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Abstract—The potential for numerical instabilities of
Dynamic Mode Decomposition (DMD), which assumes the
completeness of the eigenspace is discussed for cases
where the underlying system is defective or nearly defec-
tive. A numerically stable approach based on Schur de-
composition is presented. The proposed method comple-
ments the DMD for cases where eigendecomposition is ill-
conditioned. Both mathematical analysis and the results
of numerical experiments are presented.

Index Terms— computational methods, numerical algo-
rithms, identification, identification for control, large-scale
systems

[. INTRODUCTION

OR systems of high complexity and dimensionality,

building models empirically rather than analytically is
much more practical, especially when high definition data
is readily available. Dynamic Mode Decomposition (DMD)
[1], [2] is one of the most notable data-driven methods, which
enables the prediction of the system’s future behavior from
current measurements. Recently, it was shown that a simple
extension may be done to determine the effect of actuation
on dynamical systems through DMD with control (DMDc)
[3]. Therefore, DMD, which has strong connections to model
reduction [4], Eigen Realization Algorithm (ERA) [5] and
Observer Kalman Identification (ORKID) [6] has recently at-
tracted much interest in the control community lending itself
as a reduced order modeling method for high dimensional
systems in the context of identification for control [7]-[10]
. The result in [11], which showed that DMD approximates
the Koopman operator, an infinite dimensional linear operator
that can be used to represent nonlinear systems, ignited
even more research interest in DMD. Since then, additional
advancements have been made between DMD and Koopman
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theory in parallel [12]-[14]. However, DMD algorithms are
based on eigendecomposition, which assumes the complete-
ness of the eigenspace associated with the underlying system.
Perhaps this assumption is justified in the sense that the set
of matrices with a complete eigenspace forms a dense subset
of the set of square matrices of a given order. Although the
chances of encountering a truly defective systems may be
slim, a system can get arbitrarily close to defectiveness. If
the underlying system is nearly defective, such characteristic
will manifest as clustered eigenvalues or complex conjugate
eigenvalue pairs with very small imaginary parts. These sce-
narios are frequently encountered in many applications and
have created much research interests [15]-[18]. This paper
evaluates the numerical stability of DMD algorithms for
nearly defective cases and proposes a Schur decomposition
based approach, whose numerical stability remains robust
for nearly defective systems. Our method, which allows
numerically stable and accurate computations of solutions
for defective and nearly defective systems is extremely useful
for applications such as eigensensitivity analysis of structural
optimal design and structural damage detection in structural
engineering [15]. For example, sensitivity-based finite ele-
ment model updating in such problems requires numerically
stable solutions to determine their sensitivity to variations in
system parameters and defective systems present a particular
challenge in this context. Also, defective systems arise in
many mechanical systems with general viscous damping [19]
and a classic example is the torsional vibration of marine
propulsion systems [20]. Our Schur-decomposition based
approach, unlike current DMD, is highly applicable to these
engineering problems. Since diagonalizability is not assumed,
computations in our method involve an upper triangular
matrix obtained from Schur decomposition as opposed to
a diagonal matrix obtained from the eigendecompositon in
DMD. Our approach is not to replace prior DMD algorithms
but rather to complement them in cases where the eigen-
decomposition is ill-conditioned. In terms of computational
ease, the next best structure to a diagonal matrix is, perhaps,
a block diagonal Jordan form, which exists for any square
matrix. However, computation of the Jordan decomposition is
numerically unstable as will be demonstrated in the numerical
examples of Section IV. Utilizing Schur decomposition yields



the best possible condition numbers for the transformation
matrix due to the unitary factor in the Schur form. We dub
our method Schur-based DMD simply because it is closely
related to DMD methods albeit not involving the computation
of eigenmodes.

The paper is organized as follows. The mathematical
background and definitions are given in Section II and
the main results of the paper are presented in Section III.
First, a theorem that evaluates the numerical stability of the
DMD method is presented. Subsequently, a theorem which
provides a realistic upper bound for the condition number
of the transformation matrix in our method is presented.
The numerical examples are provided in Section IV. The
conclusions of the paper are summarized in Section V.

[I. MATHEMATICAL PRELIMINARIES

Definition 1: Matrix 2-norm

The matrix 2-norm of A € C™*" is defined as ||A|| =
max ||Az||a.

[lz|[=1

Remark: Tt can be easily verified that the matrix 2-norm is
the largest singular value of A. It is also worth noting that
the matrix 2-norm satisfies the sub-multiplicative property,
i.e, ||AB|| < ||A]| ||B]|- Unless otherwise indicated ||.|| will
denote the matrix 2-norm throughout the paper.

Definition 2: Condition number

The condition number of a full rank matrix A € C™*"
is defined as k(A) = [|A|| ||AT||, where AT denotes the
Moore-Penrose pseudo-inverse. If A is rank deficient, x(A)
is defined to be +o0.

Remark: The smallest possible condition number for any full
rank matrix is unity.

The following theorem states that the reciprocal of the
condition number of a full rank matrix is the relative distance
to the nearest rank deficient matrix. The proof for the square
matrices can be found in [21]. With minor modifications, the
argument in [21] can be extended to rectangular matrices.
Even more general definition of the condition number and
its properties for 1, 2 and co-norm can be found in [22] but
this paper only concerns with the 2-norm.

Theorem 1: [21], [22] If A € C™*™ is a full rank matrix,

r_ [l A-B]
) mén{ : rank(B) < rank(A)}.
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Schur Decomposition is one of the most popular matrix
decompositions, which can be computed by numerically
stable algorithms and it is usually used as an intermediate step
in computing eigendecomposition. The following theorem
states the existence of the Schur form of a square matrix.

Theorem 2: [23] If A € C™*™, then, A = Q*R(Q), where
Q is unitary, R is upper triangular and @Q* denotes the
conjugate transpose of Q.

A. Exact Dynamic Mode Decomposition (eDMD)

The eDMD algorithm proposed by [2], usually used for
high dimensional systems provides the solution for zj; =
Axy, through a locally linear approximation using large
matrices X and X’ constructed from the snapshots of the
data X’ = AX. Then, the best-fit matrix for A € C™*™ js
given by A ~ X’X*. However, DMD circumvents having
to directly compute the eigenvectors and eigenvalues of a
large A matrix in the following manner. First, low rank
structure of the data matrix X is extracted by singular value
decomposition so that rank r approximation is X ~ UXV™*,
where U € C™*", ¥ € C™" and V € C"*™, Then A
is projected on to proper orthogonal decomposition (POD)
modes of U yielding an r x r matrix, A = U*AU. Then
the eigendecomposition is performed for A, which yields,
AW = WA, where the columns of W are the eigenvectors
of A and A is the diagonal matrix containing the eigenvalues
of A on the diagonal. Now it can be easily verified that & =
X'VE~IW satisfies A® = ®A. Therefore, the approximate
solution in discrete time is obtained as z(k) ~ ®A*®+x,
where &+ is the Moore-Penrose pseudo-inverse and xg is the
initial condition.

B. DMD for Control (DMDc)

In [3] it is shown that DMD can be extended to allow
control inputs. Instead of X’ = AX, it considers X' =
AX + BO, where O is constructed from time snapshots of

the input. Denoting G = [ A B | and Q = )U( Lif Q&

UXV* with rank p truncation, then A and B can be extracted
as A ~ X'VX7U; and B ~ X'VE~U; respectively,

where U = L Ui . Suppose X' = UXV* with rank r

U,
truncation, and project A and B onto a lower dimensional
space using U, ie, A = U*AU and B = U*B. Then the
dynamic modes of A are computed as ® = X'VXU;UW,
where W is computed from AW = WA. Therefore, DMD
is of much interest for control system research. Moreover,
since DMD can be used to approximate the nonlinear systems
through their Koopman operator representation, the method
is of major interest for nonlinear system identification and
control. This paper is concerned with the numerical stability
of DMD and the ideas presented in this paper equally apply
to both autonomous case and non-autonomous case. For
simplicity, the arguments will be made in the autonomous
setting without loss of generality.

I1l. MAIN RESULTS

The following result is useful to analyze the numerical
stability of DMD.

Theorem 3: Let A and B be full rank matrices where the
product AB is well defined. Then,




where o pin(B) denotes the smallest singular value of B.

Proof: Let C be the minimizer such that

C = argmin {|BC|, rank(C') < rank(B)}.

c 1Bl
Then,
1 B-C|
w(B) Bl
Al . JlAB - AC| 0
K(B) ||B]
On the other hand, since AC is rank deficient,
1 ||AB — AC’||
< : 2
K(AB) ||[AB||
Thus, from (1) and (2)
|1 A]| |AB]|
K(B) k(AB)||B|
|AB|| 1
k(AB) > —F——.
I[All omin(B)

Thus, the theorem is proved.

In the DMD methods in the literature [2] the eigenvectors
of the underlying systems are computed from columns of
® = X'VE~'W. In cases where X'V and W have full
rank, by Theorem 3,

||| 1

H) 2 VST 0y (W)

Notice that for any nonzero W, ||®|| is nonzero since
X'V¥~! has a trivial null space, and x(®) can potentially be
extremely high for small ,,;,(WW). In all of our numerical
experiments small o,,;, (W) values always produce large
k(®). See Table 1. Therefore, care should be taken when
applying such DMD algorithms on nearly defective systems.
If the system is, in fact, truly defective, ® will have an infinite
condition number.

A. Schur-based DMD

In this paper we propose a Schur decomposition-based
alternative in which the diagonalizability of the underlying
matrix A is not assumed and the solution is computed using
Schur decompositon instead of eigendecomposition. Without
the assumption of diagonalizability the diagonal matrix of
eigenvalues is replaced by an upper triangular matrix. Even
though the convenience of the diagonalization is lost, the
solutions obtained here are more numerically stable due to
the unitary matrices of the Schur decomposition. Our method
is outlined below. Proceed using the same steps as eDMD
until A is constructed. Then, perform Schur decomposition
on A so that

A=Q'RQ,
where () is a unitary matrix and R is an upper triangular

matrix. Then construct the transformation matrix ®g.py, =
X'VE~1Q. Tt can be easily verified that

A(I)Schur = (I)Schm“R-

Therefore, the discrete solution can be approximated as
k
x(k) ~ Pgopur R (I)gchurxo'

This method is not necessarily meant to replace the DMD
but rather to complement it as follows. In the process of
performing DMD if the condition number of the eigenvector
matrix W is over the tolerable value, the control should be
routed to a subroutine with our method. Schur decomposition
is usually an intermediate step in computing the eigendecom-
position. Therefore, once the eigendecomposition has been
done Schur vectors are readily available. We propose utilizing
our method as below.

1) Perform low rank singular value decomposition of X,

X = UXV*.
2) Compute A =U*AU = U*X'X+U.
3) Compute eigendecomposition of A.

AW = AW.

4) Check the condition number of W. If less than the
tolerance, proceed with DMD. Otherwise go to the next
step in this procedure.

5) Compute the transformation matrix ®g.p.» using the
Schur vector matrix Q).

Pschur = X/VE_lQ-

The following theorem provides an upper bound for the
condition number of the transformation matrix ®g .z

Theorem 4: Let ®g.p. = X'VETIQ, where ¥ is invertible
and @ is unitary. Then,

K(Psenur) < K(X'VETL).
If X’V has full column rank,
H((I’Schur) < H(X/V)H(E).

Proof: Since () is unitary, the pseudo-inverse can be dis-
tributed over the product as

(X'VEQ)t = (X'VEhHt.
Now, observe,

K(®sehur) = X'VITIQI [[(X'VETIQ)] (3a)
=XVETQI QX VETH ] (3b)
<IXVETHHIQINQ I X VETHT Ge)
=r(X'VETY). (3d)

The inequality in the third step was obtained by applying
the submultiplicative property of the matrix 2-norm. The last
equality follows due to the fact that the condition number
of a unitary matrix is 1. Note that ¥~! has full row rank.

Thus, if X'V has full column rank, the pseudo-inverse can
be distributed over the product as

(X'VEHT =2(X'V)T.

Thus, using the arguments similar to (3) it can be easily
verified that

K(Psehur) < K(X'V) K(Z).



Thus, the theorem is proved.

According to Theorem 4, if X'V is well conditioned,
D genur 1 expected to be well conditioned since the singular
values in X that are deemed too small have already been
excluded after the low-rank approximation of X. However,
if the underlying system has a zero eigenvalue, X’ is rank
deficient, which forces both ® in DMD and ®g.p, in this
proposed method, to be rank deficient. The remedy to this
situation is discussed in Subsection III-B.

B. Zero eigenvalue case

In so-called “standard DMD” [1], the issue of rank defi-
ciency in ® = X’V ™1V when A has a zero eigenvalue
is circumvented by constructing ® = UW, which yields not
exact but rather projected eigenvectors of A (this stems from
the fact that if » < min(m, n), UU* # I.) However, this does
not address the numerical instabilities that can be introduced
from o, (W) being too small. Therefore, we propose using
Py = UQ as the transformation matrix. Observe,

UAQ =UU*AUQ = UQR.
Therefore, it yields

A=®yg R @Jlj@
for » < m and

A=dyq ROy,

when r = m. Most importantly, the smallest possible, condi-
tion number of unity, i.e. K(Pyg) = 1, is obtained rendering
the guarantee on numerical stability of the proposed method.

IV. NUMERICAL EXAMPLES

Example 1: This numerical example compares the condition
numbers obtained by eDMD and Schur-based DMD in a
nearly defective system. Consider the system matrix X’ X+
and its eigenvalues given below.

X' Xt =
col. 1 col. 2 col. 3 col. 4 col. 5
3.6600 —0.7581 —1.7062 —0.9540 —0.9628
—1.6513 3.3623 —0.8971 —1.1449 —1.1537
—1.4437 —1.7414  3.4142 0.0627 —0.9461
1.5650 1.2673 1.3192 4.1664 3.0626
2.5299 2.2322 2.2841 3.0363 5.1576

2.0958 +- 0.0000z
2.1293 + 0.0000z
5.3121 + 0.0000:
5.1117 + 0.00844
5.1117 — 0.0084¢

eig(X'XT) = diag

Notice the relatively small imaginary parts of the complex
conjugate eigenvalues which is the indicator that the system
might be nearly defective. The near defectiveness of the
system was confirmed by relatively small ¢,,;,(W) when
r > 4. The results of the experiment are summarized in
Table I. In the cases r > 4, the near defectiveness of the

underlying system forces ® to have very large condition
numbers while the condition number of ®g.p,, remains
small. The first state 1 (k) of the discrete solutions obtained
by the two methods are compared in Figure 1. In cases where
r < 4, the low rank structures cannot capture the true nature
of the underlying system and therefore, the near defectiveness
of the system was not revealed in these cases yielding
small condition numbers for ®. However, the inaccuracies
introduced by selecting a rank that is too low can be seen in
the solution plots; see Figure 1. Therefore, for this particular
example, if eDMD is applied, one will need to reckon
with large condition numbers. However, with our proposed
method of Schur-based DMD, selecting » = 5 will yield an
accurate solution and even r» = 4 can be acceptable for some
applications. In all cases k(P gcnyr) remains in single digit
and reaches the bound given in Theorem 4 verifying that the
bound is realistic.

TABLE |
THE EFFECT OF O'pmin (W) ON k(P)

l r: H U'mzn(W) K((I)) K(q)Schuv') ‘
r=2: 0.3149 43776 1.1965
r=3: 0.003 500.4099 1.3336
r=4: 0.0015 1.1780 x 103 3.7631
r=5: || 9.6177 x 10~%  1.8397 x 103 6.3003

Example 2: This numerical example demonstrates the nu-
merical instabilities introduced by having a large condition
number for the transformation matrix. In this numerical
example consider the underlying system matrix X’X+

col. 1 col. 2 col. 3
XXt — 1.357500 0.537500 —0.537500
0.542000  0.353000 0.458000
1.004500 —0.004500 0.815500

Its eigenvalues are computed to be

0.8950
0.8200
0.8110

eig(X'X 1) = diag

The eigenvalues are distinct but clustered together; which is
common in many applications. When r = 3, the values of
Omin(W) = 3.9725 x 1074, and k(W) = 4.3579 x 103
confirm that this system is nearly defective,

A large condition number of x(®) = 4.4987 x 103 was
observed. Jordan decomposition yields even higher condition
number of #(®jordan) = 4.7817 x 103, Now, the pertur-
bations are introduced as follows and the solutions were
plotted; see Figure 2. The first two diagonal elements of ®
are perturbed by +0.01%, and +0.08% respectively. The first
two diagonal elements of @ j;.qq, are perturbed by +0.01%,
and +0.08% respectively. The first two diagonal elements of
Dsenur are perturbed by +3%, and +4% respectively.

As shown in Figure 2, the solution produced by Schur-
based DMD can withstand up to 4% perturbation in the
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Fig. 1. The first state 1 (k), of the solution obtained by DMD and
Schur DMD in Example 1.

entries of ®g.pq While less than 0.1% perturbation in the
entries of ® and D j,,44,, can produce erroneous solutions.

Example 3: In this numerical example consider the underly-
ing system matrix X’X ™ and its eigenvalues

X' Xt =
col. 1 col. 2 col. 3 col. 4 col. 5
0.4276 1.1776 0.1776 —0.8356  0.7632
0.4276 0.1776 1.1776  —0.8356 0.7632
1.4276 1.1776 1.1776 0.1644 1.7632
—3.6253 —3.8753 —3.8753 0.1644 —3.2897
2.7701 2.5201 2.5201 1.5069 1.7632
eig(X'XT) =
5.052799998436318 + 0.000000000000000¢
—1.342399998436327 + 0.0000000000000007
diag 0.000004724821343 + 0.0000081836035821

0.000004724821343 — 0.0000081836035823
—0.000009449642686 + 0.000000000000000z
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Fig. 2. The first state, 1 (k), of the solution obtained by DMD, Jordan
DMD and Schur DMD in Example 2 after perturbations are introduced.

Notice the relatively small values of the last three eigen-
values, which indicate the system might have multiple zero
eigenvalues. The solutions were plotted for » = 2,3,4,5.
See Figure 3. The condition number of ® j,.4qn Was in
10%® range, and therefore the solution produced by Jordan
decomposition is not included in the plot. The condition
number of both @y and ®r7p remain small for r = 2, 3, 4.
For r =5,

Omin(W) = 4.0667 x 1078, k(W) = 4.3539 x 10”.

Therefore, the near defectiveness of the system is confirmed
and @y has a large condition number of 4.3539 107, while
k(®Pyg) remains unity. The perturbations are introduced as
follows and the solutions are plotted; see Figure 4. The first
five diagonal elements of ®yy, are perturbed by +0.06%,
+0.07%, +0.8%,+0.08%, +0.08% respectively. The first
five diagonal elements of @ are perturbed by +9%, +10%,
+5%,+15%, —10% respectively. As shown in Figure 4, the
solution produced by Schur-based DMD can withstand up to
15% perturbation in the entries of ® g, while less than 1%
perturbations in the entries of ® produce erroneous solutions.

V. CONCLUSIONS

Our analysis and numerical examples show that eDMD
and standard DMD can become numerically unstable when
the eigendecomposition of the underlying system is ill-
conditioned. Numerical examples also demonstrate that small
perturbations in the transformation matrix produce erroneous
results as a consequence of a large condition number. A
numerically stable method which complements DMD and
a realistic upper bound on the condition number of the
transformation matrix for the proposed method are presented.
This result is potentially consequential to computing linear
approximation of Koopman operators using DMD.
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