Composition of Safety Constraints With Applications to Decentralized Fixed-Wing Collision Avoidance

Eric Squires, Pietro Pierpaoli, Rohit Konda, Samuel Coogan, and Magnus Egerstedt

Abstract—In this paper we discuss how to construct a barrier certificate for a control affine system subject to actuator constraints and motivate this discussion by examining collision avoidance for fixed-wing unmanned aerial vehicles (UAVs). In particular, the theoretical development in this paper is used to create a barrier certificate that ensures that two UAVs will not collide for all future times assuming the vehicles start in a safe starting configuration. We then extend this development by discussing how to ensure that multiple safety constraints are simultaneously satisfied in a decentralized manner (e.g., ensure robot distances are above some threshold for all pairwise combinations of UAVs for all future times) while ensuring output actuator commands are within specified limits. We validate the theoretical developments of this paper in the simulator SCRIMMAGE with a simulation of 20 UAVs that maintain safe distances from each other even though their nominal paths would otherwise cause a collision.

Index Terms—Barrier function, safety, multi-agent systems, fixed-wing unmanned aerial vehicles.

I. INTRODUCTION

A low-cost, unmanned aerial vehicles (UAVs) find civilian uses, the low-altitude airspace is increasingly congested, leading to large-scale UAV operation limitations including concerns for privacy, the environment, national security, and safe-flight validation [1]. A key challenge for safe-flight validation in congested environments is ensuring collision avoidance while enabling vehicles to accomplish their designed missions. Thus, in this paper we propose a decentralized algorithm that minimally alters a vehicle’s nominal control signal (designed, for example, to deliver goods or for crop monitoring) while still ensuring safe operations.

A variety of approaches to fixed-wing collision avoidance have been proposed. Partially observable Markov decision processes are used in [2, 3] to achieve safe flight distances. The dynamic window approach, originally introduced in [4] for static obstacles and adapted to moving obstacles in [5], uses circular arcs for trajectories and limits the set of allowable velocities to enable a quick optimization of the control input. In [6], the authors develop a first-order look-ahead algorithm that can be applied to vehicles with unicycle dynamics in a decentralized way while guaranteeing that collisions amongst k vehicles are avoided. Potential functions [7, 8] have also been applied to fixed-wing collision avoidance, where it can be shown that vehicles can safely avoid each other even when their sensing range is limited. Similarly, [9] discusses how to combine potential functions with trajectory goals into a navigation function in order to provide criteria under which collision avoidance can be guaranteed. Navigation functions have also been combined with Model Predictive Control (MPC) by making inter-agent distance requirements implicit in the cost function [10]. MPC has additionally been applied to UAV collision avoidance for vehicles with limited sensing [11] and communication constraints [12]. While MPC provides a flexible framework for distributed collision avoidance, its limited horizon can make safety guarantees difficult. In a more general case, the optimal control formulation in [13] allows for collision avoidance guarantees, but it is computationally intensive as it requires numerically solving the Hamilton-Jacobi-Bellman equations over an infinite horizon.

A central idea of this paper is how to leverage evasive maneuvers to guarantee safe operations. Trajectory generation was analyzed in [14] where a nonlinear program is developed to find a safe reference trajectory constructed from polynomials. In [15] and [16], the authors discuss trajectory generation using a RRT with dynamics constraints provided by dubins paths and a waypoint generation algorithm, respectively. Similar to evasive maneuvers, traffic rules [17] are a method for encoding hybrid behaviors that can include collision avoidance trajectories. In [17], the authors show that a two vehicle system with limited sensing range can avoid collisions while reaching position goals. While in general this may result in conservative behaviors, they demonstrate in simulation that the decentralized algorithm continues to allow vehicles to reach their target configuration while avoiding collisions for as many as 70 vehicles.

Motivated by the importance of formal guarantees of collision avoidance that are computationally feasible and minimally
invasive we discuss in this paper how to apply barrier certificates (e.g., [19], [20]) to the UAV collision avoidance problem, where the system is subject to actuator constraints, nonlinear dynamics, and nonlinear safety constraints. Barrier certificates provide guarantees that a system will stay safe (i.e., vehicles will maintain safe distances from each other) for all future times. Further, under some assumptions detailed in Section II, barrier certificates can be formulated as a Quadratic Program (QP) for fast online computation of safe control inputs [20]. Given such safety guarantees, barrier certificates have been applied to a set of problems including collision avoidance for autonomous agents ([21], [22]), bipedal robots ([23], [24]), adaptive cruise control and lane following ([25], [20], [26], [27]), and in mobile communication networks [28].

However, barrier certificates rely on being able to find a function for safety set invariance to be guaranteed. For systems like a fixed wing UAV with actuator constraints, nonlinear dynamics, and nonlinear safety constraints, generating such a function can be difficult. In this respect they are similar to Lyapunov functions. They provide guarantees when a system designer can find appropriate functions but they may be difficult to construct.

Nevertheless, there are a variety of approaches to finding a barrier certificate given a system and safety constraints. One approach discussed for instance in ([25], [29], [19], [30]), uses a sum of squares decomposition [31]. In this approach an initially conservative estimate for a barrier certificate is found and the associated safe set is iteratively enlarged. Iterative approaches have also been developed when the system has relative degree greater than one. The conditions for calculating a safe control input for higher order systems are given in [32]. In [24], a backstepping approach is developed that ensures a control barrier certificate can be constructed and a similar approach is discussed in [33]. In both cases, the barrier function construction requires that the control input is not subject to actuator constraints.

System-specific arguments have also been applied to the development of a barrier certificate. For instance, geometric insights are exploited in [23], where the authors develop a barrier function for precise foot placement by ensuring that foot is within the intersection of two circles. Similarly, in [21], [22], the authors develop a barrier function that ensures a circle and ellipsoid, respectively, around each robot will not overlap in order to ensure there will be no collisions for double integrator and quadrotor robots, respectively. Barrier certificates have also been developed for unicycle dynamics in [27], where the dynamics are simplified by considering a point slightly in front of the vehicle.

This paper is organized as follows. Section II discusses background information for barrier certificates. Section III discusses a general method for constructing a barrier certificate and shows how to apply it to fixed wing collision avoidance. Section IV generalizes the results of Section III by showing how to satisfy multiple constraints simultaneously. Section V relaxes the amount of information required to share between vehicles while still guaranteeing safety. Section VI presents a simulation verification of the approach. Section VII concludes.

II. BARRIER CERTIFICATES BACKGROUND

We summarize the necessary background for barrier certificates here. See [20] for a more complete discussion. Consider a control affine system

\[\dot{x} = f(x) + g(x)u \]

where \(f \) and \(g \) are locally Lipschitz, \(x \in \mathbb{R}^n \), \(u \in U \subseteq \mathbb{R}^m \), and solutions are forward complete, meaning the system has a unique solution for all time greater than or equal to 0 given a starting condition \(x(0) \).

To use this formulation for a set of vehicles, suppose there are \(k \) vehicles with state \(x_i \) and dynamics \(\dot{x}_i = f_i(x_i) + g_i(x_i)u_i \) where \(x_i \in \mathbb{R}^{n_i}, u_i \in U_i \subseteq \mathbb{R}^{m_i} \) and \(i \in \{1, \ldots, k\} \). The overall state is \(x = [x_1^T \ x_2^T \ \cdots \ x_k^T]^T \in \mathbb{R}^n \) where \(n = \sum_{i=1}^{k} n_i \) and \(u = [u_1^T \ u_2^T \ \cdots \ u_k^T]^T \in U_1 \times U_2 \times \cdots \times U_k \).
In this paper, we model the individual vehicles with state $x_i = [p_{i,x} \ p_{i,y} \ \theta_i]^T$ and control $u_i = [v_i \ \omega_i]^T$ with dynamics

$$\dot{x}_i = \begin{bmatrix} \cos(\theta_i) & 0 & v_i \\ \sin(\theta_i) & 0 & \omega_i \end{bmatrix}, \quad \text{for} \ i = 1, \ldots, k.$$

[20] Given a set $C_h \subseteq \mathbb{R}^n$ defined in (3) for a continuously differentiable function $h : \mathbb{R}^n \rightarrow \mathbb{R}$, the function h is called a zeroing control barrier function (ZCBF) defined on a set D with $C_h \subseteq D \subseteq \mathbb{R}^n$, if there exists a Lipschitz continuous extended class K function α such that

$$\sup_{u \in U} [L_f h(x) + L_g h(x) u + \alpha(h(x))] \geq 0, \quad \forall x \in D. \quad (4)$$

In the above definition $L_f h$ and $L_g h$ denote the Lie derivatives. The admissible control space is defined as

$$K_h = \{ u \in U : L_f h(x) + L_g h(x) u + \alpha(h(x)) \geq 0 \}. \quad (5)$$

Theorem 1. [20] Given a set $C_h \subseteq \mathbb{R}^n$ defined in (3) for a continuously differentiable function h, if h is a ZCBF on D, then any Lipschitz continuous controller $u : D \rightarrow U$ such that $u(x) \in K_h(x)$ will render the set C_h forward invariant.

In [20], it is also shown how to calculate $u(x) \in K_h(x)$ using a Quadratic Program (QP) to support fast, online calculations. In particular, assume there is some nominal \hat{u} available that is designed to achieve some performance goal (e.g., path-following) that has not necessarily been designed to satisfy safety constraints. Additionally, we assume U can be expressed as the set of all u satisfying the linear inequality $Au \geq b$. The safe control input can then be calculated using a QP as follows

$$\begin{align*}
 u^* &= \min_{u \in \mathbb{R}^m} \frac{1}{2} \|u - \hat{u}\|^2 \\
 \text{s.t.} \quad L_f h(x) + L_g h(x) u + \alpha(h(x)) &\geq 0 \\
 Au &\geq b.
\end{align*} \quad (6a)$$

Note that by property (4), when h is a ZCBF, (6) is guaranteed to be feasible when $x \in D$.

III. BARRIER CERTIFICATE CONSTRUCTION

A. Motivating Example

In this section we discuss some difficulties with applying barrier certificates to the fixed-wing collision avoidance problem via a concrete example. Consider a candidate ZCBF, h, that encodes a collision avoidance safety constraint

$$h(x(t)) = d_{1,2}(x) - D^2,$$

where $d_{1,2}(x) = (p_{1,x}(t) - p_{2,x}(t))^2 + (p_{1,y}(t) - p_{2,y}(t))^2$ is the squared distance between vehicles 1 and 2 and D_s is a minimum safety distance.

One common approach for systems with relative degree equal to one is to use the safety constraint directly as a ZCBF. However, when actuator constraints are present, the safety constraint may fail to be a valid ZCBF. To show why h defined in (7) is not a ZCBF, we present an example where $x \in C_h$ but h does not satisfy (4). Let $x_1 = [-D_s/2 \ 0 \ 0]^T$ and $x_2 = [D_s/2 \ 0 \ \pi]^T$ so that $x = [x_1^T \ x_2^T]^T \in C_h$ because $h(x) = 0$. Further,

$$\sup_{u \in U} [L_f h(x) + L_g h(x) u + \alpha(h(x))]
= \sup_{u \in U} [2(p_{1,x}(t) - p_{2,x}(t))(v_1 \cos \theta_1(t) - v_2 \cos \theta_2(t))
+ 2(p_{1,y}(t) - p_{2,y}(t))(v_1 \sin \theta_1(t) - v_2 \sin \theta_2(t))]
= \sup_{u \in U} [-2D_s(v_1 + v_2)]
= -4D_s v_{min}.$$

Since $v_{min} > 0$ and $D_s > 0$, $\sup_{u \in U} [L_f h(x) + L_g h(x) u + \alpha(h(x))] < 0$ so h is not a ZCBF. The problem with this candidate ZCBF is that it does not account for the fact that by the time the vehicles are close to colliding, it may be too late to avoid each other due to the limited turning radius and positive minimum velocity.

B. Constructing a Barrier Certificate via Evading Maneuvers

In order to overcome the difficulties demonstrated in the example of Section III-A, we introduce a method to construct a ZCBF from a safety constraint. Let $\rho : D \rightarrow \mathbb{R}$ be a safety function that represents the safety objective we want to satisfy at all times so that $\rho(x) \geq 0$ indicates that the system is safe. In the example from Section III-A for vehicles i and j,

$$\rho(x(t)) = d_{i,j}(x) - D^2.$$

Second, let $\gamma : D \rightarrow U$ be a nominal evading maneuver. Section III-C discusses specific examples of γ for the UAV collision avoidance problem. For now, assuming γ has been selected, let

$$h(x(t); \rho, \gamma) = \inf_{\tau \in [0, \infty]} \rho(\hat{x}(t + \tau)), \quad (9)$$

be a candidate ZCBF where \hat{x} and $\hat{\dot{x}}$ are given by

$$\hat{x}(t + \tau) = x(t) + \int_0^\tau \hat{\dot{x}}(t + \eta)d\eta,$$

$$\dot{h}(t + \tau) = f(\hat{x}(t + \tau)) + g(\hat{x}(t + \tau))\gamma(\hat{x}(t + \tau)).$$
This choice of a candidate ZCBF h is motivated by the fact that in (9), h measures how close the state will get to the boundary of the safe set assuming γ is used as the control input for all future time. We first establish sufficient conditions under which h is differentiable. To do this, we assume that h has a unique x minimizer. In other words, there is a unique $x_{\min} \in \mathcal{D}$ such that $h(x) = \rho(x)\min$ where $x_{\min} = \dot{x}(t + \tau)$ for at least one $\tau \geq 0$. See the appendix for the proof.

Theorem 2. Assume h is defined in (9) and is constructed from $\rho : \mathcal{D} \rightarrow \mathbb{R}$ and $\gamma : \mathcal{D} \rightarrow \mathcal{U}$ Let h have a unique x minimizer for all $x \in \mathcal{D}$, ρ be continuously differentiable, and γ be such that $f(x) + g(x)\gamma(x)$ is continuously differentiable. Then h is continuously differentiable.

Remark 1. For cases where the candidate ZCBF h has multiple x minima at $x_{\min,1}, \ldots, x_{\min, l}$ for some integer $l > 1$, the derivative will not necessarily be smooth. See [34] for handling this case.

In Section III-A we saw that we could not use the Euclidean distance for a ZCBF because when a candidate ZCBF h is defined as in (7), K_h could be empty even though h was non-negative. In other words, h could be non-negative but there was no control input available to keep the system safe. With h defined in (9), this problem is alleviated.

Theorem 3. Assume h in (9) is continuously differentiable and γ is locally Lipschitz. Then h is a ZCBF on C_h. In addition, $L_h h(x)$ is non-zero for some $x \in \partial C_h$ and maps to values in the interior of U, then h is a ZCBF on a set \mathcal{D} where $C_h \subset \mathcal{D}$.

Proof. We start by assuming $x \in C_h$ and show that h satisfies (4). Because $x \in C_h$, $h(x) \geq 0$ so $h(x) \min > 0$. Further, note that $L_h h(x) + L_{\gamma} h(x)\gamma(x)$ is the derivative along the trajectory of \dot{x}. In other words,

$$L_h h(x(t)) + L_{\gamma} h(x(t)) \gamma(x(t)) = \lim_{\alpha \rightarrow 0^+} \frac{1}{\alpha} \left(\inf_{\tau \in [a, \infty)} \rho(\dot{x}(t + \tau)) - \rho(\dot{x}(t + \tau)) \right).$$

Consider the term inside the parenthesis in (12), namely

$$\inf_{\tau \in [0, \infty)} \rho(\dot{x}(t + \tau)) - \inf_{\tau \in [0, \infty)} \rho(\dot{x}(t + \tau))$$

and notice that it is the subtraction of an infimum of the same function ρ evaluated on two different intervals. Further, note that the first interval is a subset of the second interval since α approaches 0 from above. Thus, the term inside the parenthesis on the right hand side of (12) is non-negative so $L_h h(x) + L_{\gamma} h(x)\gamma(x) \geq 0$. We can then conclude that $L_h h(x) + L_{\gamma} h(x)\gamma(x) \min > 0$ so $\gamma(x) \in K_h(x)$.

Now assume that $L_h h(x)$ is non-zero for some $x \in \partial C_h$ and γ maps to values in the interior of U. We will show that there is a set \mathcal{D} that is a strict superset of C_h for which (4) holds. Let $x \in \partial C_h$ be such that $L_h h(x)$ is non-zero and $B(x, \delta)$ be a ball of radius $\delta > 0$ such that for all $z \in B(x, \delta) \setminus C_h$, $L_h h(z)$ is non-zero. Such a ball exists such that $B(x, \delta) \setminus C_h$ is nonempty because $L_h h(x)$ is continuous. Let $d(z)$ be a non-zero vector such that $d(z) + \gamma(x) \in U$ where $d(z)$ is a non-zero vector in the direction of $L_h h(z)$. Note that such a vector exists because γ maps to the interior of U. Also note that $L_h h(z)d(z) \min > 0$.

Further restrict δ so that $L_h h(z)\gamma(d(z) + \alpha h(z)) \min > 0$ for all $z \in B(x, \delta) \setminus C_h$. Note that for similar reasons discussed earlier in the proof, $L_h h(z) + L_h h(z)\gamma(z) \min > 0$. Then

$$L_h h(z) + L_h h(z)\gamma(z) + d + \alpha h(z)) \min \geq L_h h(z) + d + \alpha h(z) \min \geq 0.$$

Remark 2. In Definition (4) there must exist a class K function α satisfying $\sup_{u \in \mathcal{U}} |L_h h(x) + L_h h(x) + \alpha h(x)| \min > 0$ which implies that an α must also be found to specify a valid ZCBF. The above result holds for all α, resolving this ambiguity.

Remark 3. The intuitive reason why h is a ZCBF is that whenever $h(x)$ is non-negative, we have by definition a control input γ available to keep the system safe. A geometric view is presented in Figure 1. Note that γ is not the output of the Quadratic Program (6). Instead, the role of γ is to allow h to be evaluated via (9).

C. Deriving a Barrier Certificate for UAV Collision Avoidance

We now consider how to calculate h defined in (9) for the UAV collision avoidance problem. From Theorem 3 the only restriction on γ and ρ is that γ is locally Lipschitz and that h is continuously differentiable so there is some flexibility in choosing γ and ρ. In this section we discuss two cases where we can choose γ and ρ so that h can be calculated in closed form. Let the initial state for vehicle i ($i = 1, 2$) be given by $[p_{i,x_0}, p_{i,y_0}, \theta_{i,0}]^T$.

Example 1. In the first case, let

$$\rho(x) = d_{1,2}(x) - \delta + \delta \cos(\theta_1) - D_s^2,$$

(13)
where $\delta > 0$ is introduced to (8) so that h will be continuously differentiable. Let

$$\gamma_{\text{turn}} = [\sigma v \omega v \omega]^T$$

with $\sigma \neq 0$, $\omega \neq 0$. In other words, γ_{turn} is defined by the same turn rate for both vehicles but possibly different translational velocities. Letting $b_{1,0} = p_{1,x_0} - \frac{\pi}{2} \sin(\theta_{1,0})$, $b_{2,0} = p_{2,x_0} - \frac{\pi}{2} \sin(\theta_{2,0})$, $c_{1,0} = p_{1,y_0} + \frac{\pi}{2} \cos(\theta_{1,0})$, $c_{2,0} = p_{2,y_0} + \frac{\pi}{2} \cos(\theta_{2,0})$, $\Delta b_0 = b_{1,0} - b_{2,0}$, and $\Delta c_0 = c_{1,0} - c_{2,0}$,

$$h(x) = \inf_{\tau \in [0, \infty)} \left(\Delta b_0 + \frac{\sigma}{\omega} v \sin(\omega \tau + \theta_{1,0}) - \frac{v}{\omega} \sin(\omega \tau + \theta_{2,0}) \right)^2 + \left(\Delta c_0 - \frac{\sigma}{\omega} \cos(\omega \tau + \theta_{1,0}) + \frac{v}{\omega} \cos(\omega \tau + \theta_{2,0}) \right)^2 - \delta - \delta \cos(\omega \tau + \theta_{1,0}) - D_s^2.
\]

By expanding the square terms and applying two trigonometric identities, we get

$$h(x) = \inf_{\tau \in [0, \infty)} \left(A_1 + A_2 \cos(\omega \tau + \Theta) - D_s \right),$$

where A_1 results from grouping constant terms, while A_2 and Θ are the amplitude and phase resulting from the phasor addition. Then in this case $h(x) = A_1 - A_2 - D_s^2$. Note that for the case where $\rho(x) = \sqrt{d_{1,2}(x)} - \delta + \delta \cos(\theta_1) - D_s$, the same reasoning yields $h(x) = \sqrt{A_1 - A_2 - D_s}$ for ρ defined in (15). Note that $A_1 - A_2 \geq 0$ provided that the vehicles do not get more than 2δ from each other along the trajectory defined by (10) using γ_{turn} in (14).

Example 2. For a second case where we can solve (9) in closed form, let ρ be given in (9) and

$$\gamma_{\text{straight}} = [v_1 v_2 0]^T,$$

where $v_1 \neq v_2$. In other words, γ_{straight} uses a 0 turn rate while allowing the vehicles to have different speeds. In this case we have

$$h(x) = \inf_{\tau \in [0, \infty)} \left(p_{a,x_0} + t v_1 \cos(\theta_{a,0}) - p_{b,x_0} - t v_2 \cos(\theta_{b,0}) \right)^2 + \left(p_{a,y_0} + t v_1 \sin(\theta_{a,0}) - p_{b,y_0} - t v_2 \sin(\theta_{b,0}) \right)^2 - D_s^2,$$

which is quadratic in t so the minimum can be calculated in closed form.

1The identities are $\sin^2(\alpha) + \cos^2(\alpha) = 1$ and $\cos(\alpha - \beta) = \cos(\alpha) \cos(\beta) + \sin(\alpha) \sin(\beta)$.

D. Simulation of Two Vehicles

We demonstrate the theoretical development of this section in simulation using SCRIMMAGE [36]. SCRIMMAGE is a multi-agent simulator designed to scale to high numbers of vehicles and includes a plugin-interface that makes it easy to experiment with different motion models and controllers without having to change code. This makes it simple to swap out nominal controllers and vary the fidelity of fixed-wing UAVs from the unicycle dynamics in (2) used in this section up to a 6-DOF model.

For the simulation, let k vehicles be positioned in a circle of radius 200 around the origin, where $k = 2$ in this simulation. In other words, vehicle i has initial state $x_i = [200 \cos(i \frac{\pi}{2} + \pi) 200 \sin(i \frac{\pi}{2} + \pi) i \frac{\pi}{2} + \psi]^T$, where ψ is an additional offset so that vehicles are not necessarily starting with orientation pointing at the origin. The goal position for vehicle i is on the other side of the origin: $x_{i,g} = [200 \cos(i \frac{\pi}{2}) 200 \sin(i \frac{\pi}{2} + \pi)]^T$.

This setup is selected so that the vehicles are on a collision course. The nominal controller is that described in [37] with constant $\Lambda = 1$. Additionally, we let $v_{\text{min}} = 15$ meters/second, $v_{\text{max}} = 25$ meters/second, $v_{\text{max}} = 13$ degrees/second, $D_s = 5$ meters, and $\delta = 0.01$ meters2. ω_{max} is chosen to be consistent with a constant rate turn with a 30 degree bank with a speed of v_{max}. Each vehicle evaluates (6) at each timestep where we use OSCP [39] to evaluate the GP. We investigate the performance of the vehicles when h defined in (9) is constructed from γ_{turn} in (14) and γ_{straight} in (17), respectively, where $\gamma_{\text{turn}} = [1.1 v \omega v \omega]^T$, $\gamma_{\text{straight}} = [1.1 v 0 v 0]^T$, and $v = 0.9 v_{\text{min}} + 0.1 v_{\text{max}}$ and $\omega = 0.9 \omega_{\text{max}}$. For the scenario with γ_{turn}, we let $\psi = 0$ so that the vehicles start with orientation pointing at the origin. For the scenario with γ_{straight}, we let $\psi = 2^\circ$ because if the vehicles pointed at the origin they would not start in the safe set. Additionally, for the γ_{turn} case we use ρ in (15). Similarly, for the γ_{straight} case we use $\rho(x) = \sqrt{d_{1,2}(x)} - D_s$. Details of the distance between the vehicles and control signals are shown in Figure 2. Note that the resulting trajectory can be different depending on which γ is used as shown in Figure 2. Nevertheless, in both cases the vehicles are able to maintain safe distances from each other and satisfy actuator constraints throughout the simulation regardless of which γ is used to construct a h.

IV. COMPOSITION OF MULTIPLE SAFETY CONSTRAINTS

A. Motivating Example

Although the constructive method introduced in (9) can produce a barrier certificate in the presence of actuator constraints that ensures two vehicles do not collide, the formulation does not extend immediately to collision avoidance for systems with more than two vehicles. To see this, we present a specific example where three UAVs with a collision avoidance safety objective cannot use the results from Section III-B to ensure safety. A plot of this scenario is shown in Figure 3. We index the vehicles by $i = 1, 2, 3$. To ensure collision-free trajectories,
In other words, \(\gamma^1 \) encodes an evasive maneuver where all the vehicles turn right while \(\gamma^2 \) and \(\gamma^3 \) encode a maneuver where all the vehicles turn left. We note that \(h^j \) (\(j = 1, \ldots, 3 \)) defined in (9) and constructed from \(\rho^j \) and \(\gamma^j \) are ZCBFs. In this example we let \(v_{\text{min}} = 1, v_{\text{max}} = 2, \omega_{\text{max}} = 1, \) and \(D_s = 0.5 \) so that the vehicles follow a circular trajectory with radius \(r = 1 \) when applying \(v_{\text{min}} \) and \(\omega_{\text{max}} \). Assume now that the vehicles have the following initial states

\[
\begin{align*}
 x_1 &= [0 \ 0 \ 0]^T, \\
 x_2 &= [(2r + D_s) \sin \psi \ (2r + D_s) \cos \psi - 2r \ \pi]^T, \\
 x_3 &= [(2r + D_s) \sin \psi \ 2r - (2r + D_s) \cos \psi \ \pi]^T,
\end{align*}
\]

where \(\psi = \arccos\left(\frac{D_r}{2r+D_s}\right) \). Then \(h^1(x) = h^2(x) = h^3(x) = 0 \) and the barrier constraints in (4) for \(h^1(x) \) and \(h^2(x) \) become

\[
\begin{align*}
 -0.4(v_1 + \omega_1 + v_2 + \omega_2) &\geq 0, \\
 0.4(-v_1 + \omega_1 - v_3 - \omega_3) &\geq 0.
\end{align*}
\]

Although \(h^1 \) and \(h^2 \) are ZCBFs, these two constraints cannot be simultaneously satisfied for \(v_i \in [v_{\text{min}}, v_{\text{max}}] \) and \(|\omega_i| \leq \omega_{\text{max}} \). In particular, after substituting the minimum velocity \(v_1 = v_2 = 1 \), the first equation dictates that \(\omega_1 + \omega_2 \leq -2 \) (i.e., vehicles 1 and 2 must turn right). Similarly, the second equation dictates that vehicle 1 and 3 must turn left. The problem with this scenario is that vehicle 1 cannot simultaneously execute both nominal evading maneuvers (i.e., turn both left and right at the same time). To solve this problem, we will make sure that the evasive maneuver applied by a vehicle is the same for every barrier certificate. A geometric view of the general problem and its solution are shown in Figure 4.

B. Problem Statement For Satisfying Multiple Objectives

In order to solve the issues arising when vehicles have to simultaneously respect multiple constraints, we now extend the use of the constructive technique introduced in (9). Suppose there are \(q \) constraints \(\rho^j : \mathbb{R} \rightarrow \mathbb{R} \) that must be greater than or equal to 0 at all times. For the \(k \) agents with pairwise constraints \(q = k(k-1)/2 \). We assume that for each constraint \(j = 1, \ldots, q \), a locally Lipschitz nominal evading maneuver \(\gamma^j \) has been selected using the framework in (9). An example for fixed-wing UAVs with collision avoidance safety constraints is given in (14). We assume \(h^j \) is constructed according to (9) and is continuously differentiable so that \(h^j \) is a ZCBF for \(j = 1, \ldots, q \). Denote the overall safe set and overall admissible control space as

\[
\begin{align*}
 C_\gamma &= C_{h^1} \cap \cdots \cap C_{h_q}, \\
 K_\gamma(x) &= \{ u \in U : u \in K_{h^1}(x) \cap K_{h^2}(x) \cap \cdots \cap K_{h_q}(x) \}.
\end{align*}
\]

Lemma 1. Suppose \(h^j \) is a ZCBF for \(j = 1, \ldots, q \). Then any Lipschitz continuous controller \(u : C_h \rightarrow U \) such that \(u(x) \in K_\gamma(x) \) will render the set \(C_\gamma \) forward invariant.

Proof. Suppose \(x \in C_\gamma \). Then \(x \in C_{h^j} \) for \(j = 1, \ldots, q \). Because \(u \in K_\gamma \), \(u \in K_{h^j} \) for \(j = 1, \ldots, q \), so it follows from Theorem 1 that \(C_{h^j} \) is forward invariant. In other words, if \(x(0) \in C_\gamma \) then \(x(t) \in C_{h^j} \) for all \(t \geq 0 \) for \(j = 1, \ldots, q \).
resolved by the shared evading maneuver because the case corresponds to the specific scenario for the three vehicle collision avoidance problem in Fig. 3c. In (c), the problem is forward invariant.

Therefore if \(x(0) \in C_{\gamma} \) then \(x(t) \in C_{\gamma} \) for all \(t \geq 0 \) so \(C_{\gamma} \) is forward invariant.

C. The Shared Nominal Evading Maneuver Assumption

Section IV-A showed an example where \(K_{\gamma} \) could be empty for some \(x \in C_{\gamma} \). As a result, the assumptions of Lemma 1 could not be satisfied. In order to address the issue discussed in Section IV-A we introduce an additional constraint on \(\gamma^j \) \((j = 1, \ldots, q)\) that all \(h^j \) are constructed from the same nominal evading maneuver.

Definition 2. Suppose every \(h^j \) \((j = 1, \ldots, q)\) is defined as in (9) and is constructed from \(\gamma^j \), respectively. The shared evading maneuver assumption holds if \(\gamma^1(x) = \cdots = \gamma^q(x) \) for all \(x \in D \). The shared evading maneuver is denoted \(\gamma^\ast \) so that \(\gamma^\ast(x) = \gamma^1(x) = \cdots = \gamma^q(x) \) for all \(x \in D \).

Remark 4. This assumption requires that each \(h^j \) \((j = 1, \ldots, q)\) be constructed from the same nominal evading maneuver. Note, however, that this does not imply that each \(h^j \) must be constructed from the same safety function \(\rho^\ast \).

The example in Section IV-A does not satisfy the shared evading maneuver assumption because \(\gamma^1(x) \) and \(\gamma^2(x) \) defined in (17) are not the same. To enforce that the shared evasive maneuver assumption holds, one option is to change \(\gamma^1 \) so that

\[
\gamma^1(x) = [1\ 1\ 1\ 1\ 1\ 1]^T .
\]

In other words, using \(\gamma^1 \) defined in (20) and \(\gamma^2 \) and \(\gamma^3 \) in (16b) implies an evasive maneuver where all vehicles turn left for each constraint. Another example where the shared nominal
In this case, \(\gamma^*(x) \) encodes an evasive maneuver where vehicle 1 turns left with a linear velocity of 1, vehicle 2 stays straight with a linear velocity of 1.5, and vehicle 3 turns right with a linear velocity of 2. These three nominal evading maneuvers satisfy the shared evasive maneuver assumption because for all \(x \in \mathcal{D} \), \(\gamma_1(x) = \gamma_2(x) = \gamma_3(x) \).

To see the purpose of the shared evading maneuver assumption, we first examine the case of a single constraint. In particular, let \(h \) be defined in (9) and consider the role of \(\gamma \) in establishing that \(h \) is a ZCBF. From Definition 1 for \(h \) to be used for a barrier certificate, \(K_h(x) \) must be nonempty for all \(x \in \mathcal{D}_h \). With \(h \) defined as in (9), this property is satisfied by \(\gamma(x) \) for all \(x \in C_h \) (see Theorem 3). The analogue condition for multiple constraints is that \(K_h(x) \) is non-empty for all \(x \in C_h \). If each \(h^j \) defined in (9) is a ZCBF and is constructed from \(\gamma^j \) then by similar reasoning to Theorem 3 \(\gamma^j(x) \in K_h^j(x) \) for all \(x \in C_h \). If \(\gamma^j(x) = \cdots = \gamma^j(x) \) for all \(x \in C_h \) then we can additionally conclude that \(K_h^j(x) \) is non-empty for all \(x \in C_h \).

D. Calculating a Safe Control Law

With the shared evading maneuver assumption, we calculate \(u \in K_h^\gamma \) so that \(u \) is Lipschitz continuous. To do so, we write the QP in (6) with \(q \) constraints and let \(\hat{u} = [\hat{u}_1^T \quad \cdots \quad \hat{u}_q^T]^T \) where \(\hat{u}_i \) is the nominal input of vehicle \(i \) for \(i = 1, \ldots, k \). To emphasize that all \(h^j \) are constructed from \(\gamma^j \), we write \(h^j(x; \rho^j, \gamma^j) \) for each \(j = 1, \ldots, q \).

\[
\min_{u \in \mathbb{R}^n} \frac{1}{2} \|u - \hat{u}\|^2 \quad \text{s.t.} \quad Au \geq b.
\]

\[
L_fh^j(x; \rho^j, \gamma^j) + L_gh^j(x; \rho^j, \gamma^j)u + \alpha(h^j(x; \rho^j, \gamma^j)) \geq 0 \quad j \in \{1, \ldots, q\}
\]

Theorem 4. Suppose \(C_h^\gamma \) is defined as in (19) where \(h^j \) \((j = 1, \ldots, q) \) defined in (9) is continuously differentiable and the shared evading maneuver assumption holds. In addition, suppose that \(h^j \) has a Lipschitz continuous derivative for \(j = 1, \ldots, q \), \(\hat{u} \) and \(\gamma^j \) are Lipschitz continuous, \(\gamma^j \) maps to the interior of \(U \), and that \(x \) is in the interior of \(C_h \). Then \(u^* \) in (21) is Lipschitz continuous and \(C_h^\gamma \) is forward invariant.

Proof. Under these assumptions \(\gamma^j \) is strictly feasible so \(u^* \) is Lipschitz continuous as an application of Theorem 1 of [40]. \(C_h^\gamma \) is then forward invariant by Lemma 1. \(\square \)

Theorem 4 gives conditions for ensuring that for all \(x \in C_h \), a Lipschitz continuous \(u \in K_h^\gamma(x) \) can be calculated, thus resolving the issue presented in Section IV-A. A geometric view of the problem and resolution is shown in Figure 4.
Proof. Consider the first statement, namely that $\gamma^* \in \mathcal{K}(x)$. For $j = 1, \ldots, q$, consider any $i \in \zeta^j$ and let $u_i = \gamma^*_{i}$. Then
\[
\begin{align*}
L_j h^j(x; \rho^j, \gamma^*) + [L_g h^j(x; \rho^j, \gamma^*)]u_i + \alpha(h^j(x; \rho^j, \gamma^*)) \\
- \frac{|\zeta^j| - 1}{|\zeta^j|} \left(L_j h^j(x; \rho^j, \gamma^*) + L_g h^j(x; \rho^j, \gamma^*) \gamma^*(x) \right) \\
+ \alpha(h^j(x; \rho^j, \gamma^*)) \\
= \frac{1}{|\zeta^j|} (L_j h^j(x) + L_g h^j(x) \gamma^*(x) + \alpha(h^j(x))) \geq 0.
\end{align*}
\]

The inequality is true because $x \in C_0$ implies $\alpha(h^j(x; \rho^j, \gamma^*)) \geq 0$. See the proof for Theorem 5 for why $L_j h^j(x; \rho^j, \gamma^*) + L_g h^j(x; \rho^j, \gamma^*) \gamma^*(x) \geq 0$. Then $\gamma^*_{i} \in \mathcal{K}_{i,j}$ for any $j = 1, \ldots, q$ and $i \in \zeta^j$. Then $\gamma^*_i \in \mathcal{K}_i$. Then $\gamma^*(x) \in \mathcal{K}(x)$.

For the second statement, assume $u \in \mathcal{K}(x)$ so that $u_i \in \mathcal{K}_i(x) \forall i \in \{1, \ldots, k\}$. This means that $A_i u_i \geq b_i$ so that, because A is block diagonal, $Au \geq b$. Further, it means that for any constraint $j = 1, \ldots, q$ and any $i \in \zeta^j$,
\[
\begin{align*}
L_j h^j(x; \rho^j, \gamma^*) + [L_g h^j(x; \rho^j, \gamma^*)]u_i + \alpha(h^j(x; \rho^j, \gamma^*)) \\
- \frac{|\zeta^j| - 1}{|\zeta^j|} \left(L_j h^j(x; \rho^j, \gamma^*) + L_g h^j(x; \rho^j, \gamma^*) \gamma^*(x) \right) \\
+ \alpha(h^j(x; \rho^j, \gamma^*)) \geq 0.
\end{align*}
\]

To simplify (22), note that by definition, $[L_g h(x)]_i = 0$ for $i \neq \zeta^j$ so that
\[
\sum_{i \in \zeta^j} [L_g h(x)]_i u_i = \sum_{i \in \{1, \ldots, k\}} [L_g h(x)]_i u_i = L_g h^j(x; \rho^j, \gamma^*) u.
\]

Using (23) in the following then yields
\[
\begin{align*}
\sum_{i \in \zeta^j} [L_g h(x)]_i \gamma^*_i(x) \\
= \sum_{i \in \zeta^j} (L_g h(x; \rho^j, \gamma^*) \gamma^*_i(x) - [L_g h(x)]_i u_i) \\
= |\zeta^j| L_g h^j(x; \rho^j, \gamma^*) \gamma^*(x) - \sum_{i \in \zeta^j} [L_g h(x; \rho^j, \gamma^*)] u_i \\
= |\zeta^j| L_g h^j(x; \rho^j, \gamma^*) \gamma^*(x) - \sum_{i \in \zeta^j} [L_g h(x; \rho^j, \gamma^*)] \gamma^*_i(x) \\
= |\zeta^j| L_g h^j(x; \rho^j, \gamma^*) \gamma^*(x) - L_g h^j(x; \rho^j, \gamma^*) \gamma^*(x) \\
= |\zeta^j| - 1 |L_g h^j(x; \rho^j, \gamma^*) \gamma^*(x).
\end{align*}
\]

Summing (22) over $i \in \zeta^j$ and using (23) and (24) yields
\[
\begin{align*}
0 & \leq |\zeta^j| L_j h^j(x; \rho^j, \gamma^*) + L_g h^j(x; \rho^j, \gamma^*) u \\
+ |\zeta^j| \alpha(h^j(x; \rho^j, \gamma^*)) + (|\zeta^j| - 1) L_g h^j(x; \rho^j, \gamma^*) \gamma^*(x) \\
- (|\zeta^j| - 1) \left(L_j h^j(x; \rho^j, \gamma^*) + L_g h^j(x; \rho^j, \gamma^*) \gamma^*(x) \right) \\
+ \alpha(h^j(x; \rho^j, \gamma^*)) \\
= L_j h^j(x; \rho^j, \gamma^*) + L_g h^j(x; \rho^j, \gamma^*) u + \alpha(h^j(x; \rho^j, \gamma^*)).
\end{align*}
\]

Since this is true for all $j = 1, \ldots, q$, $u \in \mathcal{K}_n(x)$. Then $\mathcal{K}(x) \subseteq \mathcal{K}_n(x)$ for all $x \in C_n$.

In particular, Theorem 5 implies that when vehicle i (for all $i \in \{1, \ldots, k\}$) calculates the following QP, the QP will be feasible for all $x \in C_n$, and C_n will be forward invariant:
\[
u_i = \min_{u_i \in \mathbb{R}^{m_i}} \frac{1}{2} \| u_i - \hat{u}_i \|^2
\]

s.t. $A_i u_i \geq b_i$
\[
\begin{align*}
L_j h^j(x; \rho^j, \gamma^*) + [L_g h^j(x; \rho^j, \gamma^*)]u_i + \alpha(h^j(x; \rho^j, \gamma^*)) \\
- \frac{|\zeta^j| - 1}{|\zeta^j|} \left(L_j h^j(x; \rho^j, \gamma^*) + L_g h^j(x; \rho^j, \gamma^*) \gamma^*(x) \right) \\
+ \alpha(h^j(x; \rho^j, \gamma^*)) \\
\end{align*}
\]

Theorem 6. Under the same assumptions of Theorem 5, u_i^* in (25) is Lipschitz continuous and C_n is forward invariant.

Proof. γ^*_i is strictly feasible so u_i^* is Lipschitz continuous as an application of Theorem 1 of [40]. Then $u = [u_1^* \cdots u_k^*]^T$ is Lipschitz continuous and because $u_i^* \in \mathcal{K}_i(x), u \in \mathcal{K}(x)$. Then by Theorem 5 $u \in \mathcal{K}_n(x)$ and C_n is forward invariant by Lemma 1.

We note that the solution from the centralized QP (21) may be different than the solution from the decentralized QPs (25) because $\mathcal{K}(x)$ may be a strict subset of $\mathcal{K}_n(x)$. To see this, let $k = 2, q = 1, L_j h(x) = 0, \alpha(h(x)) = 0, m_1 = m_2 = 1, [L_g h(x)]_2 = 0$, $[L_g h(x)]_1 = 1$. Then the barrier certificate constraint in (25) becomes $[L_g h(x)]_1 u_1 \geq 1$, while the barrier certificate constraint in (21) becomes $L_g h(x) u \geq 0$. Since $u_1 = 0$ is feasible for the latter but not the former equation, we do not have that $\mathcal{K}(x) = \mathcal{K}_n(x)$. Although the decentralized QP (25) can be used to ensure safety by Theorem 6 because $\mathcal{K}(x) \subseteq \mathcal{K}_n(x)$, it may be that the total cost of each vehicle calculating (25) is higher than the centralized calculation (21). In other words, the calculated safe control may not be as close to the nominal control signal in a least squares sense when using (25) as opposed to (21).

Another difference between the decentralized (25) and the centralized (21) QPs is how the size of the optimization variable and number of constraints vary with the number of vehicles k. In the centralized approach (21) the size of the optimization variable grows linearly with k while the number of constraints grows quadratically. On the other hand, in the decentralized QP (25), the size of the optimization variable and number of constraints are constant and linear, respectively.

VI. SIMULATION

In this section we repeat the scenario discussed in Section III-D but consider $k = 20$ vehicles. For the scenario where h is constructed from γ_{turn}, we use $[v \omega v \omega]_T^T$ where $v = 0.9 v_{\text{min}} + 0.1 v_{\text{max}}$ and $\omega = 0.9 \omega_{\text{max}}$. For the scenario where h is constructed from γ_{straight}, we let $\gamma^i = [(1 + 0.01i)v 0]_T^T$ so that each vehicle uses a different translational velocity as is required to ensure differentiability of h (see Section III-C). Note that this does not violate the shared evading maneuver assumption because $\gamma = [(\gamma^i)^T \cdots (\gamma^k)^T]^T$. Additionally, we let $\psi = 0$ and $\psi = 25^\circ$ in the scenario where h is constructed from γ_{turn} and
\[\gamma_{\text{straight}}, \] respectively. Offsetting the initial orientation 25° from pointing at the origin is required so that the vehicles can start in the safe set when using \(\gamma_{\text{straight}} \). Screenshots for the case of \(\gamma_{\text{turn}} \) and \(\gamma_{\text{straight}} \) are shown in Figures 5 and 6 respectively. Quantitative results for both scenarios are shown in Figure 7, which shows similar outputs to the results for the two-vehicle simulation shown in Figure 2. In particular, the pairwise distance between all vehicles are kept above the minimum safety distance \(D_s \) while satisfying actuator constraints.

VII. CONCLUSION

In this paper we have examined how to ensure that for vehicles characterized by constrained inputs, multiple barrier certificates can be satisfied simultaneously while relaxing communication requirements. The resulting solution is a decentralized algorithm that was applied to a collision avoidance scenario with fixed-wing UAVs where, in spite of communication restrictions, the vehicles are able to maintain safe distances from each other.

APPENDIX A

Proof for Theorem 2

Proof. Starting from the definition of the derivative of \(h \) from [9], we expand terms using a Taylor series and simplify the expression using an argument by contradiction. Let \(\nu_k \) be a sequence in \(\mathbb{R}^n \) approaching zero, \(\dot{x} + \delta x_k \) be the trajectory starting from \(x(t) + \nu_k \) rather than \(x(t) \), \(\frac{\partial}{\partial x(t)} \) the derivative of the solution at time \(t + \tau \) with respect to initial conditions, and \(\tau_1 \geq 0 \) a time for which \(\rho(\dot{x}(t) + \tau) \) is a minimum. Note that \(\frac{\partial}{\partial x(t)} \) is well defined by Theorem 6.1 of [41] and noting that \(\dot{x} \) is continuously differentiable. We start with the following:

\[
\lim_{k \to \infty} \frac{h(x(t) + \nu_k) - h(x(t))}{\|\nu_k\|} = \lim_{k \to \infty} \inf_{\tau \in [0, \infty)} \rho(\dot{x} + \delta x_k)(t + \tau) - \inf_{\tau \in [0, \infty)} \rho(\dot{x}(t + \tau))
\]

We claim that as \(k \) approaches \(\infty \),

\[
\rho(\dot{x}(t + \tau_1)) + \frac{\partial}{\partial x(t)} \frac{\partial}{\partial x(t + \tau_1)} \nu_k
\]

Suppose not and let \(\tau_2, k \geq 0 \) be a time for which \(\rho(\dot{x}(\tau + \delta x_k)) + \frac{\partial}{\partial x(t)} \frac{\partial}{\partial x(t + \tau_1)} \nu_k \). Then for large enough \(k \),

\[
\rho(\dot{x}(t + \tau_1)) + \frac{\partial}{\partial x(t)} \frac{\partial}{\partial x(t + \tau_1)} \nu_k
\]

The last inequality holds because \(\tau_1 \) is a time for which \(\rho(\dot{x}(t + \tau)) \) is a minimum so \(\rho(\dot{x}(t + \tau_1)) \leq \rho(\dot{x}(t + \tau_2, k)) \). Letting \(k \to \infty \), we get \(0 > \alpha/2 \), a contradiction. In the other case, suppose \(\rho(\dot{x}(t + \tau_1)) + \frac{\partial}{\partial x(t + \tau_1)} \frac{\partial}{\partial x(t)} \nu_k > \rho(\dot{x}(\tau + \delta x_k)) + \alpha \) for some \(\alpha > 0 \). Then for large enough \(k \),

\[
\rho(\dot{x}(t + \tau_1)) + \frac{\partial}{\partial x(t)} \frac{\partial}{\partial x(t + \tau_1)} \nu_k + \alpha/2
\]

In other words, \(\lim_{k \to \infty} \frac{\partial h(x(t))}{\partial x(t)} = \lim_{k \to \infty} \frac{\partial h(x(t) + \nu_k)}{\partial x(t)} \).

REFERENCES

Fig. 5: A demonstration of 20 fixed-wing vehicles applying barrier certificates to ensure collisions are avoided when constructing h defined in (9) by γ_{turn}. (a) The starting position of 20 vehicles. (b) The vehicles approach the origin and begin avoidance behavior around 50 meters away from the origin. (c) The vehicles circle the origin. (d) The vehicles reach approach their target position.

Fig. 6: A demonstration of 20 fixed-wing vehicles applying barrier certificates to ensure collisions are avoided when constructing h defined in (9) by γ_{straight}. (a) The starting position of 20 vehicles. (b) The vehicles approach the origin and begin avoidance behavior around 50 meters away from the origin. (c) The vehicles circle the origin. (d) The vehicles reach approach their target position. The asymmetry is due to the fact that the vehicles have different speeds for their nominal evading maneuvers. As the speed for the nominal maneuvers approaches the same value the result is a more symmetric pattern.

Fig. 7: Outputs for the scenario with 20 fixed-wing vehicles. The blue dashed and orange solid lines are the output of the scenario where h is constructed from γ_{straight} and γ_{turn}, respectively. Vehicle 1 velocity and turn rates are shown to be within the actuator limits in (a) and (b). Vehicle 1 is plotted as a representative output since all 20 vehicles cannot be shown on the same plot. In (c), the minimum distance between any two vehicles is shown to be above D_s. (d) is the path taken by vehicle 1. Note that the behavior is significantly different when constructing h with γ_{turn} and γ_{straight}.