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Mixed Autonomy in Ride-Sharing Networks
Qinshuang Wei, Student Member, IEEE, Ramtin Pedarsani, Member, IEEE, and Samuel Coogan, Member, IEEE

Abstract—We consider ride-sharing networks served by
human-driven vehicles (HVs) and autonomous vehicles (AVs).
We propose a model for ride-sharing in this mixed autonomy
setting for a multi-location network in which a ride-sharing
platform sets prices for riders, compensation for drivers of HVs,
and operates AVs for a fixed price with the goal of maximizing
profits. When there are more vehicles than riders at a location,
we consider three vehicle-to-rider assignment possibilities: HV
priority assignment in which rides are assigned to HVs first;
AV priority assignment in which rides are assigned to AVs first;
and a weighted priority assignment in which rides are assigned
in proportion to the number of available HVs and AVs. Next,
for each of these priority assignments, we establish a nonconvex
optimization problem characterizing the optimal profits for a
network operating at a steady-state equilibrium. We then provide
a convex problem which we show to have the same optimal
profits, allowing for efficient computation of equilibria. We find
that, surprisingly, all three priority schemes result in the same
maximum profits for the platform; this is because, at an optimal
equilibrium for any priority assignment, we show all vehicles are
assigned a ride and thus the choice of priority assignment does
not affect the platform’s profit at an optimal equilibrium.

We then consider the family of star-to-complete networks that
are a convex combination of a star network and a complete
network. For this family, we consider the ratio of AVs to HVs
that will be deployed by the platform in order to maximize profits
for various operating costs of AVs. We show that when the cost
of operating AVs is high, the platform will not deploy them in its
fleet, and when the cost is low, the platform will use only AVs.
We also show that, in some cases, there is a regime for which the
platform will choose to mix HVs and AVs in order to maximize
its profit, while in other cases, the platform will use only HVs
or only AVs, depending on the relative cost of AVs. We fully
characterize these thresholds analytically and demonstrate our
results on an example.

I. INTRODUCTION

Ride-sharing platforms, also known as ride-hailing plat-
forms or transportation network companies, match passengers
or riders with drivers using websites or mobile apps [1],
[2], and such platforms have become commonplace due to
high costs of car ownership, lack of parking, and persistent
traffic congestion [3]–[5]. Traditionally, rides are provided by
drivers who use their own personal vehicle to provide service.
However, ride-sharing platforms are likely to incorporate au-
tonomous vehicles (AVs) into their fleets in the near future [6].
Owning and managing an AV fleet can be costly for the ride-
sharing platform, and significant technological and regulatory
hurdles remain before these platforms could transition to
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100% autonomous fleets [7], [8]. Therefore, it is likely that
ride-sharing platforms will initially adopt a mixed framework
in which AVs operate alongside conventional, human-driven
vehicles (HVs) [9]–[11]. In this setting, the AVs can be
deployed to serve, for instance, locations with abnormally high
demand.

Research in ride-sharing has largely focused on two ends
of the autonomy spectrum. On one end, futuristic mobility-
on-demand systems consisting of only AVs have also been
proposed and studied [12]–[16]. These works focus on con-
trolling the movement of AVs or fleet sizing to achieve
objectives such as maximum throughput and profit. On the
other end, models of rider and driver behavior in conventional
ride-sharing markets with only HVs and no AVs have been
considered in [17]–[20]. A common approach in these works is
to consider ride-sharing as a two-sided market with passengers
willing to pay for rides and drivers willing to provide rides for
compensation.

In this paper, we consider the transition from tradi-
tional ride-sharing networks to totally automated mobility-on-
demand systems. In particular, we extend the model proposed
in [17], which did not consider AVs, to the mixed autonomy
setting under several assumptions on the vehicle-to-rider as-
signment possibilities, and we analyze the resulting models.
The network consists of multiple equidistant locations, and
at each time-step, potential riders arrive at these locations
with desired destinations. The ride-sharing platform sets prices
for riders and compensation to drivers of HVs in order to
incentivize both riders and drivers to use the platform. In
addition, the platform has the option to deploy AVs for a
fixed cost per time-step. Introducing AVs leads to an important
assignment choice that must be made: if both an AV and an
HV are available to serve a rider, which receives preference?
We consider three possible assignment rules: AVs always
receive priority (AV priority); HVs always receive priority
(HV priority); and priority is determined in proportion to the
number of available AVs and HVs at each location (weighted
priority).

We focus on the equilibrium conditions that arise in the
resulting mixed autonomy deployment when the platform
seeks to maximize profits under each of the three priority as-
signments above. We summarize our main findings as follows:
1) In all three priority assignments, the equilibrium conditions
lead to a non-convex optimization problem. Nonetheless, we
develop an alternative convex problem from which an optimal
solution to the original non-convex problem can be recovered,
allowing efficient computation of the resulting equilibrium
conditions. 2) Studying the interrelation between the three pri-
ority assignments, we find that, surprisingly, all three priority
schemes result in the same maximum profits for the platform.
This is because, at an optimal equilibrium, we show that all
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vehicles are assigned a ride and thus the priority assignment
choice is immaterial at the optimal equilibrium. 3) Lastly, we
consider the ratio of AVs to HVs that will be deployed by the
platform in order to maximize profits for various operating
costs of AVs. We show that when the cost of operating AVs
is high, the platform will not utilize them in its fleet, and
when the cost is low, the platform will use only AVs. We
also show that, in some cases, there is a regime for which the
platform will choose to mix HVs and AVs vehicles in order
to maximize profits, while in other cases, the platform will
use only HVs or only AVs, depending on the relative cost of
AVs. For a specific family of networks, we fully characterize
these thresholds analytically. To the best of our knowledge, the
present paper is the first to provide a formal framework for
understanding and quantifying the impact of integrating AVs
into ride-sharing fleets1.

The remainder of this paper is organized as follows. Section
II provides the model definitions, and Section III poses the
problems of profit maximization as non-convex optimiza-
tion problems. Section IV proposes an alternative convex
optimization problem that provides the same optimal profits
and from which a solution to the original problem can be
recovered. In Section V, we study the relation between the
AV and HV priority assignments and show that they achieve
the same optimal profits. Due to its asymmetry to the AV
and HV priority assignments, weighted priority assignment is
introduced and studied separately in Section VI. Section VII
studies a particular class of networks and fully quantifies the
profit maximizing equilibrium conditions. Concluding remarks
are provided in Section VIII.

II. PROBLEM FORMULATION

We consider an infinite horizon discrete time model of a
ride-sharing network that extends the model recently proposed
in [17] to accommodate a mixed autonomy setting with
autonomous vehicles (AVs) and human-driven vehicles (HVs).
The network is assumed to consist of n equidistant locations,
and the network operator or platform determines prices for
rides and compensations to drivers within the network. Drivers
decide whether, when, and where to provide service so as
to maximize their expected lifetime earnings. The demand
pattern of riders is stationary. As such, the analysis focuses
on the equilibrium outcome determined by the platform’s
prices. This is reasonable for ride-sharing systems that involve
a large number of drivers and riders. The price of a ride
may differ among locations, but does not depend on the
desired destination of each rider, which is reasonable when
all locations are equidistant, as is assumed here.

With these considerations in mind, we are interested in
studying the potential benefits of adding AVs to the network
to maximize the profit potential for the platform.

A. Model Definition
We now formalize the mixed autonomous ride-sharing net-

work described above.
1This paper extends our preliminary work [21], which only considered AV

priority assignment, and the theoretical results in [21] are limited to a specific
class of networks.

Riders. Among a network of n equidistant locations, a mass
of θi potential riders arrives at location i ∈ {1, 2, . . . , n} in
each period of time. Throughout, when indices are omitted
from a summation expression, it is assumed the summation is
over all locations 1 to n. A fraction αij ∈ [0, 1] of riders at
location i are traveling to location j so that

∑
j αij = 1 for

all i. We assume αii = 0 for all i and construct the n-by-n
adjacency matrix A as [A]ij = αij where [A]ij denotes the
ij-th entry of A.

Human-driven vehicles (HVs). After each time period, a
driver exits the platform with probability (1 − β) where
β ∈ (0, 1), i.e., β is the probability a driver will choose to
serve another rider after completing a ride. Thus, a driver’s
expected lifetime in the network is (1 − β)−1. Each driver
has an outside option of earning ω over the same lifetime.
Thus, drivers only participate if their expected compensation
provided by the platform exceeds ω.

Autonomous vehicles (AVs). The platform can choose to
operate an AV in the network for a fixed cost of s each time-
step. Thus, k = s(1 − β)−1/ω is the ratio of the cost of
operating an AV for the equivalent time of a driver’s expected
lifetime to the outside option earnings. Unlike HVs, it is
assumed that AVs are in continual use and do not leave the
platform.

Platform. The platform sets a price pi for a ride from
location i and correspondingly compensates a driver with ci
for providing a ride at location i. The continuous cumulative
distribution of the riders’ willingness to pay is denoted by F (·)
with support [0, p̄]. That is, when confronted with a price p for
a ride, a fraction 1−F (p) of riders will accept this price, and
the remaining F (p) fraction will balk and leave the network
without requesting a ride. Note that θi(1− F (pi)) is then the
effective demand for rides at location i.

In addition, we make the following assumption throughout.

Assumption 1. The network’s demand pattern is stationary,
i.e., A and θi are fixed for all i. Moreover, the directed graph
defined by adjacency matrix A is strongly connected and θi >
0 for all i ∈ {1, . . . , n}, n ≥ 2.

In summary, the system consists of a platform that sets
prices, riders that request rides among locations, drivers or
HVs who seek to maximize their compensation within the
system, and AVs managed by the platform alongside the
drivers.

B. HV and AV Priority Assignments

In each time period, at each location, the number of riders
willing to pay the platform’s price may be less than, equal to,
or greater than the total number of HVs and AVs available
at that location. When it is greater than the total number of
vehicles, some riders will not be served and will leave the
network. When it is less than the total number of vehicles, the
platform must decide how to assign riders to vehicles. In this
paper, we consider several priority assignments.

The first priority assignment, called HV priority, assigns
riders to HVs before assigning them to AVs. Thus, if the
number of available vehicles exceeds the number of rides at
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a location, the HVs will be exhausted before any AVs are
assigned a ride. This priority assignment is appropriate if, for
example, the platform views the human drivers as customers
that should be accommodated and given preference over AVs.
In contrast, we also consider an AV priority assignment in
which the supply of AVs is exhausted before any HVs are
assigned a ride. This priority assignment is appropriate if, e.g.,
the platform views HVs only as a supplement when insufficient
AVs are available. In Section VI, we will consider a third,
intermediate weighted priority assignment that assigns rides
in proportion to the availability of vehicles, but we defer its
definition and analysis until later.

To emphasize the presence of both HVs and AVs, we
sometimes refer to the above defined model under any of the
three priority assignments as a mixed autonomy deployment.
For comparison, we will also sometimes discuss the HV-only
deployment obtained from the mixed autonomy deployment by
assuming no AVs at any location. In this paper, an HV-only
deployment may arise by the choice of a profit-maximizing
platform if the platform decides not to use any AVs; alterna-
tively, we may consider an HV-only deployment by enforcing
the constraint of no AVs at any locations, in which case we
refer to the network as a forced HV-only deployment and
the platform may experience lower profits than in a mixed
autonomy deployment. Similarly, the AV-only deployment is
obtained from the mixed autonomy deployment when there
are no HVs at any locations, and a forced AV-only deployment
arises when this condition is enforced as a constraint on the
system.

C. Equilibrium Definition for HV Priority Assignment

We now turn to the equilibrium conditions of the above
model that are induced by the stationary demand as character-
ized in Assumption 1 and by fixed prices and compensations
set by the platform. An equilibrium for the system is a time-
invariant distribution of the mass of riders, HVs, and AVs
at each location satisfying certain equilibrium constraints, as
formalized next; all variables are understood to refer to an
equilibrium and therefore no time index is included.

We consider first HV priority assignment. Let xi denote the
mass of HVs at location i. Recall θi(1 − F (pi)) the mass of
riders willing to pay for a ride at location i. If there are fewer
riders than HVs at a location, drivers can relocate to another
location to provide service in the next time period. For each
i, j ∈ {1, . . . , n}, let yij denote such drivers at location i who
relocate to location j without providing a ride. It follows that

n∑
j=1

yij = max {xi − θi(1− F (pi)), 0} . (1)

Moreover,
∑
j yji is the mass of drivers who do not get a ride

to any other location and choose to relocate to i. Further, let
δi denote the mass of new drivers who choose to enter the
platform and provide service at location i at each time step.

At equilibrium, it must hold that

xi = β

 n∑
j=1

αji min {xj , θj(1− F (pj))}+

n∑
j=1

yji

+ δi.

(2)
In (2), observe that min {xj , θj(1− F (pj))} is the total de-
mand the platform serves with HVs at location j, and therefore∑
j αji min {xj , θj(1− F (pj))} is the mass of HVs that find

themselves located at i after completing a ride. Recall that a
fraction β of drivers choose to stay in the network after each
time step.

When the demand θi(1 − F (pi)) at location i exceeds the
mass of available HVs xi, the platform can choose to use AVs
to meet this extra demand. Let zi denote the mass of AVs at
location i, and for each i, j ∈ {1, . . . , n}, let rij denote the
AVs which do not get a ride at i and are relocated to location
j. Then

zi =

n∑
j=1

αji min {zj ,max {θj(1− F (pj))− xj , 0}}

+

n∑
j=1

rji. (3)

In (3), observe that min {zj ,max {θj(1− F (pj))− xj , 0}} is
the total demand that the platform serves with AVs at location
j so that

∑
j αji min {zj ,max {θj(1− F (pj))− xj , 0}} is

the mass of AVs which are located at i after completing a
ride. Moreover,

∑
j rji is the mass of AVs which do not get

a ride to any other location and are relocated to location i. It
follows that

n∑
j=1

rij = max {zi −max {θi(1− F (pi))− xi, 0} , 0} . (4)

Notice that
∑
j rij depends on xi due to HV priority assign-

ment adopted in this subsection.
Let Vi denote the expected earnings for a driver at location

i so that

Vi = min

{
θi(1− F (pi))

xi
, 1

}(
ci +

n∑
k=1

αikβVk

)

+

(
1−min

{
θi(1− F (pi))

xi
, 1

})
βmax

j
Vj , (5)

where ci is the compensation of the driver for a ride.
Since drivers will only enter the platform if Vi ≥ ω, i.e.,

the expected earnings exceed the drivers’ outside option, the
platform will choose compensation such that Vi = ω in order
to maximize profits.

Definition 1. For some prices and compensations {pi, ci}ni=1,
the collection {δi, xi, yij , zi, rij}ni,j=1 is an equilibrium under
{pi, ci}ni=1 for HV priority assignment if (1)–(4) is satisfied
and Vi as defined in (5) satisfies Vi = ω for all i = 1, . . . , n.

D. Equilibrium Definition for AV Priority Assignment

In this subsection, we parallel the development of the pre-
vious subsection and instead consider AV priority assignment.
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In this way, we obtain the following analogous equilibrium
conditions where, to avoid cumbersome notation, we reuse
variables since the particular priority assignment under con-
sideration will always be clear from context:

xi = β

∑
j

αji min {xj ,max {θj(1− F (pj))− zj , 0}}

+
∑
j

yji

+ δi (6)

n∑
j=1

yij = max {xi −max {θi(1− F (pi))− zi, 0} , 0} (7)

zi =

n∑
j=1

αji min {zj , θj(1− F (pj))}+
∑
j

rji (8)

n∑
j=1

rij = max {0, zi − θi(1− F (pi))} . (9)

In comparing (6)–(9) to (1)–(4), notice that AV priority assign-
ment leads to

∑
j yij dependent on zi in (7) whereas

∑n
j=1 rij

does not depend on xi in (9).
The expected earning Vi for a driver at location i now has

the form

Vi = min

{
Mi

xi
, 1

}(
ci +

n∑
k=1

αikβVk

)

+

(
1−min

{
Mi

xi
, 1

})
βmax

j
Vj , (10)

Mi = max {θi(1− F (pi))− zi, 0} . (11)

Again, the platform will choose compensation such that Vi =
ω.

Definition 2. For some prices and compensations {pi, ci}ni=1,
the collection {δi, xi, yij , zi, rij}ni,j=1 is an equilibrium under
{pi, ci}ni=1 for AV priority assignment if (6)–(9) is satisfied
and Vi as defined in (10)–(11) satisfies Vi = ω for all i =
1, . . . , n.

III. PROFIT-MAXIMIZATION FOR HV AND AV PRIORITY
ASSIGNMENT

We now consider the problem of maximizing profits at
equilibrium. We first consider profit maximization with HV
priority assignment and then with AV priority assignment.
Under HV priority assignment, maximizing the aggregate
profit across the n locations subject to the systems equilibrium
constraints yields the following optimization problem:

max
{pi,ci}ni=1

n∑
i=1

[min {xi + zi, θi(1− F (pi))} · pi

−min {xi, θi(1− F (pi))} · ci − zi · s]
s.t. {δi, xi, yij , zi, rij}ni,j=1 is an equilibrium

under {pi, ci}ni=1 for HV priority assignment.
(12)

The optimization problem (12) is difficult to analyze directly.
Instead, we propose an equivalent optimization problem, fol-
lowed by a lemma establishing the equivalence. To this end,
consider as an alternative

max
{pi,δi,xi,yij ,zi,rij}

n∑
i=1

piθi(1− F (pi))− ω
n∑
i=1

δi − s
n∑
i=1

zi

s.t. di =θi(1− F (pi))

xi =β

 n∑
j=1

αji min {xj , dj}+

n∑
j=1

yji

+ δi

n∑
j=1

yij = max {xi − di, 0}

zi =

n∑
j=1

αji max {dj − xj , 0}+

n∑
j=1

rji

n∑
j=1

rij =zi −max {di − xi, 0}

pi,δi, zi, xi, yij , rij ≥ 0 ∀i, j. (13)

In a certain sense formalized in the next lemma, (13) is
equivalent to (12).

Lemma 1. Assume HV priority assignment, and consider
the optimization problem (13). The following hold under the
Assumption 1:

1) The optimal value of (13) is an upper bound on the
optimal value of (12) and thus provides an upper bound
on the optimal profits for the platform for HV priority
assignment.

2) If {pi, δi, xi, yij , zi, rij}ni,j=1 is a feasible solution for
(13) such that di > 0 for all i, i.e., some riders
are served at all locations, then there exist compensa-
tions {ci}ni=1 such that the tuple {δi, xi, yij , zi, rij}ni,j=1

constitutes an equilibrium under {pi, ci}ni=1 for HV
priority assignment. Furthermore, the cost incurred by
the platform under these compensations per period is
equal to ω

∑n
i=1 δi.

3) If, in addition, (1 − β)ω < p̄ or s < p̄, any optimal
solution

{
p∗i , δ

∗
i , x
∗
i , y
∗
ij , z

∗
i , r
∗
ij

}
for (13) is such that

d∗i > 0 for all i. Conversely, if (1 − β)ω ≥ p̄ and
s ≥ p̄, any optimal solution for (13) is such that
δ∗i = d∗i = x∗i = z∗i = 0 for all i.

Proof. The proof of the lemma closely follows that of [17,
Lemma 1], where we adjust the claim and the proof so that it
applies to the mixed autonomy setting here.

For the first part of the lemma, we need to show that any
solution for (12) satisfies di = θi(1 − F (pi)) ≤ xi + zi. By
contradiction, suppose di > xi+zi, so that increasing the price
pi by a small amount (and thus decreasing θi(1−F (pi))) will
improve the value of the objective function. Therefore, di ≤
xi + zi at optimum. Hence we can write the first summation
of (12) as
n∑
i=1

min {xi + zi, θi(1− F (pi))} =

n∑
i=1

θi(1− F (pi)). (14)
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The term ω
∑
i δi is the cost rate for drivers of the platform,

which is a lower bound for the platform’s cost on human-
driven vehicles at equilibrium. Moreover, the constraints in
(13) correspond to the equilibrium constraints in (12). There-
fore, the optimal value of (13) is an upper bound for that of
(12).

Next, we’ll see that the upper bound can be reached by the
optimal solution supported by some compensations {ci}ni=1

under equilibrium.
To prove the second part of the lemma, we construct a

compensation {ci}ni=1 so that Vi = ω for all i. To that end,
let

ci =

{
xi

di
· ω(1− β) if di < xi

ω(1− β) if di ≥ xi.
(15)

Since we assumed that di > 0 for all i, then ci < ∞ for
all i and thus the compensation is well-defined. Moreover,
the probability that any driver at location i is assigned to a
ride is di

xi
when di < xi and is 1 when di ≥ xi since the

driver takes the priority when drivers and AVs both exist in
the platform. Therefore, the expected earnings for a single time
period for a driver at location i are equal to ω(1− β). Thus,
the expected lifetime earnings are Vi =

∑∞
j βjω(1−β) = ω.

Hence, the solution {pi, δi, xi, yij , zi, rij}ni,j=1 is supported as
an equilibrium using the compensations we constructed above.

Moreover, the cost incurred by the platform under these
compensations per period is

n∑
i=1

min {xi, θi(1− F (pi))} · ci =

n∑
i=1

min {xi, di} · ci.

We construct a partition for the locations so that I1 =
{i : di < xi} and I2 = {i : di ≥ xi}. Therefore∑
i

min {xi, di} · ci =
∑
i∈I1

dici +
∑
i∈I2

xici

=
∑
i∈I1

di ·
xi
di
ω(1− β) +

∑
i∈I2

xiω(1− β)

=
∑
i

xiω(1− β) =

n∑
i=1

δiω.

The last equality follows from the fact that
∑n
i=1 xi(1−β) =∑n

i=1 δi since, at equilibrium, the mass of drivers entering the
platform is equal to the mass of drivers that are leaving.

The third part of the lemma follows directly from the second
part of [17, Lemma 1] since zi > 0 only if di > 0 in our
scenario.

Turning now to the case of AV priority assignment, the
analogous profit-maximization problem is given by (16) below
and as in the case of HV priority assignment, we introduce
(17) for AV priority assignment.

max
{pi,ci}ni=1

n∑
i=1

[min {xi + zi, θi(1− F (pi))} · pi

−min{xi,max{θi(1− F (pi))− zi, 0}} · ci − zi · s]
s.t.{δi, xi, yij , zi, rij}ni,j=1 is an equilibrium under

{pi, ci}ni=1 for AV priority assignment. (16)

max
{pi,δi,xi,yij ,zi,rij}

n∑
i=1

piθi(1− F (pi))− ω
n∑
i=1

δi − s
n∑
i=1

zi

s.t. di =θi(1− F (pi))

xi =β

∑
j

αji max {dj − zj , 0}+
∑
j

yji

+ δi

n∑
j=1

yij =xi −max {di − zi, 0}

zi =

n∑
j=1

αji min {dj , zj}+

n∑
j=1

rji

n∑
j=1

rij = max {zi − di, 0}

pi,δi, zi, xi, yij , rij ≥ 0 ∀i, j. (17)

Mirroring Lemma 1, optimization problems (16) and (17) are
equivalent in a certain sense.

Lemma 2. Assume AV priority assignment, and consider the
optimization problem (17). The following hold under Assump-
tion 1:

1) The optimal value of (17) is an upper bound on the
optimal value of (16) thus provides an upper bound
on the optimal profits for the platform for AV priority
assignment.

2) If {pi, δi, xi, yij , zi, rij}ni,j=1 is a feasible solution for
(17) such that di > 0 for all i, i.e., some riders are
served at all locations, then there exist compensations
{ci}ni=1 such that the tuple {δi, xi, yij , zi, rij}ni,j=1 con-
stitutes an equilibrium under {pi, ci}ni=1 for AV priority
assignment. Furthermore, the cost incurred by the plat-
form under these compensations per period is equal to
ω
∑n
i=1 δi.

3) If, in addition, (1 − β)ω < p̄ or s < p̄, any optimal
solution

{
p∗i , δ

∗
i , x
∗
i , y
∗
ij , z

∗
i , r
∗
ij

}
for (17) is such that

d∗i > 0 for all i. Conversely, if (1 − β)ω ≥ p̄ and
s ≥ p̄, any optimal solution for (17) is such that
δ∗i = d∗i = x∗i = z∗i = 0 for all i.

The proof is similar to that of Lemma 1 by setting

ci =

{
xi

di−zi · ω(1− β) if di > zi

ω(1− β) if di ≤ zi.

From Lemma 1 (resp., Lemma 2), we conclude that it is
without loss of generality for us to focus on the optimization
problem (13) (resp., (17)) for the rest of the paper when
considering HV (resp., AV) priority assignment.

Moreover, while the objective function of (13) (resp., (17))
is not concave in general, it is concave for distributions for
which the first summation

∑n
i=1 piθi(1−F (pi))—the revenue

of the platform—is concave. This is true, for example, for the
case that F (·) is the uniform distribution. Throughout the rest
of the paper, we focus on the case where the rider’s willingness
to pay is such that the revenue of the platform is concave.

Assumption 2. The cumulative distribution F (·) of the riders’
willingness to pay is such that p · F (p) is concave in p.
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Under HV (resp., AV) priority assignment, we have con-
verted (12) (resp., (16)) to the alternative optimization problem
(13) (resp., (17)). Next, we will further convert (13) (resp.,
(17), henceforth written as (13)/(17)) to an alternative opti-
mization problem that is also convex, allowing for efficient—
and in some cases, closed form—solution computation.

IV. CONVEXIFICATION OF PROFIT MAXIMIZATION

Even when (13)/(17) possesses a concave objective func-
tion, the constraints are non-convex so that solving (13)/(17)
remains computationally difficult, i.e., nonconvex. This section
introduces alternative optimization problems of the mixed
autonomy deployment for which the optimal profits will be
the same as that of (13)/(17).

While the optimal profits are the same, the optimal solutions
of the alternative optimization problems are not exactly the
same as those calculated in the original problems (13)/(17).
However, given the optimal solution of the alternative prob-
lems, we show that it is possible to compute an optimal
solution for the original problems (13)/(17) with identical
profit and vice versa. Moreover, the alternative optimization
problems become quadratic optimization problems with linear
constraints when F (·) is a uniform distribution.

First, assume HV priority assignment, and consider the
optimization problem given by

max
{pi,δi,xi,zi,rij}

n∑
i=1

piθi(1− F (pi))− ω
n∑
i=1

δi − s
n∑
i=1

zi

s.t. di = θi(1− F (pi))

xi = β

n∑
j=1

αjixj + δi

zi =

n∑
j=1

αji(dj − xj) +

n∑
j=1

rji

n∑
j=1

rij = zi − (di − xi)

pi,δi, xi, zi, rij ≥ 0 ∀i, j. (18)

In the following, we regard (13) as the original optimization
problem and (18) as the alternative optimization problem for
HV priority assignment.

Theorem 1 below states that (13) and (18) have the same
optimal profits for any β, s, ω and adjacency matrix A.
Moreover, given one optimal solution for (13) or (18), it is
possible to compute an optimal solution for the other.

Theorem 1. Assume HV priority assignment, and consider the
original optimization problem (13) and alternative optimiza-
tion problem (18). Let

uori∗ =
{
pori∗i , δori∗i , zori∗i , xori∗i , yori∗ij , rori∗ij

}n
i,j=1

(19)

be an optimal solution for (13) and

ualt∗ =
{
palt∗i , δalt∗i , zalt∗i , xalt∗i , ralt∗ij

}n
i,j=1

(20)

be an optimal solution for (18). Then the following hold under
Assumptions 1 and 2:

• The original optimization problem and the alternative
problem obtain the same optimal profits for all possible
choices of β, s, ω and adjacency matrix A.

• The optimal solutions satisfy xori∗ = xalt∗, zori∗ = zalt∗,
pori∗ = palt∗ and δori∗ = δalt∗.

• If θi(1 − F (pori∗i )) ≤ xori∗i for all i in the original
optimization problem, then zori∗i = 0 for all i and setting
ralt∗ij = yori∗ij for all i, j constitutes an optimal solution
for the alternative problem.

• If θi(1 − F (palt∗i )) ≤ xalt∗i for all i in the alternative
optimization problem, then zalt∗i = 0 for all i and setting
yori∗ij = ralt∗ij , rori∗ij = 0 constitutes an optimal solution
for the original optimization problem.

Proof. Let φori∗ and φalt∗ be the optimal profits of the two
problems (13) and (18), respectively, and let dori∗i = θi(1 −
F (pori∗i )) and dalt∗i = θi(1− F (palt∗i )).

To prove that the optimal profits of the two problems are
equal, we first show that φori∗ ≤ φalt∗ and then φori∗ ≥ φalt∗.

We first introduce Lagrange multiplies λi, µi, and γi and
establish the following inequalities for all i, j derived from the
KKT conditions that are necessary for any optimal solution of
(18):

(constraints on δi) − ω + λi ≤ 0 (21)

(constraints on xi)
∑
j

αij(βλj − µj)− λi + γi ≤ 0

(22)
(constraints on zi) − s+ γi − µi ≤ 0 (23)
(constraints on rij) µj − γi ≤ 0. (24)

We now consider three cases to prove φori∗ ≤ φalt∗.
Case 1: dori∗i ≥ xori∗i for all i. Then uori∗ is feasible for the

alternative problem because both problems are in fact the same
optimization problem in this case. Therefore φori∗ ≤ φalt∗.

Case 2: dori∗i ≤ xori∗i for all i. Then the AVs are not needed
in any location and zi = 0, rij = 0 ∀i, j. Then the original
optimization problem becomes

max
{pi,δi,xi,yij ,zi,rij}

n∑
i=1

piθi(1− F (pi))− ω
n∑
i=1

δi

s.t. di = θi(1− F (pi))

xi = β

 n∑
j=1

αjidj +

n∑
j=1

yji

+ δi

n∑
j=1

yij = xi − di

pi, δi, xi, yij ≥ 0 ∀i, j. (25)

Let zalti = 0 and yaltij = 0 ∀i, j. Then the alternative problem
becomes exactly the same problem as (25) when we substitute
rij with yij , which proves the claim.

Case 3: There exists some location i such that xori∗i > dori∗i

and some location j such that xori∗j < dori∗j . In this case, if
there is no i such that xori∗i = dori∗i , then let I1 = {i : xori∗i >
dori∗i } and let I2 = {i : xori∗i < dori∗i }. We can then consider
an aggregated network with locations 1 and 2 representing the
combined locations in I1 and I2, respectively.
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Hence, in this aggregated network, α11 = α22 ≥ 0; α12 > 0
and α21 > 0 by our assumption that the directed graph defined
by adjacency matrix A is strongly connected.

Since dori∗1 < xori∗1 , then zori∗1 = 0. On the
other hand, zori∗1 = max

{
dori∗1 − xori∗1 , 0

}
α11 +

max
{
dori∗2 − xori∗2 , 0

}
α21 +

∑2
j=1 r

ori∗
j1 = (dori∗2 −

xori∗2 )α21 +
∑2
j=1 r

ori∗
j1 since dori∗2 − xori∗2 > 0 and

dori∗1 − xori∗1 < 0. Hence zori∗1 > 0 which leads to
a contradiction. Therefore, if there is no i such that
xori∗i = dori∗i , then either xori∗i > dori∗i for all i or
xori∗i < dori∗i for all i.

If there exists i such that xori∗i = dori∗i , define I1 and I2
as above and introduce I3 = {i : xori∗i = dori∗i }.

Similar to the above argument, we show that zori∗1 =
zori∗3 = 0. Since zori∗1 =

∑3
j=1 αj1 max

{
dori∗j − xori∗j , 0

}
+∑3

j=1 r
ori∗
j1 while dori∗2 − xori∗2 > 0, then α21 = 0. Similarly,

we must have α23 = 0. Therefore, we have α22 = 1
since

∑3
j=1 αij = 1. However, α22 = 1 means that some

components in the graph are not strongly connected with the
others, which contradicts our assumption. Hence this mixed
situation cannot be an optimal solution for the problem.

Thus, up to now, we have shown that φori∗ ≤ φalt∗. Next
we show that φori∗ ≥ φalt∗.

Case 1: If dalt∗i ≥ xalt∗i for all i, then uori∗ is feasible for
the original problem because both problems are in fact the
same optimization problem in this case. Therefore φori∗ ≥
φalt∗.

Case 2: If dalt∗i ≤ xalt∗i for all i, we want to show that in
this case, zalt∗i = 0 for all i and then ualt∗ will be feasible for
the original optimization by setting yoriij = raltij with roriij = 0
for all i, j.

Fix dalt∗i ≤ xalt∗i for all i, then if zi = 0 is a feasible
solution for (18), then it will be the optimal the solution since
any increase in zi will increase the cost and reduce the profit.

We’ll show below that given dalt∗i ≤ xalt∗i and setting
zi = 0 for all i for (18), there exists rij that satisfies the
constraints for (18) and thus constitutes a feasible solution for
the alternative optimization problem.

n∑
j=1

rij = xi − di

n∑
j=1

rji =

n∑
j=1

αji(xj − dj)

rij , (xi − di) ≥ 0 ∀i, j. (26)

The new constraints can be described as in (26). We can
reformulate (26) into (27) below where R is an n by n matrix
and [R]ij = rij ; ∆ is an n by 1 vector and [∆]i = xi − di;
1 is an n by 1 one’s vector.

R1 = ∆

RT1 = AT∆

∆ ≥ 0

Rij ≥ 0 (27)

We can then vectorize R to R̂ (in row) so that (27) will
transform into (28).

MR̂ = b

R̂ij ≥ 0 (28)

M =

[
M1

M2

]
where M1 and M2 are both n by n2 matrices:

M1 = In×n ⊗ 1T =
1 . . . 1 0 . . . 0 . . . 0 . . . 0
0 . . . 0 1 . . . 1 . . . 0 . . . 0

...
...

...
...

0 . . . 0 0 . . . 0 . . . 1 . . . 1

 and

M2 = 1T ⊗ In×n =
[
In×n In×n . . . In×n

]
.

R̂ = [R11,R12, . . . ,R1n, . . . ,Rn1,Rn2, . . . ,Rnn]T is a
n2 by 1 vector.

b =

[
∆

AT∆

]
is a 2n by 1 vector.

By Farka’s Lemma, to prove that (28) has a feasible solution
R̂: that is, ∃R̂ s.t. MR̂ = b and R̂ ≥ 0, we only need to
disprove the claim that ∃v ∈ R2n s.t. MTv ≥ 0 and bTv < 0.
Denote vi as the ith element of v.

Let v ∈ R2n s.t. MTv ≥ 0,

MTv =
[
MT

1 MT
2

]
v =

1 0 . . . 0 In×n
0 1 . . . 0 In×n
0 0 . . . 1 In×n

v.

Hence, vi+vj ≥ 0 for all i = 1, . . . , n and j = n+1, . . . , 2n.
Now consider bTv.

bTv =
[
∆T ∆TA

]
v = ∆T

[
In×n A

]
v

= ∆T


...

vi +
∑n
j=1 αijvj+n

...



= ∆T


...∑n

j=1 αij(vi + vj+n)
...


The last equality comes from the fact that

∑n
j=1 αij = 1.

Moreover, since vi + vj+n ≥ 0 for all i = 1, . . . , n as
previously mentioned, and ∆ ≥ 0, then bTv ≥ 0. Hence
we disproved the claim that ∃v ∈ R2n s.t. MTv ≥ 0 and
bTv < 0.

Therefore (28) has a feasible solution R̂ and thus (26) has
feasible solution rij for all i, j. Hence zalt∗i = 0 for all i and
then ualt∗ will be feasible for the original optimization by
setting yoriij = raltij with roriij = 0 for all i, j.

Case 3: There exist β and k such that the optimal solution
ualt∗ does not satisfy the two situations above, which means
there exist locations such that dalt∗i > xalt∗i for some i and
dalt∗j < xalt∗j for some j. Let I1 = {i : xalt∗i < dalt∗i } and let
I2 = {i : xalt∗i ≥ dalt∗i } and we can consider an aggregated
network with locations 1 and 2 representing the combined
locations in I1 and I2, respectively. Knowing xalt∗1 < dalt∗1 ,
suppose xalt∗2 > dalt∗2 (since there exists at least an i such that
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dalt∗i < xalt∗i ). Then we can rewrite the constraints of (18) as
below:

x1 =β(α11x1 + α21x2) + δ1

x2 =β(α12x1 + α22x2) + δ2

z1 =α11(d1 − x1) + α21(d2 − x2) + r11 + r21

z2 =α12(d1 − x1) + α22(d2 − x2) + r12 + r22

r11 + r12 =z1 − (d1 − x1)

r21 + r22 =z2 − (d2 − x2)

pi,δi, zi, xi, rij ≥ 0 ∀i, j. (29)

For convenience, denote ∆1 = dalt∗1 − xalt∗1 and ∆2 =
dalt∗2 − xalt∗2 . Obviously, ∆1 > 0 and ∆2 < 0.

Since r11 +r12 ≥ 0, then zalt∗1 > ∆1 > 0 and this indicates
that γ1−µ1 = s. Hence µ1−γ1 = −s 6= 0 and thus ralt∗11 = 0.

Since xalt∗2 > dalt∗2 > 0, then xalt∗1 > 0 since α21 > 0 for
strong connectivity of the network. Moreover, these indicates
that δalt∗1 + δalt∗2 = (1− β)(xalt∗1 + xalt∗2 ) > 0

As z2 ≥ 0, then ralt∗21 + ralt∗22 ≥ xalt∗2 − dalt∗2 > 0. Suppose
ralt∗21 = 0, then ralt∗22 > 0, then µ2 − γ2 = 0 and hence
zalt∗2 = 0. Then zalt∗1 = α11∆1 + α21∆2. Knowing zalt∗1 ≥
∆1 requires α11 = 1, α21 = 0 (because ∆2 < 0) and this
network is no longer strongly connected which contradicts the
assumption. Therefore ralt∗21 > 0 and thus µ1 − γ2 = 0. We
can get µ2 − γ1 = (µ2 − γ2) + (γ2 − µ1) + (µ1 − γ1) ≤
0 + 0 − s < 0 so that ralt∗12 = 0. Therefore zalt∗1 = ∆1;
ralt∗21 = zalt∗1 − α11∆1 − α21∆2 = α12∆1 − α21∆2.

With all the preliminary results above, we now divide the
problem into two cases: zalt∗2 = 0 or zalt∗2 > 0.

Suppose zalt∗2 = 0, ralt∗22 = ∆2 − ralt∗21 = −α12∆1 −
α22∆2 > 0, which implies that α12∆1 < −α22∆2 and
µ2 − γ2 = 0. Hence γ1 − µ2 = (γ1 − µ1) + (µ1 − γ2) +
(γ2 − µ2) = s+ 0 + 0 = s.

Then (22) yields that

β(α11λ1 + α12λ2)− λ1 + α11s+ α12s = 0 (30)
β(α21λ1 + α22λ2)− λ2 + α21 · 0 + α22 · 0 = 0 (31)

If λ2 = ω, then (31) shows that βα21λ1 = (1−βα22)λ2 >
(β − βα22)λ2 = βα21λ2. Hence λ1 > λ2 > ω which
contradicts to (21). Therefore, λ2 < ω ⇒ δalt∗2 = 0. Since
δalt∗1 +δalt∗2 > 0, then δalt∗1 > 0 and λ1 = ω, λ2 = βα21

1−βα22
·ω.

Applying this result to (30) gives s = (1−β)(1+βα12−βα22)
1−βα22

·
ω > (1− β)ω.

Let porii = palt∗i , roriij = 0, yoriij = ralt∗ij for all
i, j; δori1 = (1 − β)(dalt∗1 + xalt∗2 ), δori2 = 0, zori1 =
zori2 = 0, xori1 = dalt∗1 and xori2 = xalt∗2 . Then uori ={
porii , δorii , zorii , xorii , yoriij , r

ori
ij

}2
i,j=1

would be a feasible so-
lution for (13). This solution increases the cost by ω · (δori1 −
δalt∗1 + δori2 − δalt∗2 ) = (1 − β)ω∆1, decreases the cost by
s · (zalt∗1 − zori1 + zalt∗2 − zori2 ) = s ·∆1 > (1− β)ω∆1. The
net profit increases, hence there always exists a solution for
the original optimization problem that has a higher profit and
thus the solution is not optimal (since we’ve already proved
that φori∗ ≤ φalt∗ ).

Therefore zalt∗2 > 0, which indicates ralt∗22 = 0 and µ2 −
γ2 = s. Hence γ1−µ2 = (γ1−µ1)+(µ1−γ2)+(γ2−µ2) =

s+0+s = 2s. Moreover, zalt∗2 = α12∆1+α22∆2 > 0 implies
α12∆1 > −α22∆2

Then (22) yields that

β(α11λ1 + α12λ2)− λ1 + α11s+ α12 · 2s = 0 (32)
β(α21λ1 + α22λ2)− λ2 + α21 · 0 + α22 · s = 0 (33)

Suppose λ1 = λ2 = ω, then (1+α12)s = (1−β)ω = α22s.
But s > 0 and 1 + α12 > 1 > α22, thus (1 + α12)s <
α22s. Therefore we cannot have δalt∗1 > 0 and δalt∗2 > 0.
Suppose λ2 = ω. Then solving the system of equations gives
λ1 = 1+α12−βα22

β(2α21+α12−1)+α22
· ω > ω, which contradicts the KKT

condition (21). Hence λ2 < ω implies that δalt∗2 = 0 and thus
δalt∗1 > 0. Therefore, λ1 = ω, λ2 = β(2α21+α12−1)+α22

1+α12−βα22
· ω

and s = (1− β)− (1−β)2α12

1+α12−βα22
· ω.

Let porii = palt∗i , yoriij = 0 for all i, j; xori1 = xori2 =
δori1 = δori2 = 0, zori1 = dalt∗1 and zori2 = α12d

alt∗
1 +α22d

alt∗
2 ;

rori21 = α12d
alt∗
1 − α21d

alt∗
2 and rori11 = rori12 = rori22 = 0

(notice that rori21 > 0 since α12∆1 > −α22∆2 implies
that α12d

alt∗
1 + α22d

alt∗
2 > α12x

alt∗
1 + α22x

alt∗
2 =

xalt∗
2

β >

xalt∗2 > dalt∗2 and thus α12d
alt∗
1 − α21d

alt∗
2 > 0). Then

uori =
{
porii , δorii , zorii , xorii , yoriij , r

ori
ij

}2
i,j=1

would be a fea-
sible solution for (13). This solution decreases the cost by
ω · (δalt∗1 − δori1 + δalt∗2 − δori2 ) = (1 − β)ω(xalt∗1 + xalt∗2 ),
increases the cost by s · (zori1 − zalt∗1 + zori2 − zalt∗2 ) =
s·(xalt∗1 +α12x

alt∗
1 +α22x

alt∗
2 ) = (1−β)ω(xalt∗1 +xalt∗2 ). The

net profit is not changing, hence there always exists a solution
for the original optimization problem that has the same profit
which proves the claim.

Turning our attention to AV priority assignment case, con-
sider the optimization problem

max
{pi,δi,xi,yij ,zi,rij}

n∑
i=1

piθi(1− F (pi))− ω
n∑
i=1

δi − s
n∑
i=1

zi

s.t. di =θi(1− F (pi))

xi =β

∑
j

αji(dj − zj) +
∑
j

yji

+ δi

n∑
j=1

yij =xi − (di − zi)

zi =

n∑
j=1

αjizj

pi,δi, zi, xi, yij ≥ 0 ∀i, j. (34)

Similar to above, we regard (17) as the original optimization
problem and (34) as the alternative optimization problem for
AV priority assignment. The next theorem mirrors Theorem 1.

Theorem 2. Consider the original optimization problem (17)
and alternative optimization problem (34). Let

uori∗ =
{
pori∗i , δori∗i , zori∗i , xori∗i , yori∗ij , rori∗ij

}n
i,j=1

(35)

be an optimal solution for (17) and

ualt∗ =
{
palt∗i , δalt∗i , zalt∗i , xalt∗i , yalt∗ij

}n
i,j=1

(36)
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be an optimal solution for (34). Then the following holds under
Assumptions 1 and 2:
• The original optimization problem and the alternative

problem obtain the same optimal profits for all possible
choices of β, k and adjacency matrix A.

• The optimal solutions satisfy xori∗ = xalt∗, zori∗ = zalt∗,
pori∗ = palt∗ and δori∗ = δalt∗.

• If θi(1 − F (pori∗i )) ≤ zori∗i for all i in the original
optimization problem, then xori∗i = 0 for all i and setting
yalt∗ij = rori∗ij for all i, j constitutes an optimal solution
for the alternative problem.

• If θi(1 − F (palt∗i )) ≤ zalt∗i for all i in the alternative
optimization problem, then xalt∗i = 0 for all i and setting
rori∗ij = yalt∗ij , yori∗ij = 0 constitutes an optimal solution
for the original optimization problem.

Proof. The proving strategy is the same as Theorem 1. Let
φori∗ and φalt∗ represent the optimal profits of the two
problems (17) and (34), respectively, and let dori∗i = θi(1 −
F (pori∗i )) and dalt∗i = θi(1− F (palt∗i )).

The KKT conditions related to all of the decision variables
(except for the variable pi since F (pi) can be some general
function of pi) are:

(constraints on δi) :− ω + λi ≤ 0 (37)
(constraints on xi) :− λi + γi ≤ 0 (38)

(constraints on zi) :− s−
∑
j

αij(βλj − µj) + γi − µi ≤ 0

(39)
(constraints on yij) :βλj − γi ≤ 0. (40)

Notice that for any of the inequalities, the equality holds if
the corresponding variable is greater than zero.

To prove that the optimal profits of the two problems are
equal, we first show that φori∗ ≤ φalt∗ and then φori∗ ≥ φalt∗.
In both directions, the first two cases (di ≤ xi for all i and
di ≥ xi for all i) use exactly the same method as the proof
in Theorem 1, hence we omit those details, and only consider
the third case to prove φori∗ ≤ φalt∗.

Case 3: There exists some location i such that zori∗i < dori∗i

and some location j such that zori∗j > dori∗j . We will prove
that the optimal solution for the original optimization problem
(17) will not fall in this case.

Suppose there exist some location such that zori∗i < dori∗i ,
and let I1 = {i : zori∗i < dori∗i } and I2 = {i : zori∗i ≥
dori∗i }. We will show that for all i ∈ I2, zori∗i = dori∗i . We
can consider an aggregated network with locations 1 and 2
representing the combined locations in I1 and I2, respectively.
Knowing z1 < d1 and z2 ≥ d2, then for any d2, z2 = d2 will
constitute a feasible solution for (17). Moreover, any z2 such
that z2 > d2 will increase the cost and thus decrease the profit
for (17). Hence z2 = d2 is optimal. Therefore case 3 will not
constitute an optimal solution for (17).

Next we consider the third case for proving φori∗ ≥ φalt∗.
Case 3: There exists some location i such that zalt∗i < dalt∗i

and some location j such that zalt∗j > dalt∗j . We will prove that
the optimal solution for the alternative optimization problem
will not fall in this case.

Suppose there exists some location such that zalt∗i < dalt∗i ,
and let I1 = {i : zalt∗i < dalt∗i } and I2 = {i : zalt∗i ≥ dalt∗i }.
We will show that for all i ∈ I2, zori∗i = dori∗i .

As above, we can consider an aggregated network with
locations 1 and 2 representing the combined locations in I1
and I2, respectively. We know that zalt∗1 < dalt∗1 and denote
∆1 = dalt∗1 − zalt∗1 > 0. Moreover, suppose that zalt∗2 > dalt∗2

and ∆2 = dalt∗2 − zalt∗2 < 0. We then rewrite the constraints
in (41) as below:

xalt∗1 =β[α11∆1 + α21∆2 + (yalt∗11 + yalt∗21 )] + δalt∗1

xalt∗2 =β[α12∆1 + α22∆2 + (yalt∗12 + yalt∗22 )] + δalt∗2

yalt∗11 + yalt∗12 =xalt∗1 −∆1

yalt∗21 + yalt∗22 =xalt∗2 −∆2

zalt∗1 =α11z
alt∗
1 + α21z

alt∗
2

zalt∗2 =α12z
alt∗
1 + α22z

alt∗
2

pi,δi, zi, xi, yij ≥ 0 ∀i, j. (41)

First notice that x1 > 0 and y21 + y22 > 0 since ∆1 > 0
and ∆2 < 0; then x1+x2 > 0 and thus δ1+δ2 = (1−β)(x1+
x2) > 0. Moreover, we will show below that δ1 + y21 > 0.

Suppose that δ1 = y21 = 0. Since y12 ≥ 0, then y11 ≤
x1 −∆1. Then, from (41), x1 = β[α11∆1 + α21∆2 + y11] ≤
β[α11∆1 +α21∆2 +x1−∆1] = β[−α12∆1 +α21∆2 +x1] <
βx1 < x1. This is a contradiction and thus δ1 + y21 > 0.

We next show that when zalt∗1 < dalt∗1 and zalt∗2 > dalt∗2 , we
are always able to obtain a solution in the original optimization
problem that achieves greater profit. Since we have already
proved that φori∗ ≤ φalt∗, then the solution that falls in
this case will not be an optimal solution for the alternative
optimization problem.

Suppose s > (1 − β)ω. We are able to obtain a higher
profit by increasing the mass of HVs and decreasing the
mass of AVs. In particular, this transformation to case 1 is
accomplished by setting dorii = dalti , roriij = 0, and yoriij = yaltij
for all i, j; zori2 = dalt2 , zori1 = α21

α12
zori2 , xori1 = xalt1 − α21

α12
∆2,

xori2 = xalt2 − ∆2, δori1 = δalt1 − (1 − β)α21

α12
∆2 and δori2 =

δalt2 − (1−β)∆2. Then, it is straightforward to verify that the
tuple uori =

{
porii , δorii , zorii , xorii , yoriij , r

ori
ij

}2
i,j=1

satisfies all
the constraints of (17), and hence it is a feasible solution for
(17).

This modified solution keeps the demand di and thus pi
unchanged, decreases the cost incurred by AVs by s · (zalt∗1 −
zori1 +zalt∗2 −zori2 ) = s·(−α21

α12
∆2−∆2) = −s·(1+ α21

α12
)∆2 <

ω(1−β)(1+ α21

α12
)∆2, and increases the cost incurred by HVs

by ω · (δori1 − δalt1 + δori2 − δalt2 ) = ω(1 − β)(1 + α21

α12
)∆2.

The net profit increases, hence there always exists a solution
for the original optimization problem that achieves a higher
profit. Thus, the original solution is not optimal.

Now consider when s ≤ (1−β)ω. Suppose xalt∗2 = 0. Then
yalt∗21 + yalt∗22 = −∆2; since xalt∗1 > 0 (and thus λ1 = γ1), it
must hold that yalt∗11 = 0 by KKT conditions. Moreover, we
show that yalt∗12 = 0. Suppose yalt∗12 > 0 so that βλ2−γ1 = 0.
While γ1 = λ1 ∈ [βω, ω] (this is true if there exist xalt∗i > 0
for any i), we must have λ2 = ω and γ1 = λ1 = βω. If
δalt∗1 = 0, then yalt∗21 > 0, and thus βλ1 − γ2 = 0. Hence
γ2 = β2ω. However, we require βλ2 − γ2 ≤ 0 while βλ2 −
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γ2 = βω − β2ω > 0. Therefore δ∗1 > 0. But then we obtain
λ1 = ω by KKT conditions, which contradicts with the fact
that λ1 = βω. Therefore, yalt∗12 = 0.

Since yalt∗11 = yalt∗12 = 0, it holds that xalt∗1 = ∆1. Since
xalt∗2 = 0, we can thus compute yalt∗22 = −α12∆1 − α22∆2 −
δalt∗
2

β ≥ 0, yalt∗21 = α12∆1 − α21∆2 +
δalt∗
2

β > 0. Notice that
yalt∗21 > 0 because ∆1 > 0 and ∆2 < 0. Also, δalt∗1 + δalt∗2 =
(1− β)(xalt∗1 + xalt∗2 ) = (1− β)∆1.

Now consider the solution for the original optimization
problem by setting dorii = dalt∗i , xorii = δorii = yoriij = 0 for all
i, j. Then a feasible solution of (17) is obtained according to
zori1 = dalt∗1 , zori2 = zalt∗2 , rori11 = rori12 = 0, rori21 = α12∆1 −
α21∆2 and rori22 = −α12∆1 − α22∆2 = yalt∗22 +

δalt∗
2

β > 0.

Then uori =
{
porii , δorii , zorii , xorii , yoriij , r

ori
ij

}2
i,j=1

.
Considering the cost of this modified solution compared to

the original solution, the cost increases by s · (zori1 + zori2 )−
s · (zalt∗1 + zalt∗2 ) = s · ∆1 and subsequently decreases by
ω(δalt∗1 + δalt∗2 ) − ω(δori1 + δori2 ) = (1 − β)ω∆1 > s · ∆1.
Since we have already proved that φori∗ ≤ φalt∗, this implies
the original solution is not optimal, a contradiction.

Therefore, xalt∗2 > 0, and by KKT conditions, yalt22 = yalt11 =
yalt∗12 = δalt∗2 = 0 and yalt∗21 > 0. Moreover, γ1 = λ1 = ω and
γ2 = λ2 = βω. Hence xalt∗2 = β(α12∆1 + α22∆2) > 0 and
xalt∗1 = ∆1.

By (39), we have

−s− β(α11λ1 + α12λ2) + γ1 + (α11µ1 + α12µ2)− µ1 = 0
(42)

−s− β(α21λ1 + α22λ2) + γ2 + (α21µ1 + α22µ2)− µ2 = 0.
(43)

Hence −s + (1 − α11β − α12β
2)ω + α12(µ2 − µ1) = 0

and −s + α22(1 − β)βω + α21(µ1 − µ2) = 0. By adding
coefficients α21 and α12, we obtain −(α12 + α21)s + (1 −
α11β−α12β

2)α21ω+α12α22(1−β)βω = 0. By simplification,
we then have s = (1+β)(α21−α12β)

α12+α21
· ω.

At the same time, the equation xi =

β
[∑

j αji(dj − zj) +
∑
j yji

]
+ δi can be reformulated

into xi = β
[∑

j αjidj − zi +
∑
j yji

]
+ δi, and hence

the KKT condition corresponding to the reformulated
optimization problem becomes

(constraints on δi) :− ω + λ1i ≤ 0 (44)

(constraints on xi) :− λ1i + γ1i ≤ 0 (45)

(constraints on zi) :− s+
∑
j

αijµ
1
j − βλ1i + γ1i − µ1

i ≤ 0

(46)

(constraints on yij) :βλ1j − γ1i ≤ 0. (47)

By the same process as before, we obtain γ11 = λ11 = ω,
γ12 = λ12 = βω, and

−s+ (1− β)λ11 + (α11µ
1
1 + α12µ

1
2)− µ1

1 = 0 (48)

−s+ (1− β)λ12 + (α21µ
1
1 + α22µ

1
2)− µ1

2 = 0. (49)

Therefore, s = (1−β)(α21+α12β)
α12+α21

· ω.

By establishing the equality s = (1−β)(α21+α12β)
α12+α21

· ω =
(1+β)(α21−α12β)

α12+α21
· ω, we require α21 = α12 and thus s =

β(1−β)ω
2 .

Similar to the situation when xalt∗2 = 0, we obtain a feasible
solution uori =

{
porii , δorii , zorii , xorii , yoriij , r

ori
ij

}2
i,j=1

for the
original optimization problem by setting dorii = dalt∗i , xorii =
δorii = yoriij = 0 for all i, j; zori1 = dalt∗1 , zori2 = α12d

alt∗
1 +

α22d
alt∗
2 , rori11 = rori12 = 0, rori21 = α12∆1−α21∆2 and rori22 =

0. All constraints of (17) are satisfied.
The cost incurred by HVs is decreased by ω(δalt∗1 +δalt∗2 )−

ω(δori1 + δori2 ) = (1 − β)ω(xalt∗1 + xalt∗2 ) = ω(1 − β)(∆1 +
β(α12∆1+α22∆2)) and the cost incurred by AVs is increased
by s·(zori1 +zori2 −zalt∗1 −zalt∗2 ) = s·(∆1+α12∆1+α22∆2) =
β(1−β)ω

2 (∆1 +α12∆1 +α22∆2) = ω(1−β)
2 (β∆1 +β(α12∆1 +

α22∆2)) < ω(1 − β)(∆1 + β(α12∆1 + α22∆2)). Hence the
cost decreases and the profit is not optimal for the original
solution, a contradicition.

Therefore the optimal solution does not fall in case 3.

Corollary 1 follows from Theorems 1 and 2.

Corollary 1. Under Assumptions 1 and 2, the optimal profit
for the mixed autonomy deployment under HV (resp., AV)
priority assignment is no less than the optimal profit computed
from (13)/ (17) with the additional forced HV-only deployment
constraint, i.e., the constraint zi = 0 for all i.

Proof. The mixed autonomy optimization problem can be
transformed into (25) by setting z = 0 and r = 0. Further-
more, (25) is exactly the optimization problem for the system
without any AVs. Therefore, by letting z = 0 and r = 0
and the other variables equal to the optimal solution for the
optimization problem for the system without AV, we obtain a
feasible solution for the mixed autonomy system. Therefore
the optimal profit for the mixed autonomy system will be no
less than that of the system without autonomous system.

Corollary 1 emphasizes that in our model, the AVs will be
introduced into the platform only if they increase the optimal
profit for the platform.

V. THE RELATION BETWEEN HV PRIORITY AND AV
PRIORITY ASSIGNMENTS

Now that we have introduced the alternative optimization
problems for maximizing the profits in both HV and AV
priority assignments, we next compare the optimal profits for
the two priority assignments. Perhaps surprisingly, we show
that the two priority assignments actually lead to the same
optimal profits.

We first introduce some preliminary results for each priority
assignment before presenting the main theorem. The next
lemma establishes that for an optimal solution to (18), if a
location has rerouting AV traffic flowing out from that location
without passengers, then that location does not have AV traffic
incoming without passengers. In the remainder of the paper,
we denote an optimal solution with superscript ∗, e.g., x∗i .

Lemma 3. Consider the alternative optimization problem
(18) for HV priority assignment under Assumptions 1 and 2.
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Suppose there exist some location i such that both x∗i > 0 and
z∗i > 0. Then d∗i ≥ x∗i for all i. Moreover, for any i0, if there
exists some location j such that r∗i0j > 0, then r∗ji0 = 0 for
all j.

Proof.
Step 1: We first show that d∗i ≥ x∗i for all i. This part

follows similar to the corresponding part in Lemma 5 which
will be proved later.

Step 2: We complete the proof by contradiction. Assume
i0, j0 are locations that r∗i0j0 > 0. By (24) we’ll have µj0 −
γi0 = 0.

Since
∑n
j=1 rij = zi − (di − xi) by (18), then zi0 = di0 −

xi0 +
∑n
j=1 ri0j = di0 − xi0 +

∑n
j=1,j 6=j0 ri0j + ri0j0 . Since

ri0j ≥ 0 for all j, r∗i0j0 > 0 and from step 1 we have d∗i0 ≥ x
∗
i0

,
then z∗i0 > 0. And (23) gives that γi0 − µi0 = s. Combining
the two results yields that µj0 − µi0 = s.

Suppose there exists a location j that r∗ji0 > 0, then µi0 −
γj = 0. Hence µi0 = γj and µj0 − γj = µj0 − µi0 = s > 0
which contradicts (24). Therefore, for any location j, r∗ji0 =
0.

Moreover, in the proposition below, we show that if it is
optimal for the platform to use both HVs and AVs at some
location, then every vehicle in the network will be assigned
to a ride.

Lemma 4. For optimization problem (18) under Assumption
1 and 2, if there exists a location i such that x∗i > 0 and
z∗i > 0, then r∗ij = 0 for all i, j.

Proof.
Since there exists a location i such that x∗i > 0 and z∗i > 0,

from Lemma 3 we know that d∗i ≥ x∗i for all i.
Suppose there exist a location i0 such that r∗i0j > 0. First,

we partition the n locations into two groups: I1 = {i : i 6= i0},
I2 = {i0}. Then we aggregate those into a 2-location system
with locations 1 and 2 such that α22 = 0, α21 = 1.
Step 1: We show r∗11 = r∗12 = r∗22 = 0, r∗21 > 0.

Notice that since r∗i0j > 0, then r∗21 > 0. Hence by Lemma
3, r∗12 = r∗22 = 0. Moreover, since z1 = α11(d1 − x1) +
α21(d2−x2)+r11+r21 and d∗i ≥ x∗i for i = 1, 2, then z∗1 > 0
and γ1−µ1 = s by (23). From (24), µ1−γ1 = −s < 0 implies
that r∗11 = 0.
Step 2: We show that δ∗2 = 0 and δ∗1 > 0 using KKT
conditions.

To reason about the 2-group problem, first rewrite the opti-
mization constraints below by combining with the conditions
α22 = 0, α21 = 1.

x1 = β(α11x1 + x2) + δ1

x2 = βα12x1 + δ2

z1 = α11(d1 − x1) + (d2 − x2) + r11 + r21

z2 = α12(d1 − x1) + r12 + r22

r11 + r12 = z1 + x1 − d1
r21 + r22 = z2 + x2 − d2

δi, xi, zi, rij ≥ 0 ∀i, j. (50)

Clearly, as x∗i > 0 for i = 1 or 2, then x∗1 > 0 and x∗2 > 0
since α12 > 0 when the actual ride-sharing network has no
less then two locations and is strongly connected. Similarly,
since there exists a location i such that x∗i > 0 and z∗i > 0,
then d∗i − x∗i > 0 and d∗1 − x∗1 > 0 or d∗2 − x∗2 > 0. Hence
z∗1 > 0 and z2 = r21 + r22 + d2 − x2 implies that z∗2 > 0.

We can therefore conclude the corresponding KKT condi-
tions:

r21 > 0⇒ µ1 − γ2 = 0

z1 > 0⇒ γ1 − µ1 = s

z2 > 0⇒ γ2 − µ2 = s

x1 > 0⇒ α11(βλ1 − µ1) + α12(βλ2 − µ2)− λ1 + γ1 = 0

x2 > 0⇒ (βλ1 − µ1)− λ2 + γ2 = 0.

Notice that the first 3 equations above imply that γ1−µ2 =
2s + µ1 − γ2 = 2s. By recombination of the equations, we
derive

β(α11λ1 + α12λ2)− λ1 + α11(γ1 − µ1) + α12(γ1 − µ2) = 0

β(α11λ1 + α12λ2)− λ1 + α11 · s+ α12 · 2s = 0

β(α11λ1 + α12λ2)− λ1 + (1 + α12)s = 0
(51)

and

βλ1 − λ2 − (µ1 − γ2) = 0

βλ1 − λ2 = 0. (52)

Since δ1 + δ2 = (1 − β)(x1 + x2) and now x∗1 + x∗2 > 0,
then δ∗1 + δ∗2 > 0. Suppose δ∗2 > 0, then by (21), λ2 = ω,
and hence λ1 = λ2

β = ω
β > ω, which contradicts the KKT

condition. Hence δ∗2 = 0 and thus δ∗1 > 0.
Step 3: Determine the range of s that satisfies the given
conditions.

Since δ∗1 > 0 then λ1 = ω and thus λ2 = βλ1 = βω.
Substituting those into (51) yields that

s = −α11βω + α12β
2ω − ω

1 + α12
(53)

=
(1− β)(1 + α12β)

1 + α12
· ω. (54)

Therefore, s = (1−β)(1+α12β)
1+α12

· ω is the only value that is
feasible.
Step 4: We show that it is possible for the platform to realize
the same profit using only AVs (xi = 0, zi > 0 for all i). Now
that

x∗1 = β(α11x1 + x2) + δ∗1

x∗2 = βα12x
∗
1

z∗1 = α11(d∗1 − x∗1) + (d∗2 − x∗2) + r∗21

z∗2 = α12(d∗1 − x∗1)

0 = z∗1 + x∗1 − d∗1
r∗21 = z∗2 + x∗2 − d∗2,

suppose d∗1 ≤ d∗2. Since x∗2 = βα12x
∗
1 < x∗1 and z∗1 = d∗1 −

x∗1 = α11(d∗1−x∗1)+(d∗2−x∗2)+r∗21, then d∗1−x∗1 ≥ d∗2−x∗2 =
d∗2 − βα12x

∗
1 > d∗2 − x∗1. This implies that d∗1 > d∗2, which

contradicts the assumption. Therefore d∗1 > d∗2.
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Moreover, since z∗2 = r∗21 + d∗2 − x∗2 > d∗2 − x∗2, then z∗2 =
α12(d∗1−x∗1) > d∗2−x∗2 ⇒ α12d

∗
1 > d∗2−x∗2 +α12x

∗
1 = d∗2 +

(1−β)α12x
∗
1. We can also reformulate that δ∗1 = (1−β)(x∗1+

x∗2) = (1−β)(1+βα12)x∗1 and z∗1 +z∗2 = (1+α12)(d∗1−x∗1).
It is straightforward to verify that{
z1 = d∗1, z2 = α12d

∗
1, x1 = x2 = δ1 = δ2 = 0, rij = r∗ij

}
is also a feasible solution for the problem.

We now consider the modified costs under this alternative
feasible solution. The increase of the cost is

(z1 + z2) · s− (z∗1 + z∗2) · s
= [d∗1 + α12d

∗
1 − (1 + α12)(d∗1 − x∗1)] · s

= (1 + α12)x∗1 ·
(1− β)(1 + α12β)

1 + α12
· ω

= (1− β)(1 + α12β)x∗1 · ω, (55)

and the cost is subsequently decreased by (δ∗1 +δ∗2) ·ω− (δ1 +
δ2)·ω = δ∗1ω = (1−β)(1+βα12)x∗1ω. Thus the total cost does
not change while the prices and demands are also unchanged.
Therefore the profit is not changed.

Hence, it is possible to achieve the same profit using only
AVs.
Step 5: We next complete the proof by contradiction. Denote
the solutions above as ud∗x>0,z>0 for the mixed case of both
HVs and AVs and by ud∗x=0,z>0 for the case with only AVs.
Denote the optimal profit obtained in these two scenarios as
πm and πAV , respectively, and from Step 4 we know πm =
πAV . Consider the alternative form of AV priority assignment
optimization problem (34).

Suppose with the same ω, s, β and αij for all i, j, the op-
timal solution for AV priority assignment falls into the mixed
autonomy case with ua∗x>0,z>0. Notice that since ya∗ij,x>0,z>0 =
0 for all i, j, then the solution ua∗x>0,z>0 is feasible for HV
priority assignment by substituting rdij with ya∗ij,x>0,z>0, and
moreover the profit will be exactly the same. Additionally, the
solution ud∗x>0,z>0 is also feasible for AV priority assignment
by substituting yaij with rd∗ij,x>0,z>0 with the profit π̂m. How-
ever, since there exist i, j such that rd∗ij,x>0,z>0 > 0, and from
Lemma 6 (as we will prove later) we know that this is not
optimal for AV priority assignment, it follows that πm < π̂m.
Hence πm is not an optimal profit for HV priority assignment,
which gives the contradiction.

Suppose the optimal solution ua∗x=0,z>0 for AV priority
assignment falls into the pure-AV case, i.e., xi = 0 for all
i. Again, ud∗x>0,z>0 is feasible for AV priority assignment.
Moreover, under the case with only AVs, the two optimization
problems are exactly the same by substituting rdij with yaij .
Therefore ud∗x=0,z>0 and ua∗x=0,z>0 yield the same profit,
denoted as πAV . However, since ud∗x>0,z>0 cannot be optimal
for AV priority assignment as shown above, πm < πAV which
contradicts the above result that πm = πAV .

Finally, if the optimal solution ua∗x>0,z=0 for AV priority
assignment falls into the pure-HV case, i.e., zi = 0 for all i,
then the optimal profit gained from this solution, denoted as
πHV , will be greater than πm (since πm is not the optimal
profit). Moreover, since the solution will also be feasible for
HV priority optimization problem, then πHV is also attainable

for HV priority assignment. This contradicts the result that πm
is the optimal profit for HV priority assignment.

Therefore, ud∗x>0,z>0 cannot be the optimal solution for (18)
and our assumption that there exist i, j such that r∗ij > 0 is
false. Hence, in the situation under consideration, r∗ij = 0 for
all i, j.

Similar properties exist under AV priority assignment, as
summarized in the following lemma and proposition.

Lemma 5. Consider the alternative optimization problem
(34) for AV priority assignment under Assumptions 1 and 2.
Suppose there exist some location i such that both x∗i > 0 and
z∗i > 0. Then d∗i ≥ z∗i for all i. Moreover, for any i0, if there
exist some location j such that yi0j > 0, then yji0 = 0 for all
j.

Proof.
Step 1: We show that d∗i ≥ z∗i for all i. Assume location

i>0 ∈ {1, . . . , n} is such that x∗i>0
> 0 and z∗i>0

> 0. From
the construction of the model, we know that the platform uses
AVs only to meet the excess demand, hence d∗i>0

> z∗i>0
.

Therefore, from Theorem 2, we know that for the optimal
problem (34), d∗i>0

> z∗i>0
. Moreover, in the proof of the

theorem, we have also shown that the mixed case where there
exist some locations such that di > zi and some locations
such that di < zi will not be the optimal solution. Thus, it
follows that d∗i ≥ z∗i for all i under this circumstance.

Step 2: We complete the proof by contradiction. Assume
i0, j0 are locations such that y∗i0j0 > 0. By (40), we have
βλj0−γi0 = 0. Since

∑n
j=1 yij = xi− (di−zi) by (34), then

xi0 = di0 − zi0 +
∑n
j=1 yi0j = di0 − zi0 +

∑n
j=1,j 6=j0 yi0j +

yi0j0 . Since yi0j ≥ 0 for all j, y∗i0j0 > 0, and from Step 1
above we have d∗i0 ≥ z

∗
i0

, then x∗i0 > 0. Therefore, (38) gives
that γi0 = λi0 .

Notice also (37), (38) and (40) together indicate that λi ∈
[βω, ω] and γi ∈ [βω, ω] for all i when there exists at least
one location i

′
such that δi′ > 0 (or xi′ > 0). Therefore,

λj0 = ω, γi0 = βω is the only possible choice. Thus γi0 =
λi0 = βω.

Suppose there exists a location j such that y∗ji0 > 0. Then
βλi0−γj = 0. This indicates that λi0 = ω and γj = βω, which
contradicts the result λi0 = βω obtained above. Therefore, for
any location j, y∗ji0 = 0.

Lemma 6. For optimization problem (34) under Assumptions
1 and 2, if there exists a location i0 such that x∗i0 > 0 and
z∗i0 > 0, then y∗ij = 0 for all i, j.

Proof.
We partition the locations into two groups: I1 ={
i : y∗ij = 0 ∀j

}
and I2 =

{
i : ∃j y∗ij > 0

}
. By aggregat-

ing these groups into two locations, we henceforth regard this
as a two-location problem indexed by 1 and 2. By Lemma 5,
we know that y∗22 = 0, y∗21 > 0 and d∗i ≥ z∗i for i = 1, 2.

As z∗1 > 0 or z∗2 > 0 and zi =
∑2
j=1 αjizj , since the

network is strongly connected, then z∗1 > 0 and z∗2 > 0.
Knowing d∗2 ≥ z∗2 , x2 = (d2 − z2) + y21 + y22 and y∗21 > 0
implies that x∗2 > 0; similarly, x∗1 = β[α11(d∗1−z∗1)+α21(d∗2−
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z∗2) + y∗11 + y∗21] > 0. Moreover, (38) implies that γ1 = λ1
and γ2 = λ2.

Also, since δ1 + δ2 = (1 − β)(x1 + x2), then there exists
i ∈ {1, 2} such that δ∗i > 0 and hence λi = ω by (37).
Combining with (38) and (40), we know that λi ∈ [βω, ω]
and γi ∈ [βω, ω]. Since y∗21 > 0, then βλ1 − γ2 = 0 which
indicates that λ1 = ω = γ1 and γ2 = βω = λ2. We further
conclude that δ∗2 = 0 and thus δ∗1 > 0, y∗11 = y∗12 = 0. The
KKT variables are the same as the proof of Theorem 2 in the
situation where s ≤ (1− β)ω and xalt∗2 > 0. Without loss of
generality, we therefore conclude that

s =
(1 + β)(α21 − βα12)

α21 + α12
· ω (56)

=
(1− β)(α21 + βα12)

α21 + α12
· ω (57)

=
1

2
(1− β)βω (58)

and α11 = α22.
Now consider the possible optimal solutions

x∗1 = β[α11(d∗1 − z∗1) + α21(d∗2 − z∗2) + y∗21] + δ∗1

x∗2 = β[α12(d∗1 − z∗1) + α22(d∗2 − z∗2)]

x∗1 = d∗1 − z∗1
y∗21 = z∗2 + x∗2 − d∗2
z∗1 = z∗2 .

Suppose d∗1 ≥ d∗2. Then d∗1 − z∗1 ≥ d∗2 − z∗2 and x∗2 =
β[α12(d∗1− z∗1) +α22(d∗2− z∗2)] = β[α21(d∗1− z∗1) +α22(d∗2−
z∗2)] ≥ β(d∗2 − z∗2). Now let z1 = z2 = d∗2 (increase both by
d∗2−z∗2 ). Then decrease x2 by β(d∗2−z∗2) and x1 by (d∗2−z∗2),
thus we decrease δ1 by (1−β)(1+β)(d∗2−z∗2) < (1−β)(x∗1+
x∗2). Hence we increase the cost by 2(d∗2−z∗2)·s = 2(d∗2−z∗2)·
1
2 (1−β)βω = (1−β)β(d∗2−z∗2)·ω and subsequently decrease
the cost by (1−β)(1+β)(d∗2−z∗2) ·ω > (1−β)β(d∗2−z∗2) ·ω
(by 17, x2 > 0 indicates that d∗2 − z∗2 > 0). Hence the total
profit increases, which contradicts the fact that this is a profit-
maximizing optimum.

Suppose d∗1 < d∗2. With the same process as before, we
increase z1 and z2 by (d∗1 − z∗1), decrease x2 by β(d∗1 − z∗1)
and x1 by d∗1 − z∗1 , that is, we decrease δ1 by (1 − β)(1 +
β)(d∗1−z∗1) < (1−β)(x∗1+x∗2). Hence we increase the cost by
2(d∗1−z∗1)·s = (1−β)β(d∗1−z∗1)·ω and subsequently decrease
the cost by (1−β)(1+β)(d∗1−z∗1) ·ω > (1−β)β(d∗1−z∗1) ·ω,
with the net effect of increasing the profit, which again is a
contradiction.

Therefore yij > 0 is not an optimal solution in this situation.

Given the preliminary results for the two priority assign-
ments above, we now discuss how the optimal solutions
and optimal profits of the corresponding profit-maximization
problems are related.

Theorem 3. Under Assumptions 1 and 2, for any choice of
ω, s, β and A, the tuple u∗ =

{
p∗i , δ

∗
i , z
∗
i , x
∗
i , y
∗
ij , r

∗
ij

}n
i,j=1

is
an optimal solution of the optimization problem for HV priority
assignment (13) if and only if it is an optimal solution of
the optimization problem for AV priority assignment (17), and

therefore the optimal profits of the two optimization problems
are the same.

Proof.

First notice that in each priority assignment, an optimal
solution falls into one of three cases: HV-only (i.e., zi = 0
for all i), mixed autonomy (i.e., there exists some i, j such
that xi > 0 and zj > 0), and AV-only (i.e., xi = 0 for all
i). In the case of HV-only or AV-only, it is straightforward
to observe that when a solution is feasible for either HV
priority assignment or AV priority assignment, it will also be
feasible for the other AV assignment (consider the original
optimization problems here). This is also true for the mixed
case, since from Lemmas 4 and 6, we know that rij = yij = 0
in both priority assignments. Therefore, the solutions for the
two optimization problems are convertible: given β, ω, s and
A, if a solution is optimal for one priority assignment, it is
also optimal for the other priority assignment.

Since the objective functions of the two optimization prob-
lems (13) and (17) are the same, then the result above implies
that they have the same optimal profits.

We can then derive a threshold on the cost of AVs above
which the platform does not find it optimal to deploy any AVs.

Proposition 1. Under Assumptions 1 and 2, if k > 1, then,
under any priority assignment, it is optimal for the platform
to use an HV-only deployment, i.e., there is no benefit to
introducing AVs into the ride-sharing network.

Proof.

Firstly we will develop another necessary condition.

Since we have proved that the two priority assignments
achieve the same optimal solutions, then the following are
equivalent:

• the inequality/equality in (21)/(22)/(23)/(24) holds
• the inequality/equality in (37)/(38)/(39)/(40) holds
• the inequality/equality in (44)/(45)/(46)/(47) holds.

Moreover, consider the corresponding KKT condition
for prices pi, and denote the variables in (21)–
(24) using superscript d. The KKT conditions
require ∂(pidi)

∂pi
(p∗i ) + ∂di

∂pi
(p∗i )(

∑
j αijµ

d
j − γdi ) =

∂(pidi)
∂pi

(p∗i ) + ∂di
∂pi

(p∗i )(
∑
j αijβλj − γi) = ∂(pidi)

∂pi
(p∗i ) +

∂di
∂pi

(p∗i )(
∑
j αijβλ

1
j − γ1i ) = 0. The last equality

holds because p∗i > 0 for all i obviously. Hence∑
j αijµ

d
j − γdi =

∑
j αijβλj − γi =

∑
j αijβλ

1
j − γ1i .

Therefore, satisfying the relation of (21)–(24) with (44)–
(47) requires −ω+λdi = −ω+λ1i ,

∑
j αij(βλ

d
j −µdj )−λdi +

γdi = −λ1i+γ1i , −s+γdi −µdi = −s−βλ1i+
∑
j αijµ

1
j+γ

1
i −µ1

i

and µdj − γdi = βλ1j − γ1i for all i, j.

These requirements yield that λdi = λ1i and γ1i = γdi + c
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where c = βλdj − µdj for any j. In addition,

−s+ γdi − µdi = −s− βλ1i +
∑
j

αijµ
1
j + γ1i − µ1

i

γdi − µdi = −βλ1i +
∑
j

αijµ
1
j + γ1i − µ1

i

γdi − µdi = −βλ1i +
∑
j

αijµ
1
j + (γdi + βλdi − µdi )− µ1

i

0 =
∑
j

αijµ
1
j − µ1

i

and applying this to (46) gives a new necessary condition that
must be satisfied for any optimal solution for the optimization
problem (34):

− s− βλ1i + γ1i ≤ 0 (59)

where the equality holds when zi > 0.

With the condition described in (59) held, we can construct
the threshold for the cost of AV above which the mixed-
autonomy won’t be beneficial for the platform.

Assume the optimal profit of the mixed autonomy deploy-
ment is strictly greater than that of the HV-only deployment.
Then there exists a location i such that zi > 0. Hence by
(64), −s−βλ1i +γ1i = 0. Moreover, from (40), (44) and (47),
βλ1j ≤ γ1i ≤ λ1i ≤ ω for any j. Therefore, s = γ1i − βλ1i ≤
λ1i − βλ1i ≤ (1− β)ω. Hence k = s

ω ≤
(1−β)ω

ω = 1− β.

VI. WEIGHTED PRIORITY ASSIGNMENT

Besides assigning the rides to one type of vehicle—HVs
or AVs—first, and then using the other type to satisfy any
remaining demand, it is also reasonable to consider that
any vehicle in the platform can be chosen randomly with
equal probability. Therefore, in this section, we introduce the
weighted priority assignment in which the platform assigns the
rides at each location to HVs and AVs at that location with
the same probability, i.e., in proportion to the relative fraction
of HVs and AVs to the total number of vehicles.

A. Equilibrium Definition for Weighted Priority Assignment

As described above, in weighted priority
assignment, HVs and AVs are assigned to riders
with equal possibility: Prob {rider assigned to HV} =

Prob {rider assigned to AV} = min{ θi(1−F (pi))
xi+zi

, 1} for all i.

The resulting equilibrium constraints for the model are:

xi = β
[∑

j

αji min

{
1,
θj(1− F (pj))

xj + zj

}
· xj

+
∑
j

yji

]
+ δi (60)

∑
j

yij = max

{
1− θi(1− F (pi))

xi + zi
, 0

}
· xi (61)

zi =
∑
j

αji min

{
1,
θj(1− F (pj))

xj + zj

}
· zj +

∑
j

rji

(62)∑
j

rij = max

{
0, 1− θi(1− F (pi))

xi + zi

}
· zi. (63)

The expected lifetime earnings Vi for a driver at location i
takes the form

Vi = min

{
θi(1− F (pi))

xi + zi
, 1

}
(ci +

n∑
k=1

αikβVk)

+

(
1−min

{
θi(1− F (pi))

xi + zi
, 1

})
βmax

j
Vj . (64)

Definition 3. For some prices and compensations {pi, ci}ni=1,
the collection {δi, xi, yij , zi, rij}ni,j=1 is an equilibrium under
{pi, ci}ni=1 for weighted priority assignment if (60)–(63) is
satisfied and Vi as defined in (64) satisfies Vi = ω for all
i = 1, . . . , n.

To further study weighted priority assignment, we now
introduce the following assumption which strengthens As-
sumption 2.

Assumption 3. The cumulative distribution F (·) of the riders’
willingness to pay is such that p · F (p) is concave in p and
d · F−1(1 − d) is concave in d. Moreover, (1 − β)ω < p̄ or
s < p̄.

Note that, setting d = 1 − F (p) for the fractional demand
of riders that will request a ride at price p, we have p · d =
d·F−1(1−d) so that Assumption 3 means the revenue obtained
by the platform is concave in demand d, which can be set by
the platform by adjusting the price p. For example, the uniform
distribution and exponential distribution satisfy the concavity
requirement of Assumption 3, while the Pareto distribution
does not.

B. Profit-Maximization Optimization Problem for Weighted
Priority Assignment

We now establish the following profit-maximization prob-
lem for weighted priority assignment:

max
{pi,ci}ni=1

n∑
i=1

[min {xi + zi, θi(1− F (pi))} · pi

−min

{
xi, θi(1− F (pi))

xi
xi + zi

}
· ci − zi · s

]
s.t. {δi, xi, yij , zi, rij}ni,j=1 is an equilibrium

under {pi, ci}ni=1 for weighted priority assignment.
(65)
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As in Section III, we establish an equivalent optimization
problem

max
{pi,δi,xi,yij ,zi,rij}

n∑
i=1

piθi(1− F (pi))− ω
n∑
i=1

δi − s
n∑
i=1

zi

s.t. di =θi(1− F (pi))

xi =β

∑
j

αjidj
xj

xj + zj
+
∑
j

yji

+ δi

n∑
j=1

yij =xi − di
xi

xi + zi

zi =

n∑
j=1

αjidj
zj

xj + zj
+

n∑
j=1

rji

n∑
j=1

rij =zi − di
zi

xi + zi

pi,δi, zi, xi, yij , rij ≥ 0 ∀i, j, (66)

followed by a lemma showing the equivalence.

Lemma 7. Under Assumptions 1 and 3, assume weighted
priority assignment, and consider the optimization problem
(66). The following hold:

1) The optimal value computed from (66) is an upper bound
on the optimal profits computed via (65); thus it provides
an upper bound on the profits generated by the platform
with prices depending on the origin of a ride.

2) If {pi, δi, xi, yij , zi, rij}ni,j=1 is a feasible solution for
(66) such that di > 0 for all i, i.e., some riders are
served at all locations, then there exist compensations
{ci}ni=1 such that the tuple {δi, xi, yij , zi, rij}ni,j=1 con-
stitutes an equilibrium under {pi, ci}ni=1. Furthermore,
the cost incurred by the platform under these compen-
sations per period is equal to ω

∑n
i=1 δi.

3) Any optimal solution
{
p∗i , δ

∗
i , x
∗
i , y
∗
ij , z

∗
i , r
∗
ij

}
for (66),

is such that d∗i > 0 for all i.

Proof.
The proof for the first two points are similar to that of the

HV and AV priority assignments. Obviously, d∗i ≤ x∗i +z∗i for
(65). Hence we can turn the equilibrium constraints into the
constraints in (66). By setting the compensation ci = ω(1 −
β) · xi+zi

di
for all i, we obtain the equivalent optimization (66).

Consider the optimization problem (66) of weighted pri-
ority assignment and compare it with that of HV priority
assignment (13). By observation, if for any optimal solution of
HV priority assignment, we can obtain that min {x∗i , d∗i } =

d∗i ·
x∗i

x∗i +z
∗
i

and max {d∗i − x∗i , 0} = d∗i ·
z∗i

x∗i +z
∗
i

(notice that
max {x∗i − d∗i , 0} = xi − min {x∗i , d∗i }), then it follows that
any optimal solution for HV priority assignment will be
feasible for weighted priority assignment.

By Assumption 3, we have that (1 − β)ω < p̄ or s < p̄.
Hence Lemma 1 establishes that x∗i + z∗i ≥ d∗i > 0 for all i.
We then consider the optimal solution in the three cases.

If it falls in the HV-only case, i.e., x∗i > 0, z∗i = 0 for all
i, then this implies d∗i ≤ x∗i for all i. Therefore, we have{

d∗i ·
x∗i

x∗i +z
∗
i

= d∗i = min {x∗i , d∗i }
d∗i ·

z∗i
x∗i +z

∗
i

= 0 = max {d∗i − x∗i , 0} .

Similarly, if the optimal solution is in the AV-only case, i.e.,
x∗i = 0, z∗i > 0, then d∗i ≥ x∗i for all i. Hence{

d∗i ·
x∗i

x∗i +z
∗
i

= 0 = min {x∗i , d∗i }
d∗i ·

z∗i
x∗i +z

∗
i

= d∗i = max {d∗i − x∗i , 0} .

Lastly, when the optimal solution is in the mixed autonomy
case, i.e., x∗i > 0, z∗i > 0 for some i, then d∗i ≥ x∗i for all
i. Also, Proposition 4 implies that y∗ij = r∗ij = 0 here for all
i, j, and then d∗i = x∗i + z∗i for all i. Therefore, we observe
that {

d∗i ·
x∗i

x∗i +z
∗
i

= x∗i = min {x∗i , d∗i }
d∗i ·

z∗i
x∗i +z

∗
i

= d∗i − x∗i = max {d∗i − x∗i , 0} .

Thus, the optimal solutions for the HV and AV priority
assignments are always feasible for weighted priority as-
signment. Hence, under Assumption 3, any optimal solution{
p∗i , δ

∗
i , x
∗
i , y
∗
ij , z

∗
i , r
∗
ij

}
for (66) is such that d∗i > 0 for all i.

The following theorem establishes that weighted priority
assignment obtains the same optimal profits as the HV and
AV priority assignments, which were already shown to obtain
the same optimal profits in Theorem 3.

Theorem 4. Under Assumptions 1 and 3, for any choice of
ω, s, β and A, a feasible solution u for (13) or (17) is optimal
for (13) or (17) if and only if u is an optimal solution for (66).

Proof.
By recombining the constraints in (66), we can obtain

another optimization problem given by

max
{pi,δi,xi,yij ,zi,rij}

n∑
i=1

piθi(1− F (pi))− ω
n∑
i=1

δi − s
n∑
i=1

zi

s.t. di =θi(1− F (pi))

xi + βzi =β

∑
j

αjidj +
∑
j

yji +
∑
j

rji

+ δi

n∑
j=1

yij +

n∑
j=1

rij =xi + zi − di

zi −
n∑
j=1

αjizj =

n∑
j=1

rji −
n∑
j=1

αji

n∑
k=1

rjk

δi,zi, xi, yij , rij ≥ 0 ∀i, j. (67)

By construction, any optimal solution for (66) will be feasible
for (67) and thus the optimal profit of (67) will be no less than
that of (66).

As we have already proved in Lemma 7, the optimal
solution of the optimization problem in priority assignment
is always a feasible solution for (66).
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Consider the optimization problem (67), and rewrite it by
considering di as the variable instead of pi. Notice that since
di = θi(1−F (pi)) is monotonically decreasing, we are able to
write pi as a function di because the inverse mapping exists.
Moreover, we can relax the constraint pi ≥ 0 for all i since di
is always positive and thus a negative price cannot be optimal.

Below lists the KKT conditions related to (67) while re-
garding di as a variable instead of pi:

(constraints on di) :
∂pidi
∂di

+ β
∑
j

αijλj − γi = 0 (68)

(constraints on δi) :− ω + λi ≤ 0 (69)
(constraints on xi) :− λi + γi ≤ 0 (70)

(constraints on zi) :− s−
∑
j

αij(βλj − µj) + γi − µi ≤ 0

(71)
(constraints on yij) :βλj − γi ≤ 0 (72)

(constraints on ij) :βλj − γi − µj +
∑
j

αijµj ≤ 0. (73)

By Assumption 3, (67) is a convex optimization problem
with affine constraints, and thus the KKT conditions are not
only necessary, but also sufficient for optimality. Hence in
order to show a solution to be optimal for (67), it is enough
to show that it satisfies all the KKT conditions (68)–(73):

Given the optimal solution and the KKT variables λ1i and γ1i
resolved from the optimal solution of AV priority assignment
with the conditions (44)–(47), let µi = µj for all i, j. Then the
conditions (68)–(73) and the constraints for weighted priority
assignment can all be satisfied. Therefore, any optimal solution
for AV priority assignment is also optimal (and feasible) for
(67).

At the same time, since the optimal profits for (67) are
higher than or equal to that of (66), and since any optimal
solution for AV priority assignment is feasible for (66), then
we can conclude that any optimal solution for AV priority
assignment is also optimal (and feasible) for (66).

VII. CASE STUDY: STAR-TO-COMPLETE NETWORKS

In this section, we consider the family of star-to-complete
networks introduced in [17].

Definition 4. The class of demand patterns (Aξ,1) with n ≥
3, ξ ∈ [0, 1], and

Aξ =


0 1

n−1
1

n−1 . . . 1
n−1

c1 0 c2 . . . c2
c1 c2 0 . . . c2
...

...
...

. . .
...

c1 c2 . . . c2 0

 , (74)

c1 =
ξ

n− 1
+ (1− ξ), c2 =

ξ

n− 1
(75)

is the family of star-to-complete networks. It is a star network
when ξ = 0 for which we write AS = A0 and a complete
network when ξ = 1 for which we write AC = A1. Therefore

the general adjacency matrix of a star-to-complete network
can be written as Aξ = ξAC + (1− ξ)AS .

In addition, we make the following assumption throughout
this section.

Assumption 4. All locations have the same mass of potential
riders, which we normalize to one, i.e., θ = 1. Also, the riders’
willingness to pay is uniformly distributed in [0, 1] so that
F (p) = p for p ∈ [0, 1].

Consider fixed outside option earnings ω, and recall the
parameter k determining the cost of operating AVs for the
same lifetime of an HV relative to ω. In this section, we
confirm the intuition that, for large k, i.e. high relative cost
of AVs, the profit maximizing strategy for the platform is an
HV-only deployment, and for small k, i.e. low relative cost
of AVs, the profit maximizing strategy for the platform is an
AV-only deployment. We also show that in some cases, but not
all, for some values of k, the platform finds it optimal to use
both HVs and AVs at equilibrium, i.e., a true mixed autonomy
deployment.

Recall that Proposition 1 provides a sufficient condition
for when a platform will not find it optimal to use AVs.
In the next Theorem, we sharpen this result for the class of
star-to-complete networks and fully characterize the regions
in which the profit-maximizing platform will deploy an HV-
only deployment, an AV-only deployment, and a truly mixed
autonomous network.

Theorem 5. Consider a star-to-complete network under As-
sumption 4. Define

k1 =
1 + βc1
c1 + 1

k2 =


1 if ξ ∈ [β(n−1)−1β(n−2) , 1]
c1(1+β)+(n−1)β2c31+1

(c1+1)((n−1)β2c21+1)
if ξ ∈ [βlim,

β(n−1)−1
β(n−2) )

(β2−β)c1+β+1
(c1+1)(1−β) if ξ ∈ [0, βlim),

where

βlim = max

{
n− 1

2(1− β)β(n− 2)

[
β(1− 2β)

+

√
β2(n− 1) + 4β − 4

n− 1

]
, 0

}
.

If k1 < k2, then: when k ∈ [0, k1], it is optimal for the
platform to deploy an AV-only deployment, i.e., optimal profits
are obtained with xi = 0 for all i; when k ∈ (k1, k2), it
is optimal for the platform to deploy a mixed autonomous
network, i.e., optimal profits are obtained with xi > 0 and
zj > 0 for some i, j; when k ≥ k2, it is optimal for the
platform to deploy an AV-only deployment, i.e., optimal profits
are obtained with zi = 0 for all i.

If k1 ≥ k2, then: when k ∈ [0, k3], it is optimal for the
platform to deploy an AV-only deployment; when k ≥ k3, it
is optimal for the platform to deploy an HV-only deployment,
where

k3 =
(n− 2)[1− (1− c1)β]− β2c1

(n− 2)(1 + c1)(1− β)
. (76)
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For the numerical study, consider a star-to-complete network
with n = 3, ξ = 0.2. We consider two cases: β = 0.8 and
β = 0.95, and we compute optimal equilibria and profits using
the optimization problems formulated above. For the first case
with β = 0.8, applying Theorem 5, we obtain k1 = 0.9053
and k2 = 0.9181 so that k1 < k2. Figure 1(Top) confirms that
for k ≤ k1, it is optimal for the platform to deploy only AVs,
for k1 < k < k2, it is optimal for the platform to use both AVs
and HVs, and for k ≥ k2, it is optimal for the platform to use
only HVs. In constrast, when β = 0.95 so that the expected
lifetime of HVs in the network is longer, then k1 ≥ k2 and
we then compute k3 = 0.9763. Figure 1 (Bottom) confirms
that for k ≤ k3, the platform finds it optimal to deploy only
AVs, and for k ≥ k3, the platform finds it optimal to use only
HVs; there is no regime in which the platform finds it optimal
to use both AVs and HVs. The plots in Figure 1 are generated
by solving the optimization problem (18) in MATLAB using
CVX, a package for specifying and solving convex programs
[22], [23].

It is interesting to note from the above thresholds that even
if AVs are cheaper than HVs, when the price difference is
small, the platform may still choose to deploy only HVs or
to deploy a mix of AVs and HVs. An explanation for this
observation is as follows. Recall that with probability 1−β, a
driver leaves the network and does not seek to be matched to
a new rider after finishing a ride and thus essentially provides
one-way service. In contrast, AVs are assumed to remain in the
network and must be recirculated to a new location. When the
demand is uneven so that some destinations are more popular
than others, the platform can exploit this one-way service to
obtain a higher profit with HVs, even if AVs are less expensive
on a per ride basis.

VIII. CONCLUSION

We proposed three models for ride-sharing systems with
mixed autonomy under different ride-assigning schemes and
showed that under equilibrium conditions, the optimal profits
can be computed efficiently by converting the original prob-
lems into alternative convex programs. In addition, we proved
that the optimal profits of the three models are the same.

We found that the optimal profits for the ride-sharing
platform with AVs in the fleet will be the same as that of
the human-only network when k is large, i.e., the cost for op-
erating an AV is relatively high compared to the outside option
earnings for drivers’ lifetime. In particular, in Proposition 1,
we showed that if the cost of operating an AV exceeds the
expected compensation to a driver in the system, the platform
will find it optimal to not use AVs, an intuitive result.

The case study illustrates that the platform may not nec-
essarily find it optimal to use AVs even when the cost of
operating an AV is less than the expected compensation to a
driver in the system. Moreover, there are some situations when
it is optimal to have both drivers and AVs in the platform.
We quantify the conditions for which the mixed autonomy
deployment allows for higher profits than a forced AV-only or
forced HV-only deployment.

The model proposed and studied here includes a several
simplifying assumptions that can be relaxed in future work.

Fig. 1. Optimal profits for a star-to-complete network with n = 3, ξ = 0.2
under a mixed autonomy deployment, a forced HV-only deployment, and
a forced AV-only deployment. (Top) When β = 0.8, it is optimal for the
platform to use only AVs when k, the ratio of the cost of AVs to HVs,
satisfies k ≤ k1 = 0.9053, only HVs when k ≥ k2 = 0.9181, and a mix of
AVs and HVs when k1 < k < k2. (Bottom) When β = 0.95, it is optimal
for the platform to use only AVs when k ≤ k3 = 0.9763 and only HVs
when k ≥ k3, and it is never optimal for the platform to use a mix of HVs
and AVs.

For example, destinations are often not equidistant and ride
costs might then depend on destination. Nonetheless, these
simplifying assumptions are important for illuminating funda-
mental properties of ride-sharing in a mixed autonomy setting.

REFERENCES

[1] W. Mitchell, B. Hainley, and L. Burns, Reinventing the automobile:
Personal urban mobility for the 21st century. MIT press, 2010.

[2] S. Feigon and C. Murphy, Shared Mobility and the Transformation
of Public Transit. The National Academies Press, 2016, no. Project
J-11, Task 21. [Online]. Available: https://www.nap.edu/catalog/23578/
shared-mobility-and-the-transformation-of-public-transit

[3] C. Hass-Klau, G. Crampton, and A. Ferlic, The effect of public trans-
port investment on car ownership: the results for 17 urban areas in
France, Germany, UK and North America. Environmental & Transport
Planning, 2007.

[4] R. Javid, A. Nejat, and M. Salari, “The environmental impacts of
carpooling in the United States,” in Transportation, Land and Air Quality
Conference, 08 2016.

[5] B. McBain, M. Lenzen, G. Albrecht, and M. Wackernagel, “Reducing
the ecological footprint of urban cars,” International Journal of Sustain-
able Transportation, vol. 12, no. 2, pp. 117–127, 2018.

[6] T. Litman, Autonomous vehicle implementation predictions. Victoria
Transport Policy Institute Victoria, Canada, 2017.

https://www.nap.edu/catalog/23578/shared-mobility-and-the-transformation-of-public-transit
https://www.nap.edu/catalog/23578/shared-mobility-and-the-transformation-of-public-transit


18

[7] D. J. Fagnant and K. Kockelman, “Preparing a nation for autonomous
vehicles: opportunities, barriers and policy recommendations,” Trans-
portation Research Part A: Policy and Practice, vol. 77, pp. 167–181,
2015.

[8] E. Guerra, “Planning for cars that drive themselves: Metropolitan
planning organizations, regional transportation plans, and autonomous
vehicles,” Journal of Planning Education and Research, vol. 36, no. 2,
pp. 210–224, 2016.

[9] P. M. Boesch, F. Ciari, and K. W. Axhausen, “Autonomous vehicle
fleet sizes required to serve different levels of demand,” Transportation
Research Record, vol. 2542, no. 1, pp. 111–119, 2016.

[10] B. Grush and J. Niles, The end of driving: transportation systems
and public policy planning for autonomous vehicles. Elsevier, 2018.
[Online]. Available: https://www.elsevier.com/books/the-end-of-driving/
niles/978-0-12-815451-9

[11] K. Conger, “In a shift in driverless strategy, Uber deepens
its partnership with Toyota,” The New York Times, Aug
27, 2018, available https://www.nytimes.com/2018/08/27/technology/
uber-toyota-partnership.html. [Online]. Available: https://www.nytimes.
com/2018/08/27/technology/uber-toyota-partnership.html

[12] R. Zhang, K. Spieser, E. Frazzoli, and M. Pavone, “Models, algorithms,
and evaluation for autonomous mobility-on-demand systems,” in 2015
American Control Conference (ACC). IEEE, 2015, pp. 2573–2587.

[13] P.-J. Rigole, “Study of a shared autonomous vehicles based mobility
solution in Stockholm,” 2014.

[14] R. Zhang and M. Pavone, “A queueing network approach to the analysis
and control of mobility-on-demand systems,” in 2015 American Control
Conference (ACC). IEEE, July 2015, pp. 4702–4709.

[15] ——, “Control of robotic mobility-on-demand systems: a queueing-
theoretical perspective,” The International Journal of Robotics Research,
vol. 35, no. 1-3, pp. 186–203, 2016.

[16] D. J. Fagnant and K. M. Kockelman, “Dynamic ride-sharing and fleet
sizing for a system of shared autonomous vehicles in austin, texas,”
Transportation, vol. 45, no. 1, pp. 143–158, 2018.

[17] K. Bimpikis, O. Candogan, and D. Saban, “Spatial pricing in ride-
sharing networks,” IDEAS Working Paper Series from RePEc, 2016.
[Online]. Available: http://search.proquest.com/docview/2059184495/

[18] S. Banerjee, R. Johari, and C. Riquelme, “Pricing in ride-sharing plat-
forms: A queueing-theoretic approach,” in Proceedings of the Sixteenth
ACM Conference on Economics and Computation, ser. EC ’15. New
York, NY, USA: ACM, 2015, pp. 639–639.

[19] G. P. Cachon, K. M. Daniels, and R. Lobel, “The role of surge pricing
on a service platform with self-scheduling capacity,” Manufacturing &
Service Operations Management, vol. 19, no. 3, pp. 368–384, 2017.

[20] S. Banerjee, D. Freund, and T. Lykouris, “Multi-objective pricing for
shared vehicle systems,” arXiv preprint arXiv:1608.06819, 2016.

[21] Q. Wei, J. A. Rodriguez, R. Pedarsani, and S. Coogan, “Ride-sharing
networks with mixed autonomy,” in American Control Conference, 2019.

[22] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 2.1,” http://cvxr.com/cvx, Mar. 2014.

[23] ——, “Graph implementations for nonsmooth convex programs,” in
Recent Advances in Learning and Control, ser. Lecture Notes in Control
and Information Sciences, V. Blondel, S. Boyd, and H. Kimura, Eds.
Springer-Verlag Limited, 2008, pp. 95–110, http://stanford.edu/∼boyd/
graph dcp.html.

https://www.elsevier.com/books/the-end-of-driving/niles/978-0-12-815451-9
https://www.elsevier.com/books/the-end-of-driving/niles/978-0-12-815451-9
https://www.nytimes.com/2018/08/27/technology/uber-toyota-partnership.html
https://www.nytimes.com/2018/08/27/technology/uber-toyota-partnership.html
https://www.nytimes.com/2018/08/27/technology/uber-toyota-partnership.html
https://www.nytimes.com/2018/08/27/technology/uber-toyota-partnership.html
http://search.proquest.com/docview/2059184495/
http://cvxr.com/cvx
http://stanford.edu/~boyd/graph_dcp.html
http://stanford.edu/~boyd/graph_dcp.html

	I Introduction
	II Problem Formulation
	II-A Model Definition
	II-B HV and AV Priority Assignments
	II-C Equilibrium Definition for HV Priority Assignment
	II-D Equilibrium Definition for AV Priority Assignment

	III Profit-Maximization for HV and AV Priority Assignment
	IV Convexification of Profit Maximization
	V The Relation between HV Priority and AV Priority Assignments
	VI Weighted Priority Assignment
	VI-A Equilibrium Definition for Weighted Priority Assignment
	VI-B Profit-Maximization Optimization Problem for Weighted Priority Assignment

	VII Case Study: Star-to-Complete Networks
	VIII Conclusion
	References

