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Abstract— Dynamical flow networks are vital in modeling
many networks, such as transportation networks, distribution
networks, and queuing networks. While the flow dynamics in
such networks follow the conservation of mass on the links, the
outflow from each link is often non-linear due to the actual flow
dynamics, flow capacity constraints, and simultaneous service
constraints. Such non-linear constraints imply a limit on the
magnitude of exogenous inflows that a dynamical flow network
can handle. This paper shows how the Strong integral Input-to-
State Stability (Strong iISS) property allows for quantifying the
effects of the exogenous inflow on the flow dynamics. The Strong
iISS property enables a unified stability analysis of classes
of dynamical flow networks that were only partly analyzable
before, such as multi-commodity flow networks, networks with
cycles, and networks with non-monotone flow dynamics. We
first present sufficient conditions on the maximum magnitude
of exogenous inflow to guarantee input-to-state stability for
a dynamical flow network. We next exemplify the conditions
by applying them to existing dynamical flow network models,
specifically, fluid queuing models and multi-commodity flow
models.

I. INTRODUCTION

Dynamical network flow models have recently become
popular to model physical network flows such as transporta-
tion networks [1], [2], [3] as well as non-physical processing
networks such as queuing systems [4]. One frequent com-
mon component for those networks is a limitation on the
magnitude of exogenous inflow the networks can handle.
The dynamics of such networks is often non-linear, both
due to the physical flow dynamics itself and saturation in
the service rates. Thus, classical techniques such as linear
system analysis are not enough to analyze these systems’
stability properties.

In many of the aforementioned applications, the goal is
to keep link densities or queues bounded. Usually, this is
possible as long as the exogenous inflows stay below a
certain threshold. The Strong Integral Input-to-State property
(Strong iISS), was introduced in [5] to combine integral
input-to-state stability with input-to-state stability for small
inputs, and to determine when the input is small enough
to guarantee the latter. Although those two properties align
naturally with the expected behavior of dynamical flow
networks, to the best of the author’s knowledge, the results
in [5] have not been exploited for studying dynamical flow
networks in a general setting with features such as cycles,
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multi-commodity flows, and non-monotone flow dynamics.
Apart from having the desired property of guaranteeing sta-
bility when the exogenous inflow to the network is lower than
a certain threshold, the Strong iISS property also imposes
that if the exogenous inflow becomes zero at a certain time,
the total mass in the network will also eventually converge to
zero. For many applications, this is an essential property. For
example, in transportation networks, a correct traffic signal
control solution should allow for the vehicles to eventually
leave the network.

Previously, the stability properties of dynamical flow
networks have been analyzed by utilizing monotonicity
properties of the dynamics to construct a contraction ar-
gument [6], [7], extending the state-space and using a
mixed-monotonicity argument together with a uniqueness of
equilibrium argument [8], a contraction argument based on
the Jacobian of the system dynamics [9], utilizing passivity
theory [10] or constructing specific entropy-like Lyapunov
functions [11].

While the properties of the flow networks are well under-
stood when the dynamics is monotone, and in some particular
cases mixed-monotone, it is not trivial how to analyze the
stability of dynamical flow networks that do not have the
monotonicity property. As noticed in [12], when extending
the flow network models to multi-commodity flows, the
monotonicity property is usually lost. Another example when
the system’s monotonicity property is lost is when a feedback
controller can serve more than one queue simultaneously, and
the service is split in proportion to the demand in all queues
that are served simultaneously [13]. This situation is common
in many applications, such as when controlling traffic signals
in a transportation network.

The stability analysis in this paper partly relies on a
special variant of sum-separable Lyapunov functions. Such
Lyapunov functions have previously been combined with
monotonicity properties, e.g., [9], [14]. The Lyapunov func-
tion is also be based on a transformation involving the inverse
of the routing matrix for the network. This transformation has
previously been utilized to obtain monotonicity properties for
tree-like flow networks in [15].

The rest of the paper is organized as follows: The re-
mainder of this section is devoted to introducing some basic
notation that will be used throughout the paper. In Section II,
we present the dynamical flow network model, together
with a few general model assumptions. We also show that
under those mild assumptions, dynamical flow networks
are always integral input-to-state stable. In Section III we
present sufficient conditions on the exogenous inflow for the
dynamical flow networks to be input-to-state stable, along



with conditions when the bound is tight for a local network.
In Section IV, we illustrate how the stability theory can
be applied to existing models for dynamical flow networks,
namely multi commodity flow and dynamical networks with
time-varying exogenous inflows. The paper concludes with
some ideas for future research.

A. Notation

We let R+ denote the non negative reals. For a finite set
A, RA+ denote the set of non-negative vectors indexed by
A. For vectors w, x ∈ Rn+ such that w > 0, we introduce
the weighted `1 norm as ‖x‖w = wTx. The all-one vector
is denoted by 1. A function µ(x) : R+ → R+ is said to
be of class K∞ if it is strictly increasing, µ(0) = 0, and
limx→+∞ µ(x) = +∞. A function β(x, t) : R+ × R+ →
R+ is said be of class KL if β(0, t) = 0 for all t, it is strictly
increasing in x for each fixed t, and it is decreasing in t for
each fixed x and limt→+∞ β(x, t)→ 0.

II. MODEL

We model a dynamical flow network as a capacited
directed graph G = (V, E , c), where V is the set of nodes, E
the set of links or edges, and c ∈ RE+ such that ci > 0 for
all i ∈ E is the maximum outflow capacity of each link. For
simplicity of notation, we will denote the matrix C = diag(c)
and the vector c̄ = (1/ci)i∈E . For an link e = (i, j) ∈ E ,
we let τ(e) denote the tail of the link, i.e., τ(e) = i, and
σ(e) the head of the link, i.e., σ(e) = i. Moreover, we let Ev
denote the subset of incoming links to node v ∈ V , formally
Ev = {i ∈ E | σ(i) = v} ⊂ E .

In the flow network, mass flows along the links E . There-
fore, the network’s state x ∈ X ⊂ RE+ is the vector of
masses on all the links in the network, and X denotes the
state space. To a subset of the links, there is possibly time
varying exogenous inflows, which we denote by λ(t) ∈ RE+.

To model how mass propagates in the network, we in-
troduce the routing matrix R ∈ RE×E+ , where each element
0 ≤ Rij ≤ 1 is the fraction of outflow from link i that
proceeds to link j. By topological constraints from the graph
G, Rij = 0 whenever σ(i) 6= τ(j). The routing matrix is
substochastic, i.e, for each j ∈ E ,

∑
iRji ≤ 1 where the

quantity 1 −
∑
iRji is the fraction of mass that leaves the

network after flowing out from link j. Throughout the paper,
we make the following assumption on the routing matrix,
stating that there is a path from every link to a link where
the flow can leave the network:

Assumption 1: The routing matrix R is outflow connected,
i.e., for every link i ∈ E , there exist a link j ∈ E such that∑
`Rj` < 1 and a path (e1, . . . , el) with e1 = i and el = j

such that Π1≤h<lReh,eh+1
> 0.

Assumption 1 implies that the spectral radius of R is less
than one [16], and hence the matrix (I − RT ) is invertible.
Moreover, the inverse is computed as

(I −RT )−1 =
∑
k≥0

(RT )k = I +RT + (RT )2 + . . . . (1)

The outflow from each link in the network is limited by
a flow function that determines the fraction of the link’s
flow capacity ci that is available at each moment. We let
fi(x) : RE+ → R+ denote this state-dependent outflow
fraction for each link. The outflow depends on the state (i.e.,
mass) of the link itself, but, depending on the application, it
can also depend on the state of neighboring links. We will
throughout the paper, assume the following properties of the
flow functions.

Assumption 2: The flow functions fi(x) for all i ∈ E are
continuous and such that:

i) fi(x) ≤ 1 for all x ∈ X and all i ∈ E and
ii) fi(x) = 0 if and only if xi = 0.

The last part of the assumption ensures that the outflow is
only zero when there is zero mass present on the link. This
property ensures set invariance with respect to the state space
X , and the “only if” direction further ensures that the flow
function is work-conservative. In other words, there will not
be zero outflow if there is mass present on the link. As we
observe later, this property is also needed to ensure that all
the flow will eventually leave the network.

Remark 1: In difference to the related work in e.g., [7],
we do not assume any monotonicity properties of the flow
functions fi(x). �

The dynamics of the flow network follows the conserva-
tion of mass: the change of mass on each link is equal to
sum of the exogenous inflow and upstream outflows minus
the outflow from the link itself. That is,

ẋi = λi(t) +
∑
j∈E

Rjicjfj(x)− cifi(x) , ∀i ∈ E .

The dynamics are also expressed in vector form as

ẋ = λ(t)− (I −RT )Cf(x) (2)

where f(x) denotes the vector consisting of all the flow
functions for the links, i.e., f(x) = (fi(x))i∈E .

We say that the system (2) is stable when the following
two conditions hold, which is a direct consequence of input-
to-state stability [17]:

Definition 1 (Stability): A dynamical flow network with
exogenous inflow λ(t) is stable if there exists a constant
D > 0 such that for all t ≥ 0, ‖x(t)‖ < D. Moreover, if
there exists t′ > 0 such that λ(t) = 0 for all t ≥ t′, then
limt→+∞ x(t) = 0 for the network to be stable.

While the first part of the definition ensures that the state
remains bounded, the second part ensures that when the
exogenous inflow is zero, all the mass in the network will
eventually leave.

We begin by establishing a fundamental but conservative
bound on the state of a dynamical flow network with ex-
ogenous inflow. This bound ensures that the total amount of
mass in the dynamical flow network will always be bounded
by its initial state and the amount of exogenous inflow to the
network and does not require Assumption 2.



Proposition 1: For a dynamical flow network (2), that
satisfies Assumption 1, let a(t) = (I −RT )−1λ(t). Then,

xi(t) ≤
∫ t

0

ai(s)ds+ ξi , ∀i ∈ E ,

where ξ = (I −RT )−1x(0).

Proof Let x̂ = (I −RT )−1x. Then

˙̂x = (I −RT )−1λ(t)− f(x) = a(t)− f(x)

and x̂(0) = (I − RT )−1x(0). Since f(x) ≥ 0 it holds that
˙̂xi ≤ ai(t) for all i ∈ E , and hence

x̂i(t) ≤
∫ t

0

ai(s)ds+ x̂i(0) , ∀i ∈ E . (3)

Observe that x̂(t) ≥ 0 for all t ≥ 0. This since (I−RT )−1 =∑
k≥0(RT )k will have all elements non-negative and both

λ ≥ 0 and x(0) ≥ 0.
By transforming back to x, i.e., x = (I − RT )x̂, it then

for each i ∈ E holds that

xi(t) = x̂i(t)−
∑
j

Rjix̂j(t) ≤ x̂i(t) ≤
∫ t

0

ai(s)ds+ x̂i(0) .

Remark 2: In (3), the term
∫ t

0
ai(s)ds indicates how much

mass can possibly reach link i ∈ E from outside the network,
and the term x̃i indicates how much mass can reach link i
from inside the network. �

The bound in Proposition 1 is very general, since it
accommodates cases when fi(x) = 0 for xi > 0. By
assuming that Assumption 2 holds and exploiting the results
for Strong iISS in [5], we can establish an alternative bound
that is stronger since the dependence of the initial state will
vanish with time.

Proposition 2: For a dynamical flow network (2) that
satisfy Assumption 1 and 2 there exist β ∈ KL and µ1, µ2 ∈
K∞ such that∥∥(I −RT )−1x(t)

∥∥
c̄
≤ β(

∥∥(I −RT )−1x(0)
∥∥
c̄
, t)

+ µ1

(∫ t

0

µ2(
∥∥(I −RT )−1λ(s)

∥∥
c̄
)ds

)
,

for all t ≥ 0.

Proof Introduce the Lyapunov candidate

V (x) = 1TC−1(I −RT )−1x .

Clearly V (x) ≥ 0 since R is assumed to be outflow
connected in Assumption 1, and combined with the expres-
sion (1) it can be seen that all elements of R are non-negative
and strictly positive on the diagonal. Moreover, for the same
reason, V (x) = 0 if and only if x = 0. Hence V (x) is a
proper storage function and its drift is given by

dV

dt
=
∂V

∂x
f(x) = 1TC−1(I−RT )−1(λ−(I−RT )Cf(x))

=
∑
i∈E

ai(t)

ci
−
∑
i∈E

fi(x) .

Let γ(x) = x and W (x) =
∑
i fi(x). Clearly, γ ∈ K∞ and

γ(
∥∥(I −RT )−1λ(t)

∥∥
c̄
) =

∑
i∈E

ai(t)

ci
.

Hence
dV

dt
=
∂V

∂x
f(x) = −W (x) + γ(

∥∥(I −RT )−1x
∥∥
c̄
) .

Moreover, from Assumption 2 it follows that W (x) is
positive definite. Now, applying [5, Theorem 1], gives the
bound.

Note that the previous proposition does not provide any
guarantees that the dynamical flow network will be stable
according to Definition 1. In the next section, we establish
sufficient conditions on the exogenous inflow to ensure
stability.

III. STABILITY ANALYSIS

We start this section by establish a sufficient condition
on the exogenous inflows for the dynamical flow network
to be stable. We then prove that the sufficient condition is
also necessary under an additional requirement on the flow
functions in the special case of a local network.

A. Sufficient Condition for Stability

We begin with this paper’s main result, where we establish
a sufficient condition for stability of dynamical flow networks
by using the strong iISS [5] theory.

Theorem 1: For a dynamical flow network (2) that satisfy
Assumption 1 and 2, let a(t) = (I −RT )−1λ(t). If

ess sup
t≥0

∑
i

ai(t)

ci
< lim inf
‖x‖→+∞

∑
i

fi(x) , (4)

then there exists functions β ∈ KL and µ ∈ K∞ such that
the solution to the dynamical flow (2) satisfies∥∥(I −RT )−1x(t)

∥∥
c̄
≤ β(

∥∥(I −RT )−1x(0)
∥∥
c̄
, t)+

µ

(
ess sup
t≥0

∥∥(I −RT )−1λ(t)
∥∥
c̄

)
.

In particular, the dynamical flow network is stable.

Proof Using the same Lyapunov function as in Proposi-
tion 2, we observe that condition (4) is equivalent to

ess sup
t≥0

∥∥(I −RT )−1λ(t)
∥∥
c̄
< Q ,

where Q = γ−1(W∞) with W∞ = lim inf‖x‖→+∞W (x).
The bound then follows from [5, Theorem 1].

Remark 3: While this paper focuses on bounded flow
functions fi, it is possible to extend the theory to show that
for unbounded flow functions dynamical flow networks are
always stable. In particular, if we let ci = 1, but violate
part (ii) of Assumption 2 by instead requiring the flow
functions to be unbounded such that

lim inf
‖x‖→+∞

fi(x) = +∞ , (5)
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Fig. 1. The two-link network for Example 1.

then a similar proof technique as in Theorem 1 can be used to
show outflow connected dynamical flow networks are always
stable. In the special case when the outflow of each link
only depends on the mass on the link itself, i.e., fi(x) is
a function only of xi, then condition (5) is simplified to
limxi→+∞ fi(xi) = +∞. �

The condition (4) provides only a sufficient condition,
since it does not distinguish on which link in the network the
exogenous inflow enters. Nonetheless, there are examples of
networks for which the condition is tight, as illustrated in the
following example, which also illustrates that the arrival rate
‖a‖1 can be greater than the total exogenous inflow ‖λ‖1,
and hence the need to condition the stability on the former.

Example 1: Consider the two link network depicted in
Fig. 1. Suppose that c1 = 1 and c2 � 1 is large. Let R1,2 =
0.8 and R2,1 = 1. Then a1 = 5λ1 + 5λ2 and a2 = 4λ1 +
5λ2. If the outflow functions are of the form fi(x) = fi(xi)
and lim infxi→+∞ fi(xi) = 1, the sufficient condition (4) of
Theorem 1 then becomes

5λ1 + 5λ2 +
4λ1 + 5λ2

c2
< 1 .

For the state (i.e., mass) to remain bounded, it naturally must
hold that a1 ≤ c1. Hence it is necessary that λ1+λ2 ≤ 1

5 , and
for large c2, the sufficient condition will become arbitrary
close to a necessary condition. �

B. Necessary Condition for Stability of a Local Network

A local network is a dynamical flow network without self-
loops, where all links points towards one node v ∈ V , i.e.,
Ev = E . The dynamics in (2) then simplifies to

ẋi = λi(t)− cifi(x) , ∀i ∈ Ev . (6)

For a local network with constant inflow, there are cases
when then sufficient condition is arbitrarily close to the
necessary condition, i.e., the set of inflows satisfying the
necessary condition for stability is the closure of the set
of flows satisfying the sufficient condition, as the following
corollary shows:

Proposition 3: For a local dynamical flow network (6)
that satisfy Assumption 2, if the exogenous inflows λ are
constant and∑

i∈Ev

fi(x̃) ≤ lim inf
‖x‖→+∞

∑
i∈Ev

fi(x) , ∀x̃ ∈ X ,

then the condition∑
i∈Ev

λi
ci
≤ lim inf
‖x‖→+∞

∑
i∈Ev

fi(x) (7)

is necessary for stability of the local network (6).

v
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Fig. 2. The local network in Example 2. The network consists of three
links, i.e., Ev = {e1, e2, e3}.

Proof Assume that∑
i∈Ev

λi
ci
> lim inf
‖x‖→+∞

∑
i∈Ev

fi(x) .

Now observe that

x(t) = x(0) + λt− C
∫ t

0

f(x(s))ds .

Multiplying both sides by 1TC−1 we get

1TC−1(x(t)− x(0)) =

∫ t

0

(∑
i∈Ev

λi
ci
− fi(x(s))

)
ds ,

where the right hand side goes to infinity as t→ +∞. Since
1TC−1 will be a strictly positive vector and x(t) > 0 for all
t ≥ 0,

∑
i xi(t) → +∞, which shows that condition (7) is

necessary.

Next we show how Proposition 3 can be utilized to
generalize previously known results.

Example 2: Consider the local network in Fig. 2 with the
dynamics (6), where each link holds a queue. The service
of each queue is limited such that only one queue can be
served simultaneously, and there is also an overhead-time
involved when switching the service between the different
queues. The outflow from each queue can then be modeled
as

fi(x) =
xi∑

i∈Ev xi + κ
, ∀i ∈ Ev , (8)

with κ > 0 the over-head time. In [11], it is shown that∑
i∈Ev

λi
ci
≤ 1 . (9)

is a necessary condition for stability for any controller when
only one queue can be served simultaneously and that (9)
with strict inequality is a sufficient condition for stability
when using the outflow controller in (8).

Proposition 3 and Theorem 1 allow us to general-
ize the class of outflow functions for which this con-
dition remains valid. In particular, we require only that
lim inf‖x‖→+∞

∑
i∈Ev fi(x) ≤ 1 for all i, so the the stability

theory is valid for outflow functions like

fi(x) = (1− e−αixi)
xi∑

i xi + κ
, ∀i ∈ Ev ,

with αi > 0. �



IV. EXAMPLES

In this section, we present two different examples where
the theory presented in this paper allows for a more general
stability analysis than what was previously possible for
these models. In the first example, we study a local queu-
ing network with time varying inflows and non-monotone
flow dynamics. In the second example, we study a multi-
commodity dynamical flow network where the network
topology contains cycles.

A. Queuing Networks with Time-Varying Inflows

Consider a local network with three links, Ev =
{e1, e2, e3}, all with unit capacity c1 = c2 = c3 = 1. Let the
outflow function for each link be

fi(x) = (1− e−αixi(sin(xi)+1.5))
xi∑

j∈Ev xj + κ
, ∀i ∈ Ev ,

with α1 = 1, α2 = 2, α3 = 3 and κ = 1. In this flow
function, the first factor is a non-monotonic flow factor, while
the second factor splits the service between the incoming
links, just as in Example 2. Clearly,

lim inf
‖x‖→+∞

∑
i∈Ev

fi(xi) = 1 . (10)

Hence, according to Theorem 1 a sufficient condition for
stability is that

ess sup
t≥0

∑
i∈Ev

λi(t) < 1 .

For example, for inflow functions λ1(t) = 0.4 +
0.15 sin(0.05t), λ2(t) = 0.3 + 0.2 sin(0.05t + 2π/3),
λ3(t) = 0.2 + 0.1 sin(0.05t + 4π/3), it holds that
ess supt≥0

∑
i∈Ev λi(t) = 0.99 and hence the sufficient

condition is satisfied. An example state trajectory is shown
in Fig. 3(a), which also illustrates that the state converges to
zero when the exogenous inflow disappear at time t = 2000.

To illustrate that the condition in Theorem 1 is only
sufficient and not necessary for time varying inflows, we
also consider the case when λ1(t) = 0.4 + 0.3 sin(0.05t),
λ2(t) = 0.3 + 0.2 sin(0.05t), λ3(t) = 0.2 + 0.1 sin(0.05t).
In this case, ess supt≥0

∑
i∈Ev λi(t) = 1.5, but as Fig. 3(b)

shows, the state remains bounded and converges to zero when
the exogenous inflow is set to zero at time t = 2000. In
contrast, recall that, for time-invariant flows, the sufficient
condition (10) becomes a necessary condition when the strict
inequality is replaced with nonstrict inequality as established
in Proposition 3.

B. Multi-Commodity Flows

The theory presented in this paper can easily be extended
to handle multi-commodity flows. Suppose that we have
two commodities, denoted A and B. Let λA, λB ∈ RE+ be
the respective exogenous inflow of these commodities. Each
commodity has its own routing matrix through the network,
which we denote RA and RB . Both RA and RB are assumed
to be outflow connected, i.e., satisfy Assumption 1. The state
space now is the amount of mass of each commodity on
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(a) Sufficient condition satisfied
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(b) Sufficient condition not satisfied
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Fig. 3. The trajectories of the local queuing network in Section IV-A when:
(a) the sufficient condition is satisfied; (b) when the sufficient condition is
not satisfied. At t = 2000 the exogenous inflow is set to zero and just as
expected, we can see exponential convergence to the origin. We can see that
although the condition is not satisfied, the trajectories still stays bounded.
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Fig. 4. The multi-flow network used for the example in Section IV-B.

every link, i.e., the state is (xA, xB) with xA, xB ∈ RE+.
We let x denote the aggregate mass on every link, xi =
xAi + xBi . Under the assumption that the commodities are
perfectly mixed and they move with the same aggregate flow
dynamics, the flow network dynamics become

ẋA = λA − (I − (RA)T )Cdiag
((

xAi
xi

)
i∈E

)
f(x) ,

ẋB = λB − (I − (RB)T )Cdiag
((

xBi
xi

)
i∈E

)
f(x) .

This model has previously been used to study traffic flows
when a fleet of autonomous vehicles share the road with
regular vehicles in [18]. Differently, from the results in that
paper, we allow the network to have cycles.

Now, consider the network in Fig. 4. Let the outflow
function for each link be fi(xi) = 1− e−αixi , with αi = 1
and the outflow capacity for each link be ci = 6. The nonzero
elements of the routing matrices for both commodities are



TABLE I
THE NON-ZERO ELEMENTS IN THE ROUTING MATRICES

Commodity A Commodity B
R1,2 0.6 0.7
R1,5 0.4 0.3
R2,7 0.1 0.3
R2,3 0.3 0.4
R2,4 0.6 0.3
R3,6 1 1
R5,6 1 1
R7,2 0.5 0.3
R7,5 0.5 0.7
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Commodity k = A
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Fig. 5. The trajectories for commodity A and commodity B respectively
in the example in Section IV-B.

given in Table I. Define

aA(t) = (I − (RA)T )−1λA(t) ,

aB(t) = (I − (RB)T )−1λB(t) .

By using the Lyapunov function

V (x) = (I − (RA)T )−1xA + (I − (RB)T )−1xB ,

and the same theory as in the proof of Theorem 1, we obtain
the following sufficient condition for stability of the multi-
commodity dynamics

ess sup
t≥0

∑
i∈E

aAi (t) + aBi (t)

ci
< lim inf
‖x‖→+∞

∑
i∈E

fi(x) . (11)

For this specific example, lim inf‖x‖→+∞
∑
i∈E fi(xi) = 1.

By letting λA1 = 1, λB1 = 0.7 and all other elements of
λA, λB be zero, the sufficient condition in (11) is satisfied.
The trajectory for each commodity is shown in Fig. 5, with
the initial states xAi (0) = 0.3 and xBi (0) = 0.5 for all i ∈ E .

V. CONCLUSIONS

In this paper, we have shown how the Strong integral
Input-to-State Stability (Strong iISS) provides conditions for
the stability of dynamical flow networks. We established
sufficient conditions on the exogenous inflows for dynamical
flow networks to be stable and showed that the condition is
also necessary for local networks under certain assumptions
and for certain types of networks. We also showed how
the conditions can be applied to existing dynamical flow
network models and provided stability assurance in settings
not covered in prior literature.

A future research direction is to explore if the theory of
Strong iISS leads to alternative tighter bounds in certain
settings, e.g., by considering the time-averaged exogenous
inflow or dividing the network into several sub-networks.
The latter will provide a way to overcome the conservatism
that the Strong iISS property needs for its generalizability.
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