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Abstract—1In this paper, a method to synthesize controllers
using finite time convergence control barrier functions guided
by linear temporal logic specifications for continuous time
multi-agent dynamical systems is proposed. Finite time con-
vergence to a desired set in the state space is guaranteed
under the existence of a suitable finite time convergence control
barrier function. In addition, these barrier functions also
guarantee forward invariance once the system converges to the
desired set. This allows us to formulate a theoretical framework
which synthesizes controllers for the multi-agent system. These
properties also enable us to solve the reachability problem in
continuous time by formulating a theorem on the composition
of multiple finite time convergence control barrier functions.
This approach is more flexible than existing methods and also
allows for a greater set of feasible control laws. Linear temporal
logic is used to specify complex task specifications that need
to be satisfied by the multi-agent system. With this solution
methodology, a control law is synthesized that satisfies the
given temporal logic task specification. Robotic experiments are
provided which were performed on the Robotarium multi-robot
testbed at Georgia Tech.

I. INTRODUCTION

Complex mission specifications require provably correct
controllers that satisfy the task specification infinitely of-
ten. To that end, we address the issue of synthesizing a
control architecture for multi-agent systems, subject to LTL
specifications. We propose a control architecture which uses
finite time convergence control barrier functions (hereafter
to be known as finite time barrier certificates) and temporal
logic to solve the continuous time reachability problem in
multi-agent dynamical systems. In particular, we use finite
time barrier certificates, introduced in [15] in the context of
composition of different behaviors for multi-robot systems,
to guarantee finite time reachability to desired regions in the
state space and linear temporal logic for specifying complex
task specifications to be satisfied by the system.

The contributions of this paper are threefold. First, we
introduce the notion of composition of multiple finite time
barrier certificates using addition which provides feasible
solutions in cases where using methods such as the one
followed in [15] can lead to infeasibility. Our framework
results in a larger set of feasible control laws as compared
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to methods such as the one followed in [15]. This allows for
more flexibility when the task specification is more complex.
Second, we use finite time control barrier certificates inspired
by [15] for a continuous time multi-agent system in the
context of motion planning. Third, we use a discretization
free approach inspired by [1] which allows us to leverage
key ideas from automata theory and temporal logic, in
conjunction with finite time barrier certificates.

Control of multi-agent systems has been studied exten-
sively over the past few years in a plethora of context and
settings. We cite some of the recent work in this domain
which are most related to the concepts provided in this
paper. Papers [4], [5], discuss the use of control barrier
functions (described in Section II) for collision avoidance
in multi-robot systems, while [6], [7] apply these principles
to adaptive cruise control and automotive systems. In [2],
[9], [10], the authors discuss a verification method for non-
linear systems as well as for continuous and hybrid systems
in stochastic and worst case settings. In all these papers, the
primary focus is safety whereas in our paper, we shift the
focus towards finite time reachability for continuous time
dynamical systems. LTL based motion planning has also
been the subject of recent study [17], [18], [19]. Papers [8],
[11], [12], [13], [14], synthesize robust optimal controllers
for multi-robot systems subject to LTL as well as other
temporal logic languages. In the aforementioned papers, a
discretization of the system dynamics is involved which we
avoid in our paper.

This paper is organized as follows. Section II presents
mathematical tools required for our solution approach. In
Section III, we formulate the problem statement tackled
in this paper. Section IV combines ideas from temporal
logic and barrier certificates. In Section V, we formulate our
theorem on composition of multiple finite time barrier cer-
tificates, and also discuss some important remarks regarding
the same. Section VI provides an illustrative example that
highlights our solution methodology. Section VII discusses
the simulation and experimental results conducted on the
Robotarium testbed facility at Georgia Tech [16], respec-
tively. Section VIII provides concluding remarks.

II. MATHEMATICAL PRELIMINARIES
This section discusses finite time barrier certificates and
linear temporal logic.
A. Control Barrier Functions

In this paper, we use finite time convergence control
barrier functions introduced in [15] as a building block for



our control architecture. Consider a control affine dynamical
system

X = f(x)+8(x)u, (1)

where f(x) and g(x) are locally Lipschitz continuous, x €
X CR" and u € R™.

Definition 1. [15] A function h(x) : X — R is a finite
time convergence control barrier function if there exists real
parameters p € [0,1) and v > 0 such that for all x € X,

sup {Lsh(x)+ Lgh(x)u+y-sign(h(x)) - |h(x)[P} > 0. (2)

ueRm

Finite time convergence control barrier functions are used
to establish finite time reachability. Thus, if A(x) is a finite
time convergence control barrier function, then there exists
a control input u that drives the state of the system x to the
set {x € R"|h(x) > 0} in finite time, as formalized next.

Proposition 1. [15] Let h(x) be a finite time convergence
control barrier function for (1), and for all x € X, define

U(x) = {u € R™|Lsh(x) 4+ Lgh(x)u+

y-sign(h(x)) - |h(x)}P > o}. @)

Then, for any initial condition xo € X and any continuous
feedback control u : X — R™ satisfying u(x) € U(x) for
all x € X, the system will be driven to the set G := {x €
R"|h(x) > 0} in a finite time 0 < T < oo such that x(T) € G,
where the time bound is given by T = ‘hﬁ?!;p [20], and
renders the set G forward invariant.

Above, L¢h(x) = % f(x) and Loh(x) = % g(x) are the
Lie derivatives of i(x) along f(x) and g(x) respectively.

Given a finite time convergence control barrier function
h(x), a closed formed expression for U(x) as in (3) is rarely
available. However, in practice, this formulation is amenable
to efficient online computation of feasible control inputs. In
particular, for fixed x, the requirement that u € U (x) becomes
a linear constraint and we define a minimum energy quadratic
program (QP) as

: 2
min
min [Jul} “
st uel(x).

This QP is solved with the finite time barrier certificate
as the constraint on the control law u(x) and returns the
minimum energy control law that drives the system to the
goal set G = {x € R"|h(x) > 0} in finite time. We will
reference this idea of a QP based controller throughout this
paper in the context of our theorem and analysis.

B. Linear Temporal Logic (LTL)

Complex and rich system properties can be expressed
succinctly using LTL, and one of the main advantages of
LTL is the ease with which high level system objectives
can be formalized. LTL formulas are developed using atomic
propositions which label regions of interest within the state
space. These formulas are built using a specific grammar.

LTL formulas without the next operator are given by the
following grammar [3]:

¢ =m0V oloU )

where 7 is a member of the set of atomic propositions, and
¢ represents a LTL specification. From the negation (—) and
the disjunction (V) operators, we can define the conjunction
(M), implication (—), and equivalence (<) operators. We can
thus derive for example, the eventually ({) and always (OJ)
operators as Q¢ = TUP and O¢ = —-O—¢ respectively.

IIT. PROBLEM FORMULATION

Consider a multi-agent system consisting of N robots with
index set Z = {1,2,...,N}. The dynamics for each agent
ielis

Xi = U; (6)

where x; € R" and u; € R" for some n € N.

Let D C R” be the closed and connected domain for the
agents and suppose D can be written as a super zero level set
of a function Ap, that is, D = {x € R"|hp(x) > 0}. The state
space for the multi-agent system is then DV C RV, Consider
a finite set R of regions of interest in the domain such that for
all r € R, r C D and there exists a continuously differentiable
function A, : D — R such that r = {x € D|h,(x;) > 0} for all
i € Z. Regions of interest may denote, for example, goal
regions that must be reached by an agent or agents, or it
may denote regions that should be avoided by an agent or
agents. For each r€ R and i € Z, let

G = {x € D"|h,(x;) > 0}, (7

that is, G/ is the set of states for the multi-agent system for
which agent i is in region r. Similarly, let

Gr' = {x e DV|h.(x;) < 0}, ®)

that is, G! is the set of states for the multi-agent system for
which agent i is outside the region r.

In addition to these regions of interest, we assume there ex-
ists a set of global conditions g;‘;k)be, g§1°be, .. ,gg“’be defined
over the multiagent domain DV such that for each ¢ € C :=
{1,2,...,C}, GE°" C DN and there exists a continuously
differentiable function h?lObe : DV — R such that chbbe =
{x e DV|hE* (x) > 0}.

Similarly, we can write G&° = {x € DV|h€°*(x) < 0}.
Such global conditions may include, for example, a connec-
tivity constraint.

For each G/ withi€Z, r € R, let

1
r_
ﬂl—{o

This means 77 = 1 if and only if agent i is in region r.

Similarly, for all ¢ € C, let mgk)bc =1 if and only if x €

globe
c .

xegl
otherwise.

€))

The collection

O={n/licZreR}U{rE>cecC} (10)



constitutes the set of atomic propositions for the multi-agent
system. For 7 € I1, we will sometimes write G, to denote
the set that induces 7, i.e., Gr =G/ if # =7} for some i € 7,
reR,or Gp= ggk)be if m= ﬂflObe for some ¢ € C. Finally,

for a C I, we denote

[[a]]: ﬂgnm ﬂ gin'a

TEa nell\a

(1)

that is, x € [a] if and only if, for all # € I1, x € G if and
only if ¥ € a.

Given a trajectory x(¢) of the multi-agent system, intu-
itively, the trace of the trajectory is the sequence of sets of
atomic propositions that are satisfied along the trajectory. The
following definition formally defines the trace of a trajectory
of a system [2].

Definition 2. An infinite sequence ¢ =apa; ... where a; C 11
Sor all i € N is the trace of a trajectory x(¢) if there exists
an associated sequence ftotity ... of time instances such that
to =0, ty = o as k — o and for each m € N, t,, € Rxg
satisfies the following conditions,

o Im <Im+1

o x(tm) € [am], ,

o If am # amy1, then for some t,, € [ty,tyr1], X(t) € [am]
for all t € (ty,1),), x(t) € [ams1] for all t € (£, tm+1),
and either x(t),) € [am] or x(t),) € [ams1]-

o If ayy = a1 for some m, then a,, = ay. for all k >0
and x(t) € G (resp., x(t) € Gr) if T € ay, (resp., TE ay)
forall t > t,, for all w € IL

The last condition of the above definition implies that a
trace contains a repeated set of atomic propositions only if
this set holds for all future time, capturing, e.g., a stability
condition of the multi-agent system. By forbidding repeti-
tions otherwise, we ensure that each trajectory possesses a
unique trace. This exclusion is without loss of generality
since we only considered LTL specifications without the next
operator. To that end, we define the problem we aim to solve
in this paper.

System Objective. Given a multi-agent system with initial
condition x(0) € DV and a LTL specification ¢ over the set
of atomic propositions 11, synthesize a control law such that
the resulting trace of the system satisfies the specification ¢.

IV. LASSO-TYPE CONSTRAINED REACHABILITY
OBJECTIVES

To solve the above objective, we propose to use finite time
barrier certificates to solve for a satisfying controller online.
To this end, we note that it is well-known that if there exists a
trace (that is, a sequence of sets of atomic propositions) that
satisfies a given LTL specification, then there exists a trace
satisfying the specification in lasso or prefix-suffix form [3],
where a trace ¢ in lasso form consists of a prefix Ope and
suffix oy, that are both finite sequences of sets of atomic
propositions such that the trace o is equal to the prefix
sequence followed by the suffix sequence repeated infinitely
often. Such a lasso trace is denoted as 0 = Opre (Ogufr)” Where
o signifies infinite repetition.

Because atomic propositions of the multi-agent system are
defined as subsets of the domain, it is possible to interpret
such lasso traces as sequences of constrained reachability
problems in lasso form, which leads to our control synthesis
methodology described in Section VI. To that end, we have
the following definitions.

Definition 3. Given two sets ¥ C DN and T C DV, the
constrained reachability problem R(X,T') consists in finding
a feedback control strategy u: Y. — RN" for the multi-agent
system such that for any x(0) € X, there exists a finite time
0 < T < oo satisfying x(t) €L for all t € [0,T) and x(T) €T,
where x(t) is the trajectory of the system initialized at x(0)
subject to the control strategy u(x).

With Definition 3, we formalize the definition of a con-
strained reachability problem induced by sets of atomic
propositions.

Definition 4. Let a] CII, af CII, a) CII, and a3 C 11 be
sets of atomic propositions for the multi agent system. Let

r< N gn)n( N g) (12)

n€a) \aj meay \ai
zz< N gﬂ>m< N g,,) (13)
Jrea]TﬂazT neafﬁazl

The reachability problem R(X,T") is the Constrained Reach-
ability problem induced by the sets alT, af-, a2T , and aj-.

Here, alT represents the set of atomic propositions which
are true before the reachability objective is executed, all
represents the set of atomic propositions which are false
before the reachability objective is executed, azT is the set
of atomic propositions that must be true after the execution
of the reachability objective and ai‘ is the set of atomic
propositions that must be false at the end of the execution
of the reachability objective.

In the above definitions, I" represents the reachability
set and ¥ represents the safety set. If we can solve the
constrained reachability problem defined in Definition 4
by synthesizing a control law u : ¥ — RY" such that the
conditions in Definition 3 are satisfied, then the multi-agent
system will converge to the set I' in a finite time while
remaining in the safety set X. We solve a series of constrained
reachability problems which results in a system trajectory
whose trace satisfies the given LTL specification.

Definition 5. A lasso-type constrained reachability sequence
is a sequence of constrained reachability problems in lasso
form such that each subsequent safety set is compatible
with the prior goal set. That is, a lasso-type constrained
reachability sequence has the form

w
Riasso = <R1R2~~Rk> (Rk+1,Rk+2~~Rk+/z> , (14)

where k >0, ¢ > 1, and each R; = R(X;,I';) for some
[;,L; C DV satisfying T; C Xy forall j€{1,2,....k+/(}
and also Uiy C Xy 1. The sequence (RiR;...Ry) is a finite



horizon prefix objective and (Ryy1,Ri+2...Rite) is a finite
suffix objective that is repeated infinitely often.

By the preceding discussion, if there exists a trace that sat-
isfies a given LTL specification, then there exists a lasso-type
constrained reachability sequence that, if feasible, guarantees
that the multi-agent system satisfies the LTL specification.
Algorithms exist for automatically extracting traces in lasso
form from a so-called Biichi Automaton constructed from
a LTL specification [3]. Choosing a good lasso sequence
candidate from a list of possible lasso sequences is outside
the scope of this paper, but is the subject of our current
research work.

V. COMPOSITE FINITE TIME CONTROL BARRIER
CERTIFICATES

In this section, we formulate a theorem on composition of
multiple finite time barrier certificates for a general control
affine system of the form (1). This result is applicable to any
system with control affine dynamics as in (1).

Theorem 1. Consider a dynamical system in control affine
form as in (1). Given ' CR" deﬁned by a collection of g > 1

functions {h;(x)}?_, such that T = ﬂ {x € R"|h;(x) > 0} and

for i ={1,2,3,....4'} with ¢ < q, hi(x) is bounded i.e.
hi(x) < M; for all x € D, for M; > 0.' If there exists a
collection {Oc,}" | with o € R, parameters y>0, p € [0,1)

and a continuous controller u(x) where u: D — R™, such that
forall xeD

Q\

{a,(th( )+Lghi(x)u(X))}+

}/-sign(min{hl(x),hg(x),...,hq/(x)}> >0 (15)

Lhi(x) + Lghi(x)u(x) + ysign(hi(x)) |hi(x)|P = 0

Vie{qd+1,....q} (16)

then under the feedback controller u(x), for all initial con-
ditions xo € D, there exists 0 < T < oo such that x(T) € T.

Proof. By contradiction, suppose for some xy € D\I" the
control law u(x) that satisfies (15) and (16) is such
that there does not exist a finite time 0 < T < o
so that x(T) € I'. In particular, then for all 7 > 0,

min{hl(x(t)),hz(x(t)),...,hq(x(t))}

solution to (1) initialized at x(0) under the control law u(x).

By (16) for all t > T; = %, we have h;(x(z)) >0

for all i={q'+1,...,q} by Proposition 1. To that end, if

we define T’ = max {T,} then for all + > 7’ we have,
q

< 0, where x(¢) is the

UIf all the functions are bounded, then ¢’ = ¢ and so we will have only
(15) as a constraint in the QP Vi € {1,2,...,4}

min{h1(x(t)),hz(x(t)),...,hq/(x(t))} < 0. In particular, ob-

serve that

! !

jt,: {a,-hi(x(t))} = izl {ai(thi(x) +Lghi(x)”(x))}
(17)

so that by integration of (17) using the fundamental theorem
of calculus and (15), we have

ql

z{aihi<<>>}>w— +Z{a~ }

i=1
q

We observe that as ¢ — oo, Z 0;hi(x(t)) p — oo. But this is

a contradiction since hi( (¢ )) for i={1,2...,4'} is bounded

ql
ie. ¥ {aihi(x(t))} < ): 0;M;. This proves that there exists
i=1 i=1
q/
a 0 < T <o such that x(T) € () {x € R"|h;(x) > 0}. ]
i=1
We remark that [15] proposes a more restrictive solution to
the constrained reachability problem with desired level sets
being individually defined by multiple functions in a QP. In
particular, [15] allows for the set of control laws U(x) given
by

U(x) = {u € R™|Lyhi(x) + Lghi(x)u(x)+
v-sign(hi(x)) - |hi(x)|P = 0
Vi E{l,...,q}}, (18)

Note that this is equivalent to taking ¢’ =0 in Theorem 1.
To that end define,

{MER’"

then we can formulate the following corollary

Ux) =

(15) and (16) are satisﬁed} 19)

Corollary 1. The set U(x) is a superset to the set U(x) i.e.
U(x) DU(x). O

From [15], finite time barrier certificates also possess the
property of forward invariance. This allows us to encode
the global constraints as well as other additional system
constraints, discussed in Section III, as invariance conditions
in a QP. To that end, we formulate the following remarks.

Remark 1. In addition, suppose we require that x(t) € X as
in (13) for all t > 0, then we add these additional constraints
individually in the QP as constraints of the form (16) of
Theorem 1. In order to solve the constrained reachability
problem of the form R(X,T") as in Definition 3 where T
and X are of the form (12) and (13) respectively, we can
use Theorem 1 for the reachability problem along with
constraints of the form (16) which ensure invariance as
discussed in Proposition 1, for the safety and avoid problem.



Remark 2. 2 Note that if gizr,' is a part of the definition of
Y as in (13), then we use 97;:97: {xe D", (x;) < 0}
for all r € R, i € L. For each = with i € T and
r € R, let heg(x;) = —hy(x;) — € so that we have {x €
DN|hye(x;) > 0} C GI. Likewise, for ¢ € C, let hglobe( ) =
18" (x) — & so thar {x € DV|EY(x) > 0} C G&".
The constraints can then be encoded in the QP as
Lf}_lre(xl) +L }_zrg(x,) (x) + v - sign(hye(xi)) - [hre(x;) P >
0 and LehS% (x) + Leh82% (x)u(x) + v - sign(RE'2" (x)) -
|h‘§7lgbe( )P >0, foralli€Z, reR and c € C as described
in (16).

WORKSPACE

- R 4 Trajectory
- R2 Trajectory

GOALC GOALA
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GOALB

-1 -08 06 -04 02 0 02 04 06 08
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Fig. 1: A simulated trajectory for R; and R, which satisfies
the task specification, “R; should go to goal A and R; should
go to goal B, and then both robots should go to goal C, all
the while ensuring that the safety constraint is satisfied and
the obstacle is avoided”.

VI. ILLUSTRATIVE EXAMPLE

Consider a two robot (single integrator dynamics) homo-
geneous multi-agent system in the domain D> C R* with
three regions R = {A,B,C,0} and agents indexed by the
set Z={1,2}. This is as shown in Fig. 1. The state of the
system is x € R*. We first require robot Ry to visit goal A
and robot Ry to visit goal B. Then, both the robots must
visit goal C. This process needs to be repeated infinitely
often. However, there is a caveat to this task specification.
We enforce a connectivity constraint between the two robots
which is a function of the state of R,. In addition to this,
the robots must always avoid the obstacle region ‘O’. It is
important to note that we do not require the agents to enter
the goal regions simultaneously. However, after a certain time
both the agents must be inside their respective goal regions.
The function for the level set of each region of interest is

he(x)=1—(x;—C)TP(x;—C,) ,VreR,VicZ. (20)

2Online quadratic programs are solved easily using non strict inequalities,
so we introduce parameter £ > 0 where we take € to be small.

Here, P, is a positive definite matrix, C, is the center of the
region of interest and x; is the state of agent i of the system.
The three goal regions A, B and C are defined as (7), and

Progress of R‘ towards Goal A Progress of Rz towards Goal B

Time (t) Time (t)
Total Progress towards Goal A and Goal B

3 4
Time (t)

Fig. 2: Level sets for goal A and goal B, along with the
net progress and rate of progress towards both goals. Even
though Ry moves away from goal A for a brief moment, the
net total progress towards the goals is increasing at all times.

the obstacle ‘O’ is defined as (8). The additional connectivity
constraint is given as

hgl(}he (x) = d;lobe (X) -

where dgjope : D? 5 R is the connectivity distance between
the two agents that needs to be maintained, and ||x —x;|| is
the inter-agent distance. We consider

dgzzabe(x) =01 +8)+ &,

where 6y and &, are constants, and x» ; is the x coordinate of
R, in the workspace. Such a constraint captures a situation
in which the robots have poor connectivity in certain areas
of the workspace, which requires them to maintain a closer
distance with each other. In areas where the robots have
strong connectivity, they are free to maintain a larger distance
from each other. This constraint is equivalent to the global
constraints 4" (x) discussed in section III.

The global LTL specification to be satisfied by the multi-
agent system is

0 = O(0((mf A7§) A O(xf AZS))) AT A~ A1),
(23)

The lasso-type constrained reachability sequence for this
example from Definition 5 is Rjgs50 = (R1R2)?

From (10), I1 = {z,n8 7, x§ n&lobe 70 70}, We as-
sume that the robots start off within the connectiv-
ity radius dgiope. Applying the formalism from Deﬁni-
tion 3 and Definition 4, We have a] = {8}, af =
{”fx’”gaﬂlcaﬂzcﬂl 75} a) = {m] a”f’”gh’be} and ay =
{n? ,7r( O1. Hence, the reachability set from (12) is given by

I' = g,,fx ﬂgﬂ§>

[z — x| 2, 1)

(22)

. The safety set from (13) is given by, X| =



G tobe N (gﬂlomgng) Thus, the constrained reachability

problem to be solved is R{(X,T7).
The constraints encoded in the QP are,

d(ha(x1) +hp(x2))
ox

u> —vy-sign(ho(x;)) - |ho(xi)
Fgiobe ()

u > —y-sign(min{hs(x1),hp(x2)})

dho(x;
M P forallieZ

uz-—y- Sign(hglobe (x)) : |hglobe(x)|p

For the second reachability problem, from Definition 3
and Definition 4, we have a| = {nf,n8 mslobe} af =
{7, a$ 70,70}, a) ={nl,xn{ n89%}, and ay = {70, 7}
The corresponding reachability problem and safety problem
are Iy = { Gpe N Q%C), and %5 = Graoe N { G0 N G0

Thus, the constrained reachability problem to be solved is

Ry(%,,T7).
Similarly, the constraints encoded in the QP are,
3(’10()61)8;: M2 >y sign(min {he(x1) he(2)})
@u > —vy-sign(ho(x;)) - |ho(x:)|P, for all ie Z
Wu > —7-sign(hgiope (X)) - |Rgiope (x)|P

By solving these two QPs, we solve the lasso-type con-
strained reachability sequence, R 450 = (R1R2)® as per (14).

VII. SIMULATION AND EXPERIMENTAL
RESULTS

The generated trajectory in MATLAB is shown in Fig. 1.
Fig. 2 illustrates how our theorem is effective by ensuring
that the system makes total positive (increasing) progress
towards its goals for all + > 0, even though an individual
robot moves away from its goal momentarily (R; moves away
from goal A in the interval from P to Q in Fig. 1. This
corresponds to the dip in the level set 4} (x;) in the first
plot in Fig. 2). It is important to note that the connectivity
constraint is maintained for all time of the simulation and
experiment. We also execute our algorithm on the Robo-
tarium testbed [16] and provide a video of the experiment
(https://youtu.be/Gnga3k2BHWg). The trajectories followed
by the robots is consistent with the trajectory in Fig. 1.

VIII. CONCLUDING REMARKS

In this paper we provided a theoretical framework to syn-
thesize controllers for continuous time multi-agent systems,
given a linear temporal logic task specification using finite
time control barrier certificates. We formulated a theorem
on the composition of multiple bounded finite time barrier
certificates. The proposed framework results in a larger set of
feasible control laws as compared to methods such as [15].
By solving a sequence of constrained reachability problems
by means of quadratic programs, we solve a lasso-type
constrained reachability sequence that synthesizes system
trajectories whose traces satisfy the given LTL specification.
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