
ij ] is positive (as in

(5)) and where it is mostly positive (spik ≤ 0 ≤ sx∗ij ≤ s
p
ik).

To account for the deviations from the sign-stable cases
of (5) that may arise through the mostly positive and mostly
negative cases in (6), we introduce two row vectors ci =
[ci1, . . . , c

i
n] ∈ Rn and di = [di1, . . . , d

i
q] ∈ Rq for each i ∈

{1, . . . , n} defined by, for all j ∈ {1, . . . , n}, k ∈ {1, . . . , q},

cij =

{
min(0, sxij) if sx∗ij ≥ 0,

max(0, sxij) if sx∗ij < 0,

dik =

{
min(0, spik) if sp∗ik ≥ 0,

max(0, spik) if sp∗ik < 0.

(7)

Equation (7) means that cij = 0 in the sign-stable cases, cij =
sxij ≤ 0 in the mostly positive case and cij = sxij ≥ 0 in the
mostly negative case.

Without the sign-stability from Assumption 2, the succes-
sors Φi(T ; t0, ξ

i, πi) and Φi(T ; t0, ξ
i
, πi) are not guaranteed

to over-approximate dimension i of the reachable set. To
compute an interval that is guaranteed to over-approximate the
reachable set, the generalization of Lemma 3 thus requires the
addition of compensation terms as in the result below, where
ξi, ξ

i ∈ Rn and πi, πi ∈ Rq are column vectors and ci ∈ Rn
and di ∈ Rq are row vectors.

Theorem 8. Under Assumption 7, an over-approximation
R̄(T ; t0, X0, P ) ∈ In is given in each dimension i ∈
{1, . . . , n} by:

R̄i(T ; t0, X0, P ) =

[Φi(T ; t0, ξ
i, πi)− ci(ξi − ξi)− di(πi − πi),

Φi(T ; t0, ξ
i
, πi) + ci(ξi − ξi) + di(πi − πi)].

Proof. Consider an auxiliary system whose trajectories Φ̂ are
such that for all x0 ∈ X0, p ∈ P and i ∈ {1, . . . , n}
we have Φ̂i(T ; t0, x0, p) = Φi(T ; t0, x0, p) − cix0 − dip.
Then, from the sensitivity bounds in Assumption 7 and the
definition of ci and di in (7), the sensitivities ŝx(T ; t0, x0, p)
and ŝp(T ; t0, x0, p) of this auxiliary system are sign-stable
over the sets X0 and P , i.e. for all x0 ∈ X0 and p ∈ P ,
ŝxij(T ; t0, x0, p) = sxij(T ; t0, x0, p) − cij ≥ 0 (resp. ≤ 0)
if sx∗ij ≥ 0 (resp. ≤ 0), with similar results for ŝp. Since
ŝxij(T ; t0, x0, p) and sx∗ij have the same sign (and similarly for
ŝpij(T ; t0, x0, p) and sp∗ij ), this also guarantees that the states

ξi, ξ
i ∈ X0 and parameters πi, πi ∈ P obtained in (6) are the

same as their hatted counterparts that would be obtained in
(5) for the auxiliary system. Applying Lemma 3 to Φ̂ implies
that for all i ∈ {1, . . . , n}, x0 ∈ X0 and p ∈ P ,

Φi(T ; t0, x0, p) ∈
[Φi(T ; t0, ξ

i, πi) + ci(x0 − ξi) + di(p− πi),

Φi(T ; t0, ξ
i
, πi) + ci(x0 − ξ

i
) + di(p− πi)].

From (7), cij ≤ 0 (resp. ≥ 0) if sx∗ij ≥ 0 (resp. ≤ 0). Then for

all x0 ∈ [x0, x0], we have ciξ
i ≤ cix0 ≤ ciξi, with ξi, ξ

i ∈ X0

defined as in (6). We similarly obtain diπi ≤ dip ≤ diπi for
all p ∈ [p, p], which finally leads to the over-approximation in
the theorem statement.

Remark 9. Unlike the sign-stable case (Lemma 3, Corol-
lary 5), tightness of the over-approximation R̄(T ; t0, X0, P )
cannot be guaranteed in the general case of Theorem 8 due
to the additional terms ±ci(ξi − ξi) and ±di(πi − πi).

Following the comparison with discrete-time mixed-
monotonicity in Section III-B, a side product of Theorem 8
is a new over-approximation method for discrete-time systems
generalizing the approach from [7].

Corollary 10. Let x+ = F (t, x, p) have bounded Jacobian
matrices ∂F (t,x,p)

∂x ∈ In×n and ∂F (t,x,p)
∂p ∈ In×q over

all states x ∈ [x0, x0] and parameters p ∈ [p, p]. Then
the reachable set F (t,X0, P ) after one step can be over-
approximated as follows in each dimension i ∈ {1, . . . , n}:

Fi(t,X0, P ) ⊆ [Fi(t, ξ
i, πi)−ci(ξi−ξi)−di(πi−πi),

Fi(t, ξ
i
, πi) + ci(ξi − ξi) + di(πi − πi)],

where ξi, ξ
i
, πi, πi and ci, di are defined as in (6) and (7)

using the bounds of the Jacobian matrices.

V. OBTAINING BOUNDS ON THE SENSITIVITIES

The approach presented above relies on the trajectory
Φ(·; t0, x0, p) : [t0,+∞) → X evaluated at time T ≥ t0,
which is rarely known explicitly. Although the successors
Φ(T ; t0, x0, p) can be computed through numerical integration
of the system ẋ = f(t, x, p), the main challenge is the
computation of the sensitivity matrices sx(T ; t0, x0, p) in (3)
and sp(T ; t0, x0, p) in (4) for all x0 ∈ X0 and p ∈ P to
evaluate the sign-stability or boundedness of these sensitivities
as in Assumptions 2 and 7, respectively.



A. Sampling and falsification

In this section, we propose a simulation-based approach
where we first evaluate the sensitivity bounds from a few
samples in X0 × P and then use a falsification method to
iteratively enlarge these bounds by looking for other pairs in
X0 × P whose sensitivity does not belong to these bounds.

From the definition of sx in (3), we can use the chain rule
to define the time-varying linear system

ṡx(t; t0, x0, p) = Dx
f |Φsx(t; t0, x0, p), (8)

where Dx
f |Φ = Dx

f (t,Φ(t; t0, x0, p), p) denotes the Jaco-
bian Dx

f (t, x, p) = ∂f(t,x,p)
∂x evaluated along the trajectory

Φ(t; t0, x0, p). System (8) is initialized with the identity matrix
sx(t0; t0, x0, p) = In ∈ Rn×n [8]. A similar time-varying
affine system can be found for the sensitivity sp:

ṡp(t; t0, x0, p) = Dx
f |Φsp(t; t0, x0, p) +Dp

f |Φ, (9)

where Dp
f |Φ is the evaluation of Dp

f (t, x, p) = ∂f(t,x,p)
∂p along

the trajectory Φ(t; t0, x0, p) and (9) is initialized with the zero
matrix sp(t0; t0, x0, p) = 0n×q ∈ Rn×q [12].

For a given time T ≥ t0, we first compute the sensitiv-
ity matrices sx(T ; t0, x0, p) and sp(T ; t0, x0, p) through the
numerical integration of the systems (8) and (9) for at least
one pair (x0, p) ∈ X0 × P to obtain initial sensitivity bounds
denoted as [sx, sx] ∈ In×n and [sp, sp] ∈ In×q . More
than one pair (x0, p) can be obtained through either random
sampling or a gridded discretization of X0 × P .

The second step aims to falsify these bounds [11] through an
optimization problem, i.e. to find x0 ∈ X0 and p ∈ P such that
either sx(T ; t0, x0, p) /∈ [sx, sx] or sp(T ; t0, x0, p) /∈ [sp, sp].
Focusing on the sensitivity with respect to the initial state, we
want to solve the following optimization problem

min
x0∈X0
p∈P

(
min
i,j

(
sxij − sxij

2
−
∣∣sxij(T ; t0, x0, p)− sx∗ij

∣∣)) ,
where for each pair (i, j) we consider a negative absolute
value function centered on sx∗ij and translated such that the
global cost function is negative if and only if there exist
i, j ∈ {1, . . . , n} such that sxij(T ; t0, x0, p) /∈ [sxij , s

x
ij ]. If

the obtained local minimum is negative and the corresponding
arguments are denoted as x∗0 ∈ X0 and p∗ ∈ P , the sensitivity
bounds are updated as: sx ← min(sx, sx(T ; t0, x

∗
0, p
∗)),

sx ← max(sx, sx(T ; t0, x
∗
0, p
∗)), using elementwise min and

max operators. This process is repeated with the new bounds
until a positive minimum is obtained. A similar approach is
applied to [sp, sp].

Remark 11. While this approach is likely to result in an
accurate approximation of the actual sensitivity bounds, it
is not guaranteed to over-approximate the set of all possible
sensitivity values over X0×P since the falsification relies on
an optimization problem only able to provide local minima.

B. Interval arithmetics

An alternative approach recommended in [18] is based on
the use of interval arithmetics to solve an affine time-varying

system as presented in [1]. For the purpose of comparison
with the method in Section V-A on the numerical examples of
Section VI, we give an overview of how the results described
in [1] can be applied to the sensitivity systems (8) and (9)
to obtain guaranteed bounds on the sensitivity matrices. We
start from the assumption that bounds on the Jacobian matrices
Dx
f (t, x, p) = ∂f(t,x,p)

∂x and Dp
f (t, x, p) = ∂f(t,x,p)

∂p of (1) are
known or can be computed.

Assumption 12. Given an invariant set X ⊆ Rn of (1), there
exist interval matrices A ∈ In×n and B ∈ In×q such that for
all t ∈ [t0,+∞), x ∈ X , p ∈ P , we have Dx

f (t, x, p) ∈ A
and Dp

f (t, x, p) ∈ B.

We can then rewrite (8) and (9) as the set-valued systems

ṡx(t) ∈ Asx(t), sx(t0) = In, (10)
ṡp(t) ∈ Asp(t) + B, sp(t0) = 0n×q. (11)

The solution of these systems at time T is over-approximated
using interval arithmetics and a truncated Taylor series of the
interval matrix exponential eA(T−t0) ∈ In×n, detailed in [1].

Lemma 13 ([1]). Under Assumption 12, there exist functions
m : [0,+∞) → N and E : [0,+∞) → In×n defined in [1]
such that for all T ≥ t0, we have

sx(T ) ∈
m(T−t0)∑
i=0

(A(T − t0))i

i!
+ E(T − t0),

sp(T ) ∈

m(T−t0)∑
i=0

(A(T − t0))i

(i+ 1)!
+ E(T − t0)

 (T − t0)B.

Remark 14. Unlike the sampling-based method in Sec-
tion V-A, Lemma 13 provides guaranteed over-approximations
for the sensitivities but risks being overly conservative since
interval arithmetics cannot provide exact set computation
when more than two interval matrices are multiplied [10].

Remark 15. The minimal Taylor order m(T − t0) for
Lemma 13 to hold is a linearly increasing function of the
time step T − t0 [1]. This approach might thus be practically
infeasible when the desired time step T − t0 is too large.

VI. NUMERICAL EXAMPLES

All computations are run with Matlab on a laptop with a
1.7GHz CPU and 4GB of RAM.

A. Traffic network

Consider the 3-link traffic network describing a diverge
junction (the vehicles in link 1 divide evenly among the
outgoing links 2 and 3) inspired by [6]:

ẋ =
1

T

 p− g(x)
g(x)/2−min(c, vx2)
g(x)/2−min(c, vx3)

 , (12)

where g(x) = min(c, vx1, 2w(x̄ − x2), 2w(x̄ − x3)), x ∈ R3

is the vehicle density on the three links, p ∈ P = [40, 60] is
the constant but uncertain vehicle inflow to link 1, T = 30



seconds and c = 40, v = 0.5, x̄ = 320, w = 1/6 are known
parameters of the network detailed in [6].

In addition to the uncertain disturbance input p ∈ P =
[40, 60], we consider a set X0 ⊆ I3 of initial conditions such
that X0 = [150, 200] × [250, 320] × [50, 100], meaning that
link 2 is close to its maximal capacity x̄ = 320 while link
3 has more availability. Figure 1 presents the projection in
the (x1, x3) plane of the initial interval X0 (dashed black),
the reachable set {Φ(T ;x0, p) | x0 ∈ X0, p ∈ P} (hatched
black) of (12) after time T = 30 seconds and two interval
over-approximations of this set obtained as described below.

Using the simulation-based approach in Section V-A, we get
a first approximation of the sensitivity bounds of (12) from a
grid of 16 samples in X0 × P (2 samples per dimension)
computed in 0.98s, which is then refined in 15.8s through
falsification, stopping after 6 iterations. From these times, it is
thus advised to use a finer sampling of X0×P to obtain a good
initial estimation of the sensitivity bounds so that the number
of falsification runs is reduced. The numerical computations
indicate that the sensitivity bounds for (12) are sign-stable,
thus leading to the tight red over-approximation in Figure 1
obtained after applying Lemma 3.

The second over-approximation in green is computed from
sensitivity bounds obtained with the interval arithmetics ap-
proach in Lemma 13, where the Jacobian bounds as in
Assumption 12 are obtained analytically from the dynamics
(12). We pick a Taylor order m = 7 (empirically, we see no
improvement on the sensitivity bounds for larger values) which
is greater than the minimal value m(T ) = 0 for Lemma 13
to hold. The sensitivity bounds are computed in 14ms, but
as predicted in Remark 14 they are much more conservative
than the one obtained in the first approach and they do not
satisfy Assumption 2. The over-approximation in green is thus
obtained from the generalized result in Theorem 8 and is
much larger than the red one, firstly because Theorem 8 is
known not to be tight (Remark 9), but also because it tries to
compensate for the sensitivity elements believed not to be sign-
stable while their real values are actually sign-stable according
to the sampling-based estimation above.

The computation of both red and green over-approximations
(from Lemma 3 and Theorem 8) is done in 60ms. The volumes
of the red and green over-approximations are respectively 1.7
and 5.1 times the volume of the true reachable set.
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Fig. 1. (x1, x3)-projection of the reachable set (hatched black) of (12) from
the initial interval (dashed black) and its over-approximations using sampling-
based sensitivity bounds (red) and interval arithmetics (green).

To study the scalability of the approach, we now extend
this three link example by adding links downstream of the

diverging junction so that traffic on link 2 flows to link 4 then
to link 6, etc., and, likewise, traffic flows from link 3 to 5 to
7, etc. The modified dynamics are

fi(x, p) =
1

T
(g(x)/2− h(xi, xi+2)), i ∈ {2, 3} (13)

fi(x, p) =
1

T
(βh(xi−2, xi)− h(xi, xi+2)), i ∈ {4, . . . , n}

(14)

where h(η, ζ) = min
(
c, vη, wβ (x̄− ζ)

)
, n is the total number

of links in the network, and we take β = 3
4 (1 − β is the

fraction of vehicles exiting the network after each link). For
i ∈ {n − 1, n}, the term w

β (x̄ − xi+2) is excluded from
the minimization in h. Considering a 11-link network with
X0 = [20, 300]11, we apply the same methods as for the
previous 3-link case. The sensitivity bounds are first evaluated
from a grid of 4096 samples of X0 × P (2 samples per
dimension) in 862s, followed by 3 iterations of falsification
in 21s, resulting in sign-stable bounds. Another set of bounds
is computed in 0.54s through interval arithmetics with a Taylor
order m = 15, resulting in bounds which are not sign-stable.
The over-approximations in the state space (from Lemma 3
and Theorem 8) using both sets of sensitivity bounds are
computed in 0.25s. From the sign-stability assumption, the
first interval over-approximation is guaranteed to be tight to the
actual reachable set (Corollary 5). On the other hand, the over-
approximation obtained from interval arithmetics is not tight
and has 68 times the volume of the first over-approximation,
making it too loose for practical use. From the computation
times for both the 3-link and 11-link models, we note that the
approach scales well with the state dimension apart from the
main bottleneck in the sampling approach, whose complexity
grows exponentially with n for a gridded sampling.

B. Satellite orbit

Consider the non-linear system describing a satellite orbit-
ing a celestial body from [17]:

ẋ =


x2

− p
x2
1

+ x1x
2
4

x4

− 2x2x4

x1

 , x(0) =


R+ 400

0
0√
p

(R+400)3

 , (15)

where x1 is the distance of the satellite to the center of the
body, x3 its angular position and x2 and x4 their respective
derivatives. The parameter p ∈ R is defined as p = GM ,
where G is the gravitational constant and M the mass of the
body. The initial conditions of (15) are chosen to obtain a
circular orbit at 400km above the body’s surface (radius R).
Assuming uncertain values (around Earth’s known values) for
both the parameter p ∈ [3.9779, 3.9938] · 105 km3/s2 and
the desired orbit radius R + 400 ∈ [6.7718, 6.7845] · 103 km,
we obtain uncertainty bounds denoted as p ∈ P ⊆ R and
x(0) ∈ X0 ∈ I × {0} × {0} × I ⊆ R4.

We want to study the effect of these uncertainties on
the reachable set of (15) at time T = 92 minutes (after
approximately one whole revolution around the Earth). As
expected from Remark 15, the interval arithmetics result from



Lemma 13 is not applicable to (15) since the choice of
T = 5520s requires a minimum Taylor order m(T ) = 88883,
which cannot be computed in reasonable time. We thus rely
on the sampling-based approach from Section V-A by first
evaluating the sensitivity bounds for 100 random samples in
X0 × P , obtained in 68s. A single iteration of falsification is
then run in 5s, meaning that the sampling-based approximation
of the bounds already covered all sensitivity values that
could be found from the optimization problem solved in the
falsification. The obtained sensitivity bounds [sx, sx] ∈ I4×4

and [sp, sp] ∈ I4 do not satisfy the sign-stability condition
in Assumption 2 on 9 of their 20 entries, thus requiring the
application of the generalized result in Theorem 8 to compute
(in 58ms) the over-approximation of the reachable set of
(15) at time T , projected into the polar coordinate system
(x1, x3) in Figure 2 (in blue) along with an estimation of the
actual reachable set (cloud of black dots) obtained from 10000
random samples in X0 × P . Despite the lack of guarantee in
the sampling-based approach (Remark 11), Figure 2 suggests
that the computed interval does indeed over-approximate the
reachable set and is not overly conservative.
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Fig. 2. Reachable set (black) of (15) and its over-approximation
R̄(T ; 0, X0, P ) (blue) projected in the polar plane (x1, x3).

VII. CONCLUSION

This paper provides a new reachability analysis method
based on the sensitivity matrices of a continuous-time system
and applicable to the wide class of systems whose sensitivity
matrices at a given time are bounded over the sets of uncertain
parameters and initial conditions. This assumption is very mild
since it is naturally satisfied by any system with a sufficiently
smooth trajectory function. The computation of an interval
over-approximation of the reachable set using this approach
has favorable scalability, since its complexity is at worst linear
in the state dimension.

Since the system trajectories or sensitivity matrices are
rarely known explicitly, the main challenge of this method lies
in obtaining bounds on the sensitivity. Two such approaches
are considered in this paper. The first approach relies on
interval arithmetics and provides guaranteed sensitivity bounds
but can rarely be applied in practice, as the bounds are often
overly conservative and the computation is infeasible for larger
time steps. The second approach is based on sampling and
falsification and provides more reliable values for the sensi-
tivity bounds although without formal guarantees, which may
present a risk for safety-critical applications. The sampling-
based approach is currently the main computational bottleneck,

since the suggested number of samples to obtain a good first
estimate of the sensitivity bounds (in order to minimize the
number of falsification iterations) grows exponentially with
the state dimension.

Future work will aim to exploit these results for abstraction-
based synthesis (see e.g. [7]), where a control problem on a
differential equation is instead solved on a finite transition sys-
tem abstracting the continuous dynamics. In such approaches,
reachability analysis plays a central role in the creation of
the abstraction and intervals are commonly used for their
implementation benefits (low memory requirement, easy to
check intersection with other intervals).
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