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Abstract—We consider ride-sharing networks served by
human-driven vehicles (HVs) and autonomous vehicles (AVs).
We propose a model for ride-sharing in this mixed autonomy
setting for a multi-location network in which a ride-sharing
platform sets prices for riders, compensation for drivers of HVs,
and operates AVs for a fixed price with the goal of maximizing
profits. When there are more vehicles than riders at a location,
we consider three vehicle-to-rider assignment possibilities: HV
priority assignment in which rides are assigned to HVs first;
AV priority assignment in which rides are assigned to AVs first;
and a weighted priority assignment in which rides are assigned
in proportion to the number of available HVs and AVs. Next,
for each of these priority assignments, we establish a nonconvex
optimization problem characterizing the optimal profits for a
network operating at a steady-state equilibrium. We then provide
a convex problem which we show to have the same optimal
profits, allowing for efficient computation of equilibria. We find
that, surprisingly, all three priority schemes result in the same
maximum profits for the platform; this is because, at an optimal
equilibrium for any priority assignment, we show all vehicles are
assigned a ride and thus the choice of priority assignment does
not affect the platform’s profit at an optimal equilibrium.

We then consider the family of star-to-complete networks that
are a convex combination of a star network and a complete
network. For this family, we consider the ratio of AVs to HVs
that will be deployed by the platform in order to maximize profits
for various operating costs of AVs. We show that when the cost
of operating AVs is high, the platform will not deploy them in its
fleet, and when the cost is low, the platform will use only AVs.
We also show that, in some cases, there is a regime for which the
platform will choose to mix HVs and AVs in order to maximize
its profit, while in other cases, the platform will use only HVs
or only AVs, depending on the relative cost of AVs. We fully
characterize these thresholds analytically and demonstrate our
results on an example.

I. INTRODUCTION

Ride-sharing platforms, also known as ride-hailing plat-
forms or transportation network companies, match passengers
or riders with drivers using websites or mobile apps [1],
[2], and such platforms have become commonplace due to
high costs of car ownership, lack of parking, and persistent
traffic congestion [3]-[5]. Traditionally, rides are provided by
drivers who use their own personal vehicle to provide service.
However, ride-sharing platforms are likely to incorporate au-
tonomous vehicles (AVs) into their fleets in the near future [6]].
Owning and managing an AV fleet can be costly for the ride-
sharing platform, and significant technological and regulatory
hurdles remain before these platforms could transition to
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100% autonomous fleets [7], [8]]. Therefore, it is likely that
ride-sharing platforms will initially adopt a mixed framework
in which AVs operate alongside conventional, human-driven
vehicles (HVs) [9]-[11]. In this setting, the AVs can be
deployed to serve, for instance, locations with abnormally high
demand.

Research in ride-sharing has largely focused on two ends
of the autonomy spectrum. On one end, futuristic mobility-
on-demand systems consisting of only AVs have also been
proposed and studied [12]-[16]]. These works focus on con-
trolling the movement of AVs or fleet sizing to achieve
objectives such as maximum throughput and profit. On the
other end, models of rider and driver behavior in conventional
ride-sharing markets with only HVs and no AVs have been
considered in [[17]-[20]. A common approach in these works is
to consider ride-sharing as a two-sided market with passengers
willing to pay for rides and drivers willing to provide rides for
compensation.

In this paper, we consider the transition from tradi-
tional ride-sharing networks to totally automated mobility-on-
demand systems. In particular, we extend the model proposed
in [17]], which did not consider AVs, to the mixed autonomy
setting under several assumptions on the vehicle-to-rider as-
signment possibilities, and we analyze the resulting models.
The network consists of multiple equidistant locations, and
at each time-step, potential riders arrive at these locations
with desired destinations. The ride-sharing platform sets prices
for riders and compensation to drivers of HVs in order to
incentivize both riders and drivers to use the platform. In
addition, the platform has the option to deploy AVs for a
fixed cost per time-step. Introducing AVs leads to an important
assignment choice that must be made: if both an AV and an
HV are available to serve a rider, which receives preference?
We consider three possible assignment rules: AVs always
receive priority (AV priority); HVs always receive priority
(HV priority); and priority is determined in proportion to the
number of available AVs and HVs at each location (weighted
priority).

We focus on the equilibrium conditions that arise in the
resulting mixed autonomy deployment when the platform
seeks to maximize profits under each of the three priority as-
signments above. We summarize our main findings as follows:
1) In all three priority assignments, the equilibrium conditions
lead to a non-convex optimization problem. Nonetheless, we
develop an alternative convex problem from which an optimal
solution to the original non-convex problem can be recovered,
allowing efficient computation of the resulting equilibrium
conditions. 2) Studying the interrelation between the three pri-
ority assignments, we find that, surprisingly, all three priority
schemes result in the same maximum profits for the platform.
This is because, at an optimal equilibrium, we show that all



vehicles are assigned a ride and thus the priority assignment
choice is immaterial at the optimal equilibrium. 3) Lastly, we
consider the ratio of AVs to HVs that will be deployed by the
platform in order to maximize profits for various operating
costs of AVs. We show that when the cost of operating AVs
is high, the platform will not utilize them in its fleet, and
when the cost is low, the platform will use only AVs. We
also show that, in some cases, there is a regime for which the
platform will choose to mix HVs and AVs vehicles in order
to maximize profits, while in other cases, the platform will
use only HVs or only AVs, depending on the relative cost of
AVs. For a specific family of networks, we fully characterize
these thresholds analytically. To the best of our knowledge, the
present paper is the first to provide a formal framework for
understanding and quantifying the impact of integrating AVs
into ride-sharing ﬂeet

The remainder of this paper is organized as follows. Section
provides the model definitions, and Section poses the
problems of profit maximization as non-convex optimiza-
tion problems. Section proposes an alternative convex
optimization problem that provides the same optimal profits
and from which a solution to the original problem can be
recovered. In Section we study the relation between the
AV and HV priority assignments and show that they achieve
the same optimal profits. Due to its asymmetry to the AV
and HV priority assignments, weighted priority assignment is
introduced and studied separately in Section Section
studies a particular class of networks and fully quantifies the
profit maximizing equilibrium conditions. Concluding remarks
are provided in Section [VIII

II. PROBLEM FORMULATION

We consider an infinite horizon discrete time model of a
ride-sharing network that extends the model recently proposed
in [17] to accommodate a mixed autonomy setting with
autonomous vehicles (AVs) and human-driven vehicles (HVs).
The network is assumed to consist of n equidistant locations,
and the network operator or platform determines prices for
rides and compensations to drivers within the network. Drivers
decide whether, when, and where to provide service so as
to maximize their expected lifetime earnings. The demand
pattern of riders is stationary. As such, the analysis focuses
on the equilibrium outcome determined by the platform’s
prices. This is reasonable for ride-sharing systems that involve
a large number of drivers and riders. The price of a ride
may differ among locations, but does not depend on the
desired destination of each rider, which is reasonable when
all locations are equidistant, as is assumed here.

With these considerations in mind, we are interested in
studying the potential benefits of adding AVs to the network
to maximize the profit potential for the platform.

A. Model Definition

We now formalize the mixed autonomous ride-sharing net-
work described above.
IThis paper extends our preliminary work [21]], which only considered AV

priority assignment, and the theoretical results in [21] are limited to a specific
class of networks.

Riders. Among a network of n equidistant locations, a mass
of 6; potential riders arrives at location i € {1,2,...,n} in
each period of time. Throughout, when indices are omitted
from a summation expression, it is assumed the summation is
over all locations 1 to n. A fraction a;; € [0, 1] of riders at
location 4 are traveling to location j so that > a;; = 1 for
all 7. We assume a;; = 0 for all ¢ and construct the n-by-n
adjacency matrix A as [Al];; = «a;; where [A];; denotes the
ij-th entry of A.

Human-driven vehicles (HVs). After each time period, a
driver exits the platform with probability (1 — ) where
B € (0,1), i.e.,, B is the probability a driver will choose to
serve another rider after completing a ride. Thus, a driver’s
expected lifetime in the network is (1 — 3)~!. Each driver
has an outside option of earning w over the same lifetime.
Thus, drivers only participate if their expected compensation
provided by the platform exceeds w.

Autonomous vehicles (AVs). The platform can choose to
operate an AV in the network for a fixed cost of s each time-
step. Thus, & = s(1 — B)~!/w is the ratio of the cost of
operating an AV for the equivalent time of a driver’s expected
lifetime to the outside option earnings. Unlike HVs, it is
assumed that AVs are in continual use and do not leave the
platform.

Platform. The platform sets a price p; for a ride from
location ¢ and correspondingly compensates a driver with ¢;
for providing a ride at location ¢. The continuous cumulative
distribution of the riders’ willingness to pay is denoted by F'(-)
with support [0, p]. That is, when confronted with a price p for
aride, a fraction 1 — F'(p) of riders will accept this price, and
the remaining F'(p) fraction will balk and leave the network
without requesting a ride. Note that 6;(1 — F'(p;)) is then the
effective demand for rides at location 4.

In addition, we make the following assumption throughout.

Assumption 1. The network’s demand pattern is stationary,
i.e., A and 0; are fixed for all i. Moreover, the directed graph
defined by adjacency matrix A is strongly connected and 0; >
Oforallie{l,...,n}, n>2

In summary, the system consists of a platform that sets
prices, riders that request rides among locations, drivers or
HVs who seek to maximize their compensation within the
system, and AVs managed by the platform alongside the
drivers.

B. HV and AV Priority Assignments

In each time period, at each location, the number of riders
willing to pay the platform’s price may be less than, equal to,
or greater than the total number of HVs and AVs available
at that location. When it is greater than the total number of
vehicles, some riders will not be served and will leave the
network. When it is less than the total number of vehicles, the
platform must decide how to assign riders to vehicles. In this
paper, we consider several priority assignments.

The first priority assignment, called HV priority, assigns
riders to HVs before assigning them to AVs. Thus, if the
number of available vehicles exceeds the number of rides at



a location, the HVs will be exhausted before any AVs are
assigned a ride. This priority assignment is appropriate if, for
example, the platform views the human drivers as customers
that should be accommodated and given preference over AVs.
In contrast, we also consider an AV priority assignment in
which the supply of AVs is exhausted before any HVs are
assigned a ride. This priority assignment is appropriate if, e.g.,
the platform views HVs only as a supplement when insufficient
AVs are available. In Section we will consider a third,
intermediate weighted priority assignment that assigns rides
in proportion to the availability of vehicles, but we defer its
definition and analysis until later.

To emphasize the presence of both HVs and AVs, we
sometimes refer to the above defined model under any of the
three priority assignments as a mixed autonomy deployment.
For comparison, we will also sometimes discuss the HV-only
deployment obtained from the mixed autonomy deployment by
assuming no AVs at any location. In this paper, an HV-only
deployment may arise by the choice of a profit-maximizing
platform if the platform decides not to use any AVs; alterna-
tively, we may consider an HV-only deployment by enforcing
the constraint of no AVs at any locations, in which case we
refer to the network as a forced HV-only deployment and
the platform may experience lower profits than in a mixed
autonomy deployment. Similarly, the AV-only deployment is
obtained from the mixed autonomy deployment when there
are no HVs at any locations, and a forced AV-only deployment
arises when this condition is enforced as a constraint on the
system.

C. Equilibrium Definition for HV Priority Assignment

We now turn to the equilibrium conditions of the above
model that are induced by the stationary demand as character-
ized in Assumption [T] and by fixed prices and compensations
set by the platform. An equilibrium for the system is a time-
invariant distribution of the mass of riders, HVs, and AVs
at each location satisfying certain equilibrium constraints, as
formalized next; all variables are understood to refer to an
equilibrium and therefore no time index is included.

We consider first HV priority assignment. Let x; denote the
mass of HVs at location i. Recall 6;(1 — F(p;)) the mass of
riders willing to pay for a ride at location ¢. If there are fewer
riders than HVs at a location, drivers can relocate to another
location to provide service in the next time period. For each
i, € {1,...,n}, let y;; denote such drivers at location ¢ who
relocate to location j without providing a ride. It follows that

Zyij = max {z; — 6;(1 — F(p;)),0}. (D

j=1

Moreover, »; y;i is the mass of drivers who do not get a ride
to any other location and choose to relocate to ¢. Further, let
0; denote the mass of new drivers who choose to enter the
platform and provide service at location 7 at each time step.

At equilibrium, it must hold that

zi =B | Y agimin {wy, 0501 = F(p)} + Y 5| + 0.
j=1

j=1

2)
In @), observe that min {z;,0;(1 — F(p,))} is the total de-
mand the platform serves with HVs at location 7, and therefore
> ajimin{z;, 0;(1 — F(p;))} is the mass of HVs that find
themselves located at % after completing a ride. Recall that a
fraction S of drivers choose to stay in the network after each
time step.

When the demand 6;(1 — F(p;)) at location i exceeds the
mass of available HVs z;, the platform can choose to use AVs
to meet this extra demand. Let z; denote the mass of AVs at
location ¢, and for each ¢,j5 € {1,...,n}, let r;; denote the
AVs which do not get a ride at ¢ and are relocated to location
7. Then

2 = Zaj,; min {z;, max {0;(1 — F(p;)) — x;,0}}

j=1
+3 i 3)
j=1

In (@), observe that min {z;, max {6;(1 — F'(p;)) — x;,0}} is
the total demand that the platform serves with AVs at location
Jj so that 37 i min {z;, max {0;(1 — F(p;)) — z;,0}} is
the mass of AVs which are located at ¢ after completing a
ride. Moreover, 3, rj; is the mass of AVs which do not get
a ride to any other location and are relocated to location :. It
follows that

Zﬂj = max {z; — max {0;(1 — F(p;)) — z;,0},0}. (4)

j=1

Notice that ) ; Tij depends on z; due to HV priority assign-
ment adopted in this subsection.

Let V; denote the expected earnings for a driver at location
7 so that

V; = min {91(1_xF(pl)), 1} (Ci + Zaikﬁvk>
v k=1

+ <1 min{ei(l F(pi))@}) BmaxV;, (5
J

Tq

where ¢; is the compensation of the driver for a ride.

Since drivers will only enter the platform if V; > w, i.e.,
the expected earnings exceed the drivers’ outside option, the
platform will choose compensation such that V; = w in order
to maximize profits.

Definition 1. For some prices and compensations {p;, c; }7_;,
the collection {0;,;, Yij, Zi,Tij }ijl is an equilibrium under
{pi, ¢}, for HV priority assignment if (I)-@) is satisfied
and V; as defined in () satisfies V; = w forall i =1,...,n.

D. Equilibrium Definition for AV Priority Assignment

In this subsection, we parallel the development of the pre-
vious subsection and instead consider AV priority assignment.



In this way, we obtain the following analogous equilibrium
conditions where, to avoid cumbersome notation, we reuse
variables since the particular priority assignment under con-
sideration will always be clear from context:

Zaﬂmln{mj,max{ﬁ (1—-F(p;)) —2;,0}}

J

+ Z Yji | +0i (6)
J

> yij = max {x; — max {0;(1 — F(p;)) — 2,0},0} ()

si= Y agmin{z, 01— Fp,)}+ Y mi (8
j=1 j

Zrij =max{0,z; —0;(1 — F(p;))}. 9
=1

In comparing (6)-(@©) to (I)—@), notice that AV priority assign-
ment leads to 3 ; y;; dependent on z; in (7) whereas 37, 7y
does not depend on x; in ([©).

The expected earning V; for a driver at location ¢ now has
the form

M; -
V; = min {, 1} (Ci + Zaikﬁvk>
i k=1

+ (1—min{M,1})ﬁmaij, (10)
xX; J

M; = max {6;(1 — F(p;)) — 2,0} . (11)

Again, the platform will choose compensation such that V; =
w.

Definition 2. For some prices and compensations {p;, c; }7_;,
the collection {6;, x;,yij, zi,rij =1 is an equilibrium under
{pi, i}, for AV priority assignment if (6)—(9) is sansﬁed
and V; as defined in (I0)—(T1) satisfies V; = w for all i =
1,...,n

III. PROFIT-MAXIMIZATION FOR HV AND AV PRIORITY
ASSIGNMENT

We now consider the problem of maximizing profits at
equilibrium. We first consider profit maximization with HV
priority assignment and then with AV priority assignment.
Under HV priority assignment, maximizing the aggregate
profit across the n locations subject to the systems equilibrium
constraints yields the following optimization problem:

n

max

[min {z; + 2, 0;(1 —
{pisci}i,y

i=1

F(pi))} - pi

0i(1 — F(pi))} - ci — zi - 5]
s.t.{0s, i, Yijs Zi77"ij}zj:1 is an equilibrium

— min {z;,

under {p;,c;}i_, for HV priority assignment.
12)

The optimization problem (12) is difficult to analyze directly.
Instead, we propose an equivalent optimization problem, fol-
lowed by a lemma establishing the equivalence. To this end,
consider as an alternative

sz %

{putSumuy”,z“m, P}

s.t. d; =0, (

n

F(p;) —WZJ —SZ
F(pi))

n n
Z; :ﬂ Zaﬁ min {Ij, d]} + Zyﬂ + (5,
j=1 j=1
n
Zyij =max{z; — d;,0}
7j=1
n
Zi :ZO(]‘Z‘ max {dJ
j=1

n
E Tij =%Zi
J=1

Dir0s Zis Tis YijsTij > 0

n
— JZj,O} + ZT]'Z'
j=1

— max {dz — Ty, 0}

Vi, . (13)

In a certain sense formalized in the next lemma, (I3) is
equivalent to (12).

Lemma 1. Assume HV priority assignment, and consider
the optimization problem (13). The following hold under the
Assumption [I}

1) The optimal value of (13) is an upper bound on the
optimal value of (12)) and thus provides an upper bound
on the optimal profits for the platform for HV priority
assignment.

2) If {pz,él,xl,ym,zl,r”}” | Iis a feasible solution for
(I3) such that d; > O for all i, ie., some riders
are served at all locations, then there exist compensa-
tions {c;},—, such that the tuple {0;, x;, yi;, zi, Tij}zjzl
constitutes an equilibrium under {p;,c;},_, for HV
priority assignment. Furthermore, the cost incurred by
the platform under these compensations per period is
equal to wY . 0;.

3) If, in addition, (1 — B)w < p or s < p, any optimal
solution {p}, 5} xﬂy%,z,}‘,r?}} for (M3 is such that
d: > 0 for all i. Conversely, if (1 — B)w > p and
s > p, any optimal solution for is such that
0f =df =z =2 =0 foralli.

Proof. The proof of the lemma closely follows that of [17}
Lemma 1], where we adjust the claim and the proof so that it
applies to the mixed autonomy setting here.

For the first part of the lemma, we need to show that any
solution for (12) satisfies d; = 0;(1 — F(p;)) < x; + 2. By
contradiction, suppose d; > x;-+2;, so that increasing the price
p; by a small amount (and thus decreasing 6,;(1 — F'(p;))) will
improve the value of the objective function. Therefore, d; <
x; + z; at optimum. Hence we can write the first summation

of (12) as
Zmin {z; + 2,0;(1 —

i=1

F(pi)) }_ZQ 1-F

- (14)



The term w ZZ d; is the cost rate for drivers of the platform,
which is a lower bound for the platform’s cost on human-
driven vehicles at equilibrium. Moreover, the constraints in
(13)) correspond to the equilibrium constraints in (I2). There-
fore, the optimal value of (I3) is an upper bound for that of
(1).

Next, we’ll see that the upper bound can be reached by the
optimal solution supported by some compensations {¢;}"_;
under equilibrium.

To prove the second part of the lemma, we construct a
compensation {c;};_; so that V; = w for all 4. To that end,

let
e =B)
“ {w(l ~5)

Since we assumed that d; > 0 for all 4, then ¢; < oo for
all 7 and thus the compensation is well-defined. Moreover,
the probability that any driver at location ¢ is assigned to a
ride is x’_ when d; < z; and is 1 when d; > x; since the
driver takes the priority when drivers and AVs both exist in
the platform. Therefore, the expected earnings for a single time
period for a driver at location ¢ are equal to w(1 — (). Thus,
the expected lifetime earnings are V; = >_°° lw(1 - 3) = w.
Hence, the solution {p;, d;, i, Yij, Zi, rij}m:l is supported as
an equilibrium using the compensations we constructed above.

Moreover, the cost incurred by the platform under these
compensations per period is

z": min {x;, 6;(1 —
i=1

We construct a partition for the locations so that I; =
{i:d; <x;} and Iy = {i : d; > x;}. Therefore

Zmin {xl,dl} Gy = Z d,‘Ci + Z T;C;

15

(pz } Ci =

me {zi,d;} - .

ich i€l
—Zd w(l=p)+ Y zw(l - p)
i€l i€ls

= Zmiw(l -5) = i diw.
i i=1

The last equality follows from the fact that Y. , z;(1— ) =
>, d; since, at equilibrium, the mass of drivers entering the
platform is equal to the mass of drivers that are leaving.

The third part of the lemma follows directly from the second
part of [I7, Lemma 1] since z; > 0 only if d; > 0 in our
scenario. O

Turning now to the case of AV priority assignment, the
analogous profit-maximization problem is given by (I6) below
and as in the case of HV priority assignment, we introduce
for AV priority assignment.

n

max

[min {z; + 2;,0;(1 —
{pi,eiti,

_ F(pi))} - pi

—min{z;, max{6;(1 — F(p;)) — 2;,0}} - ¢; — 2z; - 8]
s.t.{0s, T4, Yij, Ziy Tij }?_j:l is an equilibrium under

{pi,ci}i_, for AV priority assignment. (16)

F(p))—w) i—sY z
i=1 i=1

max pifi(1 —
{pl 0i,Tq, Yij,Zi, rz]} Z
stt. d; 9 ( F(p;))

2,0} +Zyji +0;

J

x; =0 Zaﬁ max {d; —
J
n
Z yij =; — max {d;
j=1
n n
z=Y agimin{d,z} + Y 1y
= =

Z ri; =max {z; —

Diy0i5 Zis Ty Yijs Tij = 0

—ZZ',O}

di, 0}

Vi, j. 17)
Mirroring Lemma [T} optimization problems (16)) and are
equivalent in a certain sense.

Lemma 2. Assume AV priority assignment, and consider the
optimization problem (I7). The following hold under Assump-
tion [Ik

1) The optimal value of is an upper bound on the
optimal value of (16) thus provides an upper bound
on the optimal profits for the platform for AV priority
assignment.

2) If {p,;,5¢,x¢,yij,zi,rij}2j:1 is a feasible solution for
such that d; > 0 for all 1, i.e., some riders are
served at all locations, then there exist compensations
{e;}i, such that the tuple {6;, %, yij, i, rm}:lj | con-
stitutes an equilibrium under {p;,c;}.—, for AV priority
assignment. Furthermore, the cost incurred by the plat-
form under these compensations per period is equal to
w8

3) If, in addition, (1 — B)w < p or s < p, any optimal
solution {p}, o} xf,y;kj,z;‘,r;‘j} for is such that
di > 0 for all i. Conversely, if (1 — B)w > p and
s > p, any optimal solution for is such that
0f =df =z =z =0 foralli.

The proof is similar to that of Lemma [I] by setting

c — dix_izi : w(l - 6)
b w1 -8

From Lemma |l| (resp., Lemma , we conclude that it is
without loss of generality for us to focus on the optimization
problem (13) (resp., (I7)) for the rest of the paper when
considering HV (resp., AV) priority assignment.

Moreover, while the objective function of (resp., (I7))
is not concave in general, it is concave for distributions for
which the first summation -, p;0;(1— F(p;))—the revenue
of the platform—is concave. This is true, for example, for the
case that F(+) is the uniform distribution. Throughout the rest
of the paper, we focus on the case where the rider’s willingness
to pay is such that the revenue of the platform is concave.

Assumption 2. The cumulative distribution F(-) of the riders’
willingness to pay is such that p - F(p) is concave in p.



Under HV (resp., AV) priority assignment, we have con-
verted (resp., (16)) to the alternative optimization problem
(resp., (I7)). Next, we will further convert (resp.,
(I7), henceforth written as (I3)/(I7)) to an alternative opti-
mization problem that is also convex, allowing for efficient—
and in some cases, closed form—solution computation.

IV. CONVEXIFICATION OF PROFIT MAXIMIZATION

Even when ([3)/(I7) possesses a concave objective func-
tion, the constraints are non-convex so that solving (T3)/(T7)
remains computationally difficult, i.e., nonconvex. This section
introduces alternative optimization problems of the mixed
autonomy deployment for which the optimal profits will be
the same as that of (I3)/(T7).

While the optimal profits are the same, the optimal solutions
of the alternative optimization problems are not exactly the
same as those calculated in the original problems (I3)/(T7).
However, given the optimal solution of the alternative prob-
lems, we show that it is possible to compute an optimal
solution for the original problems (I3)/(I7) with identical
profit and vice versa. Moreover, the alternative optimization
problems become quadratic optimization problems with linear
constraints when F'(-) is a uniform distribution.

First, assume HV priority assignment, and consider the
optimization problem given by

“)6%a§r }E:pzz F(p;) —w0§:5<—8§:zz

€T, = 5Zajixj + 6;

j=1
n n
zi= ) ajldy —a) + Y i
i=1 i=1

ZT’U =Z; — (d, — JCZ)
j=1
Di,0i, Tiy 24,735 > 0 Vi, j. (18)
In the following, we regard as the original optimization
problem and as the alternative optimization problem for
HV priority assignment.
Theorem [T] below states that and have the same
optimal profits for any 3, s, w and adjacency matrix A.
Moreover, given one optimal solution for (T3) or (I8}, it is

possible to compute an optimal solution for the other.

Theorem 1. Assume HV priority assignment, and consider the
original optimization problem (13) and alternative optimiza-
tion problem (I8). Let

orix orix , Orik

_ orikx SOrik _OoTix orix ™
u = {pi Y S ij o lig }i,jzl (19)
be an optimal solution for (13) and
alt* altx saltx _altx _altx _alt«x\™
u = {pi O 2 yTij }Z =1 (20)

be an optimal solution for (I8). Then the following hold under
Assumptions [I] and [2}

o The original optimization problem and the alternative
problem obtain the same optimal profits for all possible
choices of B, s, w and adjacency matrix A.

o The optimal solutions satisfy xOT = golte jorix — saltx
pori* — palt* and 50T = §altx

o If 0;(1 — F(ps™™)) < a9 for all i in the original
optimization problem, then 29T = 0 for all i and setting

for all i,j constitutes an optimal solution

alt* orix
T - ylj
for the alternative problem.

o If 0,(1 — F(p2™*)) < 2% for all i in the alternative
optimization problem, then za”* = 0 for all i and setting
yfj”* = rf]”*, T * = 0 constitutes an optimal solution

for the original optimization problem.

Proof. Let ¢°""* and ¢®** be the optimal profits of the two
problems (T3) and (T8), respectively, and let d9"** = 6;(1 —
F(pom*)) and dalt* =0, (1 _ ( alt*))'

To prove that the optimal profits of the two problems are
equal, we first show that ¢°"* < ¢®** and then ¢°"™* > @+,

We first introduce Lagrange multiplies A;, p;, and ~; and
establish the following inequalities for all 7, j derived from the
KKT conditions that are necessary for any optimal solution of

(18):

(constraints on d;) —w+ XA <0 21
(constraints on z;) Za” (BN — ) — i +7 <0
J
(22)
(constraints on z;) —s5+7v—u <0 (23)
(constraints on r;;) p; —y; < 0. (24)

We now consider three cases to prove ¢°""* < ¢t
Case 1: d9™™* > x2"** for all i. Then u®"** is feasible for the
alternative problem because both problems are in fact the same
optimization problem in this case. Therefore ¢°7** < @+,
Case 2: d9""* < x9"%* for all i. Then the AVs are not needed
in any location and z; = 0,7;; = 0 Vi, j. Then the original
optimization problem becomes

sz i pz _WZ(S

=0:(1 - F(p:))

n n
> ajdi+ > | +6
=1 =1
n
> i =i —d;
=1

Vi, j.

max
{Pi:0i TiyYij,zi,Tij }

S.t. dl

Di, 03, i, Yij > 0 (25)

Let 2/ = 0 and y{f* =0 Vi, j. Then the alternative problem
becomes exactly the same problem as when we substitute
r;; with y;;, which proves the claim.

Case 3: There exists some location ¢ such that x™** > d¢™*
and some location j such that :r;’”* d”i* In this case, if
there is no i such that z¢"* = d9"**, then let I = {i: x>
dor*} and let Iy = {i : 2" < d9"*}. We can then con31der
an aggregated network Wlth locations 1 and 2 representing the

combined locations in I; and I, respectively.



Hence, in this aggregated network, a11 = aieg > 0; g2 > 0
and o1 > 0 by our assumption that the directed graph defined
by adjacency matrix A is strongly connected.

Since d§"™* < x¢"*, then 2{"™* = 0. On the

other hand, 2{""* = max{d‘l’”*—x‘l’”*,O} o+
ori* ori* 2 orix  __ ori*

max {d2 — 9 ,0} as1 + ijl T = (dS

, 5 T , ,

ori* ori* oT 1% oTv*
z§" gy + Y5 Ty since d§Tt — xf > 0 and
dy™* — z{™* < 0. Hence z{™* > 0 which leads to
a contradiction. Therefore, if there is no ¢ such that
xg* d7™*, then either z{™* > d?™**  for all i or

29T < dor* for all i

If there exists 4 such that 29" = d?"%*, define I; and I
as above and introduce I3 = {i : "™ = d9"*}.

Similar to the above ar%ument, we show that z‘f”*

orix __ : orix __ X oTi¥k __ .0Ti%

B = 0. Since 2{""* = Zj:} aj1 max {d9 97,0} +
ori* 1 o1 1% oTv* — 1 1

> =1 751 while d5™ — 28" > 0, then a1 = 0. Similarly,

we must have as3 = 0. Therefore, we have gy = 1

. 3

since > j—1Qi; = 1. However, apo = 1 means that some

components in the graph are not strongly connected with the
others, which contradicts our assumption. Hence this mixed
situation cannot be an optimal solution for the problem.

Thus, up to now, we have shown that ¢°"** < ¢ Next
we show that ¢°m™ > pt*,

Case 1: If d'** > 2% for all 4, then u®"** is feasible for
the original problem because both problems are in fact the
same optimization problem in this case. Therefore ¢°""* >
(balt*.

Case 2: If d?'** < x%** for all i, we want to show that in
this case, 2#!** = 0 for all 7 and then u®** will be feasible for
the original optimization by setting y¢7* = r{* with g/ = 0
for all ¢, 7.

Fix dot* < z8%* for all i, then if 2; = 0 is a feasible
solution for @, then it will be the optimal the solution since
any increase in z; will increase the cost and reduce the profit.

We'll show below that given d?** < x%** and setting
z; = 0 for all ¢ for (I8), there exists r;; that satisfies the
constraints for (I8) and thus constitutes a feasible solution for
the alternative optimization problem.

n
> iy =i — d;
=1
n n
> =y agile; —dy)
Jj=1 Jj=1

7‘7;]', (l‘z — dz) Z 0 VZ,_] (26)

The new constraints can be described as in (26). We can
reformulate (26)) into below where R is an n by n matrix
and [R];; = r;;; A is an n by 1 vector and [A]; = z; — d;;
1 is an n by 1 one’s vector.

R1=A
RT1=4ATA
A>0

Ri;; >0 27)

We can then vectorize R to R (in row) so that (27) will
transform into (28).

MR =b
R,; >0 (28)
M; 9 .
M= M where M and M, are both n by n® matrices:
2
M, = L.xn ® 17 =
1 10 ... 0 ... 0 ... 0
0 0 1 1 ... 0 ... 0O
and
o ... 00 ... 0 ...1 ...1
M2 = ]-T & In><n = [Inxn Inxn Inxn]'
R = [Ri1,Ri2,...,Rin,...,Ru1, Ry, ... )Ry, is a
n? by 1 vector.
b = A is a 2n by 1 vector.
= | 4T 18220 by ector.

_ By Farka’s Lemma, to prove that @]) has a feasible solution
R: that is, FR s.t. MR = b and R > 0, we only need to
disprove the claim that 3v € R?" s.t. M”v > 0 and b”v < 0.
Denote v; as the ith element of v.

Let v e R?” s.t. MTv >0,

1 0 ... 0 IL,«,
M'v=[M] MI]v=10 1 ... 0 L.,|v.
0 0 ... 1 I,
Hence, v;+v; > 0forall:=1,...,nand j =n+1,...,2n.

Now consider b7v.
b'v=[AT ATAlv=A"[Lx, A]v

T n
=A" v+ Zj:l QijVj+n

= AT | 300 (Vi + Vi)

The last equality comes from the fact that Z?Zl o = 1
Moreover, since v; + vj4, > 0 for all ¢ = 1,...,n as
previously mentioned, and A > 0, then bTv > 0. Hence
we disproved the claim that Iv € R?" s.t. MTv > 0 and
bTv < 0.

Therefore has a feasible solution R and thus has
feasible solution r;; for all ¢, j. Hence zf”* = 0 for all ¢ and
then u®** will be feasible for the original optimization by
setting y97" = rif* with rgi* = 0 for all 4, j.

Case 3: There exist 5 and k such that the optimal solution
u®™ does not satisfy the two situations above, which means
there exist locations such that d2/** > z%!™* for some i and
st < x4 for some j. Let Iy = {i : 2! < d¢"**} and let
I = {i : 231 > d2**} and we can consider an aggregated
network with locations 1 and 2 representing the combined
locations in I; and I, respectively. Knowing z{!** < d§!**,
suppose x4/t* > d3!** (since there exists at least an i such that



delt* < x2!'*). Then we can rewrite the constraints of (T8) as
below:

r1 =f(c1121 + a122) + 1

ry =fB(a1271 + a2%2) + 52

21 =on1(dy — 1) + ag1(dz — x2) + 7111 + 721
2y =aia(di — 1) + aga(da — ) + 712 + 722
— (dy —z1)

To1 + 722 =22 — (d2 — 2)

r11 + 712 =21

Vi, j.
— dtlzlt* .

(29)

For convenience, denote A; 28 and Ay =
dgtt* — x4 Obviously, A; > 0 and A, < 0.

Since ru +719 > 0, then 2§ > A; > 0 and this indicates
that y; —py = s. Hence yu; —v; = —s # 0 and thus r{i** = 0.

Since zg!** > d3** > 0, then x¢** > 0 since ag; > 0 for
strong connectivity of the network. Moreover, these indicates
that J%Zt* + 5(21lt* — (1 _ 6)( altx + xglt*) >0

As zy > 0, then rglt* + r““* > x§t* — dgtt* > 0. Suppose

rgit* = 0, then rgét* > 0, then py —v2 = 0 and hence
29 = 0. Then 2¢'** = a;1A1 + ag;As. Knowing z§t* >
Aj requires ay; = 1,917 = 0 (because Ay < 0) and this
network is no longer strongly connected which contradicts the
assumption. Therefore r$/** > 0 and thus p; — v, = 0. We
can get pip — 71 = (p2 —72) + (92 — pa) + (11 —m) <
0+0—s < 0 so that r{i* = 0. Therefore z{!"™* = Ay;
rotte = paltr o Ay — 0421A2 = a2 — a1 Ao,

With all the preliminary results above, we now divide the
problem into two cases: 2§!"* = 0 or z“”* > 0.

Suppose Zézlt* =0, T“lt* _ AQ _ alt* _ _a12A1 _
a9As > 0, which 1mp11es that a12A1 < —a9y and
p2 — 2 = 0. Hence y1 — pz = (y1 — p1) + (01 — 72) +
(v2o—p2)=s+0+0=s.

Then (22)) yields that

Blar1 A + a12X2) — A1 + @118 + @128 =0 (30)
ﬁ(azl)q +Ol22)\2)—)\2+0l21'0+0l22'0:0 (31)

If Ay = w, then @ shows that Bag1 A\ = (1 — ,30522)/\2 >
(6 — 50422))\2 = ﬁOé21>\2. Hence A\ > Ao > w which
contradicts to (21). Therefore, Ay < w = §3!* = 0. Since
S 4591 > 0, then 69" > 0and \; = w, Ay = lﬁa” ‘w.

Qoo
Applﬁng ;h)ls result to (30) gives s = - 6)(11+%(;1222 Baz)

Let pom — p;zlt*’ ,riojri = 0, yom — T;zjlt* for all
17']’ 5om — (1 _ 5)(dalt* + xalt*) 5or1 — O ZO’I“’L —
ZSM _ 0 :L.orz _ dalt* and xom — l,alt* Then uo’r‘z —

{ ori 607"1 ZO’I"’L OT’L ort O’I”Z 2
pz 7 bad 3 Y ’L 7y2J ? ’L] i,jzl

lution for (T3). This solution increases the cost by w - (67" —

Di,04, 2, iy Tij > 0

would be a feasible so-

Saltx 4 ggrt — §81*) = (1 — B)wA,, decreases the cost by
S - (Zizlt* o Zi)m‘ +Z¢21lt* o Zgri) =3- Al > (1 _ /B)WAL The

net profit increases, hence there always exists a solution for
the original optimization problem that has a higher profit and
thus the solution is not optimal (since we’ve already proved
that ¢ori* < ¢alt* )

$it* > 0, which indicates 7§

Therefore 2§
vo = s. Hence 71 — o = (y1 —p1) + (p1 *72) (v2—

alt*

=0 and po —
p2) =

54+0+4s = 2s. Moreover, 2§/ = a19A1 +az2As > 0 implies
121 >~

Then 22) yields that
M +ag1s+ap-25=0
A+ a0+ -s=0

(32)
(33)

Bla11 A + a12h2) —
Blaai A + azaAe) —

Suppose A1 = Ay = w, then (1+a12)s = (1—F)w = agas.
But s > 0 and 1 + ajp > 1 > ag, thus (1 + aja)s <
g25. Therefore we cannot have 6¢/** > 0 and §¢/** > 0.
Suppose Ay = w. Then solving the system of equations gives
A= ﬁ@o};ii;’(jﬁiam -w > w, which contradicts the KKT
condition ZI). Hence A2 < w implies that §5** = 0 and thus

59 > 0. Therefore, \| = w, Ay = BRoaitarz—tass

g2 1+ai2—faze
_ _ _ 1— @12 .
and s = (1 —0) z Tras—Fass -

Let p?rz _ p;l t*’ yf}” 0 for all 4 ]’ o’rz _ xgrz _
607“1 _ 53m — 0’ ZOT’L dalt* and Zom _ a12dalt +a22dalt*
rgrt = algd‘f”*l— agld“” and r§7¢ = 79 = rgrt = 0
(notice that 787 > 0 since aj2A; > —aeeAy implies

altx
that ayodd™* + apod$!™ > oz + qopagt* = 22— >

2§t > d3* and thus ajod$'™ — a91d$!* > 0). Then

om _ {pom 607"7,’ ZZQM’ frz’yfjrz’ ZOJ’I”Z Dt would be a fea-
sible solution for (I3). This solution decreases the cost by
w - ((Sillt* _ 6i)m + 6alt* 607“1) _ (1 _ ﬁ) ( -alt* 4 xalt*%
increases the cost by s - (2" — 2@t* 4 29t paltx) —
S- ( altx vy Qxalt* +0422(£alt*) (17ﬁ)w($iﬂt* +1,¢211t*)_ The
net proﬁt is not changing, hence there always exists a solution
for the original optimization problem that has the same profit
which proves the claim. O

Turning our attention to AV priority assignment case, con-
sider the optimization problem

{pb,(sb,;fifzhm}zpz i F(p:) —wz5 —SZZZ
st. di =0;(1— F(p;))

zi =0 | Y asild
J
n
> wij =wi — (di — )
j=1
n
Zi; = Z OljiZj
j=1

Dir045 Ziy iy Yij > 0

;) +Zyji +6;
J

Vi, . (34)

Similar to above, we regard (I7) as the original optimization
problem and (34) as the alternative optimization problem for
AV priority assignment. The next theorem mirrors Theorem [I]

Theorem 2. Consider the original optimization problem (I7)
and alternative optimization problem (34). Let

Nt I CS)

OT"L* orik

7y1,]

{pOT’L* 507’1* O’I"Z* OT’L*

be an optimal solution for (U7) and

alt* altx saltx _altx _altx _ altx ™
uttt = {pft o 2 gl (36)



be an optimal solution for (34). Then the following holds under
Assumptions [I] and [2}

o The original optimization problem and the alternative
problem obtain the same optimal profits for all possible
choices of B, k and adjacency matrix A.

o The optimal solutions satisfy x°"" = xolt*, zorix = yaltx
pori* — palt* and 6ori* — 5alt*'

o If 0;(1 — F(p?™™*)) < 29" for all i in the original
optimization problem, then x9"* = 0 for all i and setting

altx __

yi =i  for all i,j constitutes an optimal solution
for the alternative problem.

o If 0,(1 — F(p2t)) < 281 for all i in the alternative
optimization problem, then z3'"* = 0 for all i and setting
rfj”* = yfjt*, yfj”* = 0 constitutes an optimal solution

for the original optimization problem.

Proof. The proving strategy is the same as Theorem [I| Let
¢°"* and ¢*** represent the optimal profits of the two
problems and (34), respectively, and let do"** = 6;(1 —
F(p?™)) and dgit* = 0,(1 — F(peit)).

The KKT conditions related to all of the decision variables
(except for the variable p; since F'(p;) can be some general
function of p;) are:

(constraints on §;) : —w + \; <0 37

(constraints on x;) : — X\; +7; <0 (38)

(constraints on z;) : — s — ZO{ij(ﬁ)\j — i)+ v — s <0
J

(39)

(constraints on y;;) :BA; —7; < 0. (40)

Notice that for any of the inequalities, the equality holds if
the corresponding variable is greater than zero.

To prove that the optimal profits of the two problems are
equal, we first show that ¢°7* < ¢*** and then ¢ > ¢!t*,
In both directions, the first two cases (d; < z; for all ¢ and
d; > x; for all i) use exactly the same method as the proof
in Theorem |1} hence we omit those details, and only consider
the third case to prove ¢°""* < ¢®t*,

Case 3: There exists some location i such that 2{™* < d9"**
and some location j such that 29" > dg”*. We will prove
that the optimal solution for the original optimization problem
(17) will not fall in this case.

Suppose there exist some location such that z("”* o,
and let I; = {i : 20" < d9"*} and I, = {z DT >
d9m*}. We will show that for all i € Iy, 20" = d¢"™*. We

can consider an aggregated network with locations 1 and 2
representing the combined locations in I; and s, respectively.
Knowing z; < di and z9 > do, then for any ds, zo = do will
constitute a feasible solution for (I7). Moreover, any z2 such
that zo > do will increase the cost and thus decrease the profit
for (T7). Hence zo = dy is optimal. Therefore case 3 will not
constitute an optimal solution for (T7).

Next we consider the third case for proving ¢°7* > ¢@t*,

Case 3: There exists some location i such that z{* < ¢!t
and some location j such that z§*** > d4!**. We will prove that
the optimal solution for the alternative optimization problem
will not fall in this case.

Suppose there exists some location such that 28/* < doit,
and let I; = {3 : 28" < d%'**} and I, = {i : a”* > ot}
We will show that for all i € I, 207 = d9mi*.

As above, we can consider an aggregated network with
locations 1 and 2 representing the combined locations in [y
and I, respectively. We know that z{'** < d{!** and denote
Ay = d§'** — 23 > 0. Moreover, suppose that z3"** > dg!t*
and A, = d’g”* — 24! < (0. We then rewrite the constraints

n @1) as below:

2" =Blan Ay + a1 Ag + (Y11 + y51)] + 641
““* =Blon2A1 + a22Ds + (Y55 + y3i™)] + 654
yﬁt* + y?ét* _xtlzlt* Al
alts 4 yalte _palte _ A
Zzlzlt* 704112(11[15* + a1 ZzQzlt*
Z;lt* =19 Zalt Lo 2Zalt*

Dir0is Zis Tiy Yij > 0 Vi, j. 41)

First notice that 1 > 0 and yo1 + Yoo > 0 since Ay > 0
and Ay < 0; then 1 +x2 > 0 and thus 61 +02 = (1—8)(z1+
x2) > 0. Moreover, we will show below that §; + ya1 > 0.

Suppose that §; = yo; = 0. Since y12 > 0, then y1; <

— Aj. Then, from @), z1 = Bla11A1 + @219 +y11] <
BlariAr+ a1 Ag + 21 — Ay] = Bl—a12A1 + a1 Ag + 1] <
Bxq1 < x1. This is a contradiction and thus d; + yo1 > 0.

We next show that when 2/ < d$'** and 2§"** > d3!**, we
are always able to obtain a solution in the original optimization
problem that achieves greater profit. Since we have already
proved that PO < ¢>“”*, then the solution that falls in
this case will not be an optimal solution for the alternative
optimization problem.

Suppose s > (1 — B)w. We are able to obtain a higher
profit by increasing the mass of HVs and decreasing the
mass of AVs. In particular, this transformation to case 1 is
accomplished by setting d¢™* = di'*, " = 0, and y9/* = i’

fOr all Z OTZ — dalt OT'Z . 21 ZOTZ :L.OTZ — xalt Q21

133 2 a2 %2 1 a;p —2
ng” _ x%lt A 507“1 _ 5alt ( _ 5) zi; AQ and 5(277‘7, —
68" — (1 — B)Ay. Then, it is straightforward to verify that the

" 2 .
tuple u®" = {p"” (50”,2;’”, ‘-’”,yfjl, fj” si=1 satisfies all

the constraints of (T7), and hence it is a feasible solution for
(7).

This modified solution keeps the demand d; and thus p;
unchanged, decreases the cost incurred by AVs by s (2§t —

A =28 = 5 (-G A= Ag) = —s- (14 52)A; <
w(1=pB)(1+ g2)A,, and increases the cost 1ncurred by HVs

by w - (8770 — 681t + 587 — G311) = w(l — B)(1 + 22)A,.
The net profit increases, hence there always exists a solution
for the original optimization problem that achieves a higher
profit. Thus, the original solution is not optimal.

Now consider when s < (1—f3)w. Suppose x3/** = 0. Then
Yt 4 ygltt = — Ao; since z¢"* > 0 (and thus \; = ), it
must hold that y“”* = 0 by KKT conditions. Moreover, we
show that y?4* = 0. Suppose y{* > 0 so that By —7; = 0.
While 71 = A\; € [Bw,w] (this is true if there exist z¢/* > 0
for any i), we must have Ao = w and 73 = A\ = fw. If
59 = 0, then y¢l** > 0, and thus B\; — 7o = 0. Hence
Yo = B2w. However, we require Ay — 2 < 0 while SAs —



v2 = fw — 2w > 0. Therefore 6; > 0. But then we obtain
A1 = w by KKT conditions, which contradicts with the fact
that \; = Bw. Therefore, y{i* = 0.

Since y@t* = yt* = 0, it holds that z¢!** = A;. Since
24 = 0, we can thus compute yg'* = 70[12A1 — O[QQAQ —
6alt* > 0 yalt*

Y5t > 0 because A; > 0 and Ay < 0. Also, 5?”* +
(1 _ B)( altx +$alt*) — (1 _ B)AI

Now cons1der the solution for the original optimization
problem by setting df™* = dg'™*, 9" = 677 = yor* = 0 for all
i,j. Then a feasible solution of (17) is obtained according to
Zi)’l“’b _ dalt* gri _ Zg’lt*, 7,(1)'1‘1 _ 7,12 — 0 T21 — Ol[tl*QAl

= —q12A1 — a9y = yglt* 4 5[@) > 0.

Then uO’I”l — {p?m’ 67;07‘1’ Z,?Tl, O’I"’L’ yfj’l"l7 ’LOJT"L ?’j:1.

Considering the cost of this modified solution compared to
the original solution, the cost increases by s - (297 + 28"%) —
s (281 4 291%) = 5. A, and subsequently decreases by
w(aizlt* + 5(21lt*) _ (507’2 _|_5om) — (1 _ 5)wA1 > 5- AL
Since we have already proved that ¢°"* < ¢%** this implies
the original solution is not optimal, a contradiction.

Therefore, x4'** > 0, and by KKT conditions, ygif = y§it =
Yt = 53 = 0 and ygl** > 0. Moreover, 7; = A\; = w and
Y9 = A2 = Sw. Hence {Ealt* = ﬁ(algAl + OéQQAQ) > 0 and

altx __
05 =

ori

21 AQ and T99

alt* Al
By (39), we have
—s — a1 + a12X2) + 7 + (a1 + aaape) — 1 =0
(42)
—s — a1 A1 + ag2Xa) + Y2 + (211 + qoape) — pe = 0.
(43)

Hence —s + (1 — 01115 — 011252)60 + 0112(,LL2 — ,UJl) =0
and —s + ag2(l — B)Bw + az1(p1 — pe) = 0. By adding
coefficients aip; and ayo, we obtain —(a12 4+ aoy)s + (1 —
a118—a12%) g w+aaags (1—)Bw = 0. By simplification,
we then have s = W w.

At the same time, the equation x; =

ﬁ{ZJ aji(dy — 25) + 225 yﬂ} + 6; can be reformulated

into z; = BLZj 0id,; —zﬁ-Zj yji:| + d;, and hence
the KKT condition corresponding to the reformulated
optimization problem becomes

(constraints on &;) : —w + A; <0 (44)
(45)

BAM A+ — i <0

(constraints on 2;) : — A} +7; <0

(constraints on z;) : — s + Z Qij M} _
J

(46)

47)

(constraints on y;;) :8\} — 7, < 0.

By the same process as before, we obtain 71 = A\ = w,
4 =\ = Bw, and

—B)A1 +
—B)A; +

(a1} + Qapy) — p
(a21p1 + Qoopiy) —
(1—-8)(a21+128)

ai2+o21

—-s+(1
—-s+(1

Therefore, s = “w.

By establishing the equality s = W

—(Hﬁi(?j}(;?”ﬁ) a1 and thus s =

BA-Blw

DS —

- w, we require ao; =

5
Similar to the situation when x“”* = 0, we obtain a feasible

2
solution uorz _ {porz (50”,23”7 orz’yfjrz7 ;)]rz it for the
ort

. ’ IZ
é)m _ a12dalt*

ori

original optimization problem by setting d¢"* = da!t*
5;J'rz o]rz =0 fOI' all 4 j, orz _ dalt*
aggdalt* Tf{l 7‘12 = 0 T21 = a12A1 —0421A2 and T992
0. All constraints of (I7) are satisfied.

The cost incurred by HVs is decreased by w(§¢* 4-§g1t*) —

(5om +5om) — (1 _ ﬂ) ( altx +xalt*) _ w(l _ B)(Al 4
Bla12A1+a2A3)) and the cost incurred by AVs is increased
by s- ( ori+Zori alt* alt*) =5 (A1+a12A1—|—a22A2)
50— B)W(A +a12A1 +aly) = w(l BUBAL+ (12l +
O[QQAQ)) < w(l — ﬁ)(Al + 6(0512A1 —|— 0&22A2)) Hence the
cost decreases and the profit is not optimal for the original
solution, a contradicition.

Therefore the optimal solution does not fall in case 3. [

II+H

Corollary [1] follows from Theorems [T] and

Corollary 1. Under Assumptions [I| and [2] the optimal profit
for the mixed autonomy deployment under HV (resp., AV)
priority assignment is no less than the optimal profit computed
from (3)/(T7) with the additional forced HV-only deployment
constraint, i.e., the constraint z; = 0 for all 1.

Proof. The mixed autonomy optimization problem can be
transformed into (23) by setting z = 0 and r = 0. Further-
more, is exactly the optimization problem for the system
without any AVs. Therefore, by letting z=0 and r =0
and the other variables equal to the optimal solution for the
optimization problem for the system without AV, we obtain a
feasible solution for the mixed autonomy system. Therefore
the optimal profit for the mixed autonomy system will be no
less than that of the system without autonomous system. [

Corollary (1| emphasizes that in our model, the AVs will be
introduced into the platform only if they increase the optimal
profit for the platform.

V. THE RELATION BETWEEN HV PRIORITY AND AV
PRIORITY ASSIGNMENTS

Now that we have introduced the alternative optimization
problems for maximizing the profits in both HV and AV
priority assignments, we next compare the optimal profits for
the two priority assignments. Perhaps surprisingly, we show
that the two priority assignments actually lead to the same
optimal profits.

We first introduce some preliminary results for each priority
assignment before presenting the main theorem. The next
lemma establishes that for an optimal solution to @, if a
location has rerouting AV traffic flowing out from that location
without passengers, then that location does not have AV traffic
incoming without passengers. In the remainder of the paper,
we denote an optimal solution with superscript *, e.g., ;.

Lemma 3. Consider the alternative optimization problem
(I8) for HV priority assignment under Assumptions [I] and [2)



Suppose there exist some location © such that both x} > 0 and
z¥ > 0. Then d} > x} for all i. Moreover, for any i, if there
e)lclist-s some location j such that r; ; > 0, then r3;, = 0 for
all j.

Proof.

Step 1: We first show that df > z for all 7. This part
follows similar to the corresponding part in Lemma [5] which
will be proved later.

Step 2: We complete the proof by contradiction. Assume
ig, jo are locations that r7 . > 0. By 24) we’ll have pj, —
Yio = 0.

Since Z?:l Tijg = 2i — (d, — 177) by @, then Zig = dv’,g —
Tig + 2j—1 Tioj = ig — Tig + D251 j2jy Tioj + Tigjo- Since
T4y = 0forall 7, r;; i, >0 and from step 1 we have d;‘o > xjo,
then z; > 0. And gives that ;, — p;, = s. Combining
the two results yields that pi;, — p;, = s.

Suppose there exists a location j that r; > 0, then p1;, —
v; = 0. Hence p;, = v; and pj, — 75 = fjo — tig = 5 > 0

which contradicts (24). Therefore, for any location j, 77, =
0.

Moreover, in the proposition below, we show that if it is
optimal for the platform to use both HVs and AVs at some
location, then every vehicle in the network will be assigned
to a ride.

Lemma 4. For optimization problem (18) under Assumption
|Z| and |ZI if there exists a location © such that x; > 0 and
z; >0, then r; = 0 for all i, j.

Proof.

Since there exists a location ¢ such that 7 > 0 and 2} > 0,
from Lemma [3| we know that d; > 2 for all i.

Suppose there exist a location g such that r; ; > 0. First,
we partition the n locations into two groups: I; = {i : i # o},
I> = {ip}. Then we aggregate those into a 2-location system
with locations 1 and 2 such that asy = 0, an; = 1.

Step 1: We show ]| =1y =155 =0, 75; > 0.

Notice that since 7 ; > 0, then r3; > 0. Hence by Lemma
riy = 13y = 0. Moreover, since 21 = aj1(dy — x1) +
a1(da—x2)+7r11+721 and df > x fori = 1,2, then 2} > 0
and y; — 1 = s by @23). From 24), 11 —71 = —s < 0 implies
that rf; = 0.

Step 2: We show that 65 =
conditions.

To reason about the 2-group problem, first rewrite the opti-
mization constraints below by combining with the conditions
9o = 0, Q21 = 1.

0 and 67 > 0 using KKT

vy = oz +x2) + 6
ro = Baiawy + 02
21 = a11(dy — x1) + (d2 — 22) + 711 + 7121
2g = a1p(dy — @) + 712 + 722
1+ T2 =21+ %1 —dy
To1 +T22 = 22 + T2 — da
Vi, j. (50)

0iy T4, 2,735 > 0

Clearly, as 7 > 0 for ¢ =1 or 2, then 7 > 0 and 25 > 0
since 12 > 0 when the actual ride-sharing network has no
less then two locations and is strongly connected. Similarly,
since there exists a location ¢ such that 7 > 0 and z] > 0,
then df — 7 > 0 and d} — 2] > 0 or d5 — x5 > 0. Hence
27 > 0 and 22 = r91 + 722 + d2 — x2 implies that 25 > 0.

We can therefore conclude the corresponding KKT condi-
tions:

r91 > 0= p1 — 72 =0
271>0=>v —pu1=s
22>0=>7—p2=3s
71 > 0= a1 (B — p1) + ara(BA2 —p2) = A1 +71 =0
29 >0= (BM —p1) — Ay + 72 =0.
Notice that the first 3 equations above imply that v; — ug =

2s + 1 — v2 = 2s. By recombination of the equations, we
derive

Blari A + ai2he) — A1 + a1y — 1) + ara(yn —p2) =0
Bla11 A1 + a12XAe) — A1+ 11 - s+ a2 -2 =0

Bloni AL + a12A2) = AL + (1 + ag2)s =0

(51

and

BA = A2 — (1 —72) =0
BA — X =0. (52)

Since 61 + 2 = (1 — S)(x1 + z2) and now z] + =5 > 0,
then 67 + 65 > 0. Suppose d5 > 0, then by ZI), N2 = w,
and hence A\ = % = ¥ > w, which contradicts the KKT
condition. Hence 05 = 0 and thus 47 > 0.

Step 3: Determine the range of s that satisfies the given
conditions.

Since 07 > 0 then A\; = w and thus Ay = A1 = fw.
Substituting those into (B1)) yields that

B 11w + 128w — w

= 53
B 1+ agz 43
1— 1
_ (=80 +maf) (54)
1+ age
(A-8)(A+ai128) |

Therefore, s =
feasible.
Step 4: We show that it is possible for the platform to realize
the same profit using only AVs (x; = 0, z; > 0 for all 7). Now
that

itan w is the only value that is

21 = an(dy —a7) + (d3 — x3) + 75,

2y = anp(dy —a7)

0=z +a] —dj

ry = 23 + 1wy — ds,
suppose dj < dj. Since x5 = Bajex] < 27 and 2§ = dj —
xf = a(df —x3)+ (ds —a5)+7r3,, then df —xf > di—ab =
d5 — Bagsxt > db — x¥. This implies that d¥ > d5, which

2 1 2 1 p 1 2

contradicts the assumption. Therefore dj > d5.



Moreover, since z5 = 15, + d5 — x5 > d5 — 235, then 25 =
Oélg(dik — l‘f) > d; — 1‘3 = Oélgdf > d; — I; +0412.Z‘>f = d; +
(1—B)arax}. We can also reformulate that 67 = (1— ) (x5 +
z3) = (1= B)(1+Bonz)x] and 2] + 23 = (1+on2)(d] — 7).

It is straightforward to verify that

* *
{z1 =di, 22 = anad], 21 =22 =01 = 02 = 0,715

=1}
is also a feasible solution for the problem.

We now consider the modified costs under this alternative
feasible solution. The increase of the cost is

(21 +22) -5 — (27 +23) -8

= [d] + a12d] — (1 + a12)(d] — 27)] - 5
_ . (1=PB)(1+ a12p)

= (1 + aq9)x] T+ an w

=(1-8)1+ 2Bz - w,

and the cost is subsequently decreased by (87 +03)-w— (61 +
d2)-w = 0jw = (1—P)(1+Bai2)xjw. Thus the total cost does
not change while the prices and demands are also unchanged.
Therefore the profit is not changed.

Hence, it is possible to achieve the same profit using only

AVs.
Step 5: We next complete the proof by contradiction. Denote
the solutions above as uﬁ*>0’z>0 for the mixed case of both
HVs and AVs and by ug*:O’DO for the case with only AVs.
Denote the optimal profit obtained in these two scenarios as
T, and Ty, respectively, and from Step 4 we know 7w, =
74y . Consider the alternative form of AV priority assignment
optimization problem (34).

Suppose with the same w, s, 8 and «; for all ¢, j, the op-
timal solution for AV priority assignment falls into the mixed
autonomy case with uz% ... Notice that since y;’", - ,~0 =
0 for all 4,7, then the solution ug%, .- is feasible for HV
priority assignment by substituting rgij with yi%* o .~0, and
moreover the profit will be exactly the same. Additionally, the
solution uﬁ*>0’z>0 is also feasible for AV priority assignment
by substituting y;’; with rflj?f$>oyz>0 with the profit 7,,,. How-
ever, since there exist ¢, j such that Tfﬁz>0,z>o > 0, and from
Lemma [6] (as we will prove later) we know that this is not
optimal for AV priority assignment, it follows that m,, < 7;,.
Hence 7, is not an optimal profit for HV priority assignment,
which gives the contradiction.

Suppose the optimal solution u3*, .., for AV priority
assignment falls into the pure-AV case, i.e., x; = 0 for all
1. Again, u;l.*>0,2>0 is feasible for AV priority assignment.
Moreover, under the case with only AVs, the two optimization
problems are exactly the same by substituting rfj with y.
Therefore ug*zoywo and ug’, .., yield the same profit,
denoted as 74y . However, since u?t ., cannot be optimal
for AV priority assignment as shown above, 7, < m4y which
contradicts the above result that 7, = mw4y/.

Finally, if the optimal solution ug%, ._, for AV priority
assignment falls into the pure-HV case, i.e., z; = 0 for all i,
then the optimal profit gained from this solution, denoted as
mv, will be greater than m,, (since 7, is not the optimal
profit). Moreover, since the solution will also be feasible for
HV priority optimization problem, then 7y is also attainable

(55)

for HV priority assignment. This contradicts the result that 7,
is the optimal profit for HV priority assignment.

Therefore, ug*>o7 »~0 cannot be the optimal solution for
and our assumption that there exist ¢, j such that r; > 0 is
false. Hence, in the situation under consideration, r;-*j =0 for
all 7, 5. O

Similar properties exist under AV priority assignment, as
summarized in the following lemma and proposition.

Lemma 5. Consider the alternative optimization problem
for AV priority assignment under Assumptions [I| and
Suppose there exist some location i such that both x; > 0 and
z7 > 0. Then di > z} for all i. Moreover, for any 1o, if there
exist some location j such that y;,; > 0, then y;;, = 0 for all
-

Proof.
Step 1: We show that df > z; for all 7. Assume location
i~o € {1,...,n} is such that 27 > 0 and 2 > 0. From

the construction of the model, we know that the platform uses
AVs only to meet the excess demand, hence di =~ > =z .
Therefore, from Theorem [2| we know that for the optimal
problem (34), d;_, > z! . Moreover, in the proof of the
theorem, we have also shown that the mixed case where there
exist some locations such that d; > z; and some locations
such that d; < z; will not be the optimal solution. Thus, it
follows that d; > z for all ¢ under this circumstance.

Step 2: We complete the proof by contradiction. Assume
io, jo are locations such that y; . > 0. By (40), we have
5/\]‘0 —Yip = 0. Since Z?:l Yij = Tj— (dl —Zi) by @, then
Ti, = diy — Zip + Z?:l Yios = diy — Zip + Z?:l,j;éjo Yioj +
Yiojo- Since y;,; > 0 for all j, yi ;. > 0, and from Step 1
above we have d;-*o > z;;, then a:;; > 0. Therefore, (38) gives
that Yig = >‘i0'

Notice also (37), and together indicate that \; €
[Bw,w] and 7; € [fw,w] for all i when there exists at least
one location i such that d; > 0 (or x; > 0). Therefore,
Ajo = W,%, = Pw is the only possible choice. Thus v;, =
)‘io = ﬁw.

Suppose there exists a location j such that y7; > 0. Then
BAi,—7; = 0. This indicates that \;; = w and v; = Sw, which
contradicts the result \;, = Sw obtained above. Therefore, for
any location j, y7;, = 0. O

Lemma 6. For optimization problem under Assumptions

[1] and 2| if there exists a location io such that xj, > 0 and

z; > 0, then y;; =0 for all i, j.

Proof.

We partition the locations into two groups: [I; =
{i 1y =0 Vj} and [y = {z 237yl > 0}. By aggregat-
ing these groups into two locations, we henceforth regard this
as a two-location problem indexed by 1 and 2. By Lemma [}
we know that y5, =0, y5; > 0 and d} > 2 for ¢ =1, 2.

As z§ > 0or z; > 0and z; = E?Zlajizj, since the
network is strongly connected, then zi > 0 and z5 > 0.
Knowing d% > 23, 2o = (d2 — 22) + y21 + Y22 and y3; > 0
implies that x5 > 0; similarly, ] = Sa11(df —27)+az1 (d5—



z3) + vt + y3;] > 0. Moreover, (38) implies that y; = g
and Yo = )\2.

Also, since §; + 02 = (1 — 8)(x1 + x2), then there exists
i € {1,2} such that 6 > 0 and hence A\, = w by (7).
Combining with (38) and @0), we know that \; € [fw,w]
and 7; € [Bw,w]. Since y3; > 0, then S\ — v = 0 which
indicates that Ay = w = 71 and 75 = Bw = Ao. We further
conclude that 65 = 0 and thus 07 > 0, yj; = yiy = 0. The
KKT variables are the same as the proof of Theorem [2|in the
situation where s < (1 — 3)w and z&!** > 0. Without loss of
generality, we therefore conclude that

1 _
_ (A +P)(az1 — faua) (56)
Q1 + Qa2
1—
_ (1= B)laz + Bona) (57)
Qa1 + Q12
1
= 5(1—f)Bw (58)
and 11 = (¥929.
Now consider the possible optimal solutions
a1 = Blan(dy - z1) + an(dz — 23) + yo:] + 07
w5 = Blana(dy — 21) + az(dz — 23)]
xy =dy — 2
Yor = 25 + 73 —dy
21 = 25.
Suppose di > d3. Then di — 27 > d5 — 25 and x5 =

Blana(di — 27) + aza(d3 — Zz)] Blazi(di — 27) + aza(d3 —
z3)] > B(ds — 23). Now let 21 = zo = dj (increase both by

— 23). Then decrease x5 by 5(d5 —23) and x; by (d5 —23),
thus we decrease d; by (1—-8)(1+8)(d5—=23) < (1-58)(z7+
x3). Hence we increase the cost by 2(ds —z3)-s = 2(d5—23)-
1(1—B)Bw = (1—B)B(d3 —23)-w and subsequently decrease
the cost by (1— 8)(1+8)(d; — ) -w > (1 B)B(d; — 25) -
(by xo > 0 indicates that d5 — z5 > 0). Hence the total
profit increases, which contradicts the fact that this is a profit-
maximizing optimum.

Suppose di < d5. With the same process as before, we
increase z1 and zy by (df — 2), decrease x2 by B(df — 27)
and 1 by di — 27, that is, we decrease d; by (1 — 8)(1 +
B)(ds—=z7) < (1—p) (x5 +x3). Hence we increase the cost by
2(di—z27)-s = (1-)B(df —z7)-w and subsequently decrease
the cost by (1—8)(148)(d; — 1) -w > (1—B)B(d; — 1) -w,
with the net effect of increasing the profit, which again is a
contradiction.

Therefore y;; > 0 is not an optimal solution in this situation.

O

Given the preliminary results for the two priority assign-
ments above, we now discuss how the optimal solutions
and optimal profits of the corresponding profit-maximization
problems are related.

Theorem 3. Under Assumptions [I| and B] Sor any chozce of
w, s, 8 and A, the tuple u* —{pz,é T YT 7]_1 is
an optimal solution of the optimization problem for HV priority
assignment if and only if it is an optimal solution of
the optimization problem for AV priority assignment (U7), and

therefore the optimal profits of the two optimization problems
are the same.

Proof.

First notice that in each priority assignment, an optimal
solution falls into one of three cases: HV-only (i.e., z; = 0
for all ¢), mixed autonomy (i.e., there exists some ¢,j such
that z; > 0 and z; > 0), and AV-only (i.e., x; = 0 for all
7). In the case of HV-only or AV-only, it is straightforward
to observe that when a solution is feasible for either HV
priority assignment or AV priority assignment, it will also be
feasible for the other AV assignment (consider the original
optimization problems here). This is also true for the mixed
case, since from Lemmas [Z_f] and@ we know that r;; = y;; = 0
in both priority assignments. Therefore, the solutions for the
two optimization problems are convertible: given 3, w, s and
A, if a solution is optimal for one priority assignment, it is
also optimal for the other priority assignment.

Since the objective functions of the two optimization prob-
lems (T3) and (T7) are the same, then the result above implies
that they have the same optimal profits. O

We can then derive a threshold on the cost of AVs above
which the platform does not find it optimal to deploy any AVs.

Proposition 1. Under Assumptions [I] and 2] if k > 1, then,
under any priority assignment, it is optimal for the platform
to use an HV-only deployment, i.e., there is no benefit to
introducing AVs into the ride-sharing network.

Proof.
Firstly we will develop another necessary condition.

Since we have proved that the two priority assignments
achieve the same optimal solutions, then the following are
equivalent:

« the inequality/equality in @I)/(22)/(23)/24) holds
o the inequality/equality in (37)/(G8)/(G9)/@E0) holds
« the inequality/equality in (@4)/@3)/{@6)/@7) holds.

Moreover, consider the corresponding KKT condition
for prices p;, and denote the variables in (I)-
4 usm(g superscript d.  The KKT  conditions

p»d)

require (pz) + O GEpn (S, - W) =
o) 7d 9 zd
s ><p1>+ 9 (pr) (D 0 BA; — wi) = 28 (pr) +

(pz)(ZJ Oéz]5>\l — ) = 0. The last equality
holds because p; > 0 for all ¢ obviously. Hence

it =y =3 B — v = 2 @i BA] =

Therefore, satisfying the relation of @I)—-(24) with (@4)—
@7) requires —w + \¢ = —w AL, i (BAY = ) — AF +
A = Nl st = —s— BN Y, augpd+o i
and p§ —~¢ = A} —~} for all 7, .

These requirements yield that A\¢ = Al and 7} = 7 + ¢




where ¢ = SA\Y — pu¢ for any j. In addition,

—s 7 —pd = —s = BN+ D i)+ —

J
W= = =B Y g+ -

J
v =l = =AY g+ (3 BN = ) —
J

0= aiju; — i
J

and applying this to gives a new necessary condition that
must be satisfied for any optimal solution for the optimization

problem (34):

—s=BA\ +7 <0 (59)

where the equality holds when z; > 0.

With the condition described in (59) held, we can construct
the threshold for the cost of AV above which the mixed-
autonomy won’t be beneficial for the platform.

Assume the optimal profit of the mixed autonomy deploy-
ment is strictly greater than that of the HV-only deployment.
Then there exists a location ¢ such that z; > 0. Hence by
©®4), —s — B\ +~} = 0. Moreover, from @0), @4) and @7),
BA; < i < Af < w for any j. Therefore, s = v} — A} <
A= BA < (1 — B)w. Hence k= = < 7(1;6)“ =1-p.

O

VI. WEIGHTED PRIORITY ASSIGNMENT

Besides assigning the rides to one type of vehicle—HVs
or AVs—first, and then using the other type to satisfy any
remaining demand, it is also reasonable to consider that
any vehicle in the platform can be chosen randomly with
equal probability. Therefore, in this section, we introduce the
weighted priority assignment in which the platform assigns the
rides at each location to HVs and AVs at that location with
the same probability, i.e., in proportion to the relative fraction
of HVs and AVs to the total number of vehicles.

A. Equilibrium Definition for Weighted Priority Assignment

As described above, in weighted priority
assignment, HVs and AVs are assigned to riders
with equal possibility: Prob {rider assigned to HV} =
Prob {rider assigned to AV} = min{M, 1} for all 4.

Ti+zi

The resulting equilibrium constraints for the model are:

T 5[Zajimin{l,w} L

$j+2’j
+> | + (60)
J
(1= F(p.:
> i =max{1—9’(x,+§?’))70} 1 61)
j (3 1

2 = Ej avj; min {1’ xjij 25 + % Ti
(62)

Zrij maX{O,l M} - Zi. (63)

- Ti+ 2
J

The expected lifetime earnings V; for a driver at location 4
takes the form

V; = min {W, 1} (c; + Xn:aikﬁvk)
k=1

x; + z;
+ (1 —min{M,1}> BmaxV;.  (64)
T, + z; j

Definition 3. For some prices and compensations {p;, ¢; }1_,
the collection {6;, x;,Yi;, %, Tij}?,jzl is an equilibrium under
{pi, e}, for weighted priority assignment if (60)—(63) is
satisfied and V; as defined in (64) satisfies V; = w for all

t=1,...,n.

To further study weighted priority assignment, we now
introduce the following assumption which strengthens As-
sumption [2]

Assumption 3. The cumulative distribution F(-) of the riders’
willingness to pay is such that p - F(p) is concave in p and
d-F~1(1 —d) is concave in d. Moreover, (1 — B)w < p or
s <p.

Note that, setting d = 1 — F'(p) for the fractional demand
of riders that will request a ride at price p, we have p - d =
d-F~1(1—d) so that Assumptionmeans the revenue obtained
by the platform is concave in demand d, which can be set by
the platform by adjusting the price p. For example, the uniform
distribution and exponential distribution satisfy the concavity
requirement of Assumption [3] while the Pareto distribution
does not.

B. Profit-Maximization Optimization Problem for Weighted
Priority Assignment

We now establish the following profit-maximization prob-
lem for weighted priority assignment:

[min {z; + 2;,0;(1 — F(p:))} - pi

i=1

—min{ ;, 0;(1 — F(pi))—— b ey — 2
min < x;, 0; Di T+ 2 Ci— %8

s.t. {0, i, Yijs Zi,'f“i_j}zj:l is an equilibrium

max
{pi,eitioy

under {p;,c;}i_, for weighted priority assignment.
(65)



As in Section [[TI] we establish an equivalent optimization
problem

zpl 1

6’(

F(p;) 7w25 stzz

{pu[suajuyu VZisTig )

st d; F(p;))

T
E Oéjidj J
- T+ z;
J
- T
K2
> yij =i — d;
. Ti+ 2
J:
zi = E aj;d;

- z
i
E Tij =2 — d;
— i+ 2z

Pis0is Zis Tis Yig, Tij > 0

+Zyji +6;
J

+Zrﬂ

Vi, j, (66)

followed by a lemma showing the equivalence.

Lemma 7. Under Assumptions [I| and B] assume weighted
priority assignment, and consider the optimization problem
(66). The following hold:

1) The optimal value computed from (66)) is an upper bound
on the optimal profits computed via (63)); thus it provides
an upper bound on the profits generated by the platform
with prices depending on the origin of a ride.

2) If {pz,éz,mz,yw,zz,rw}” | is a feasible solution for
(66) such that d; > 0 for all i, i.e., some riders are
served at all locations, then there exist compensations
{¢;}1_, such that the tuple {6;,x;,y;j, 2, r”} _, con-
stitutes an equilibrium under {p;,c;};_,. Furthermore,
the cost incurred by the platform under these compen-
sations per period is equal to w 22;1 ;.

3) Any optimal solution {pz‘,éf,x;‘,y:‘j,zf,r;‘j} for (66),
is such that d; > 0 for all i.

Proof.

The proof for the first two points are similar to that of the
HV and AV priority assignments. Obviously, di < ] + 2z} for
(63). Hence we can turn the equilibrium constraints into the
constraints in (66). By setting the compensation ¢; = w(1 —
B)- % for all 4, we obtain the equivalent optimization (66).

Consider the optimization problem (66) of weighted pri-
ority assignment and compare it with that of HV priority
assignment (T3). By observation, if for any optimal solution of
HV priority assignment, we can obtain that min {z},dj } =

Tt and max {df —xf,0} = df - = ~= (notice that
max {z} — d},0} = 2; — min {z},d;}), then it follows that
any optlmal solutlon for HV priority assignment will be
feasible for weighted priority assignment.

By Assumption 3] we have that (1 — S)w < p or s < p.
Hence Lemma [T] establishes that x; + 2 > d; > 0 for all 4.
We then consider the optimal solution in the three cases.

* 1i

If it falls in the HV-only case, i.e., 7 > 0,z = 0 for all
1, then this implies d} < z} for all . Therefore, we have

"
* ZT; %
di.ij;zi*_di = min {z}, d}}
Lk
* 2 _ _ *
dzﬁ—() —Ina,X{dZ- l’l,o}

Similarly, if the optimal solution is in the AV-only case, i.e.,
x; =0,z >0, then d} > «} for all i. Hence

dr ’ a:;;zj =0 = mln{x“ 1}
=df =max{df —=z},0}.

*

A
y * *
L

Lastly, when the optimal solution is in the mixed autonomy
case, i.e., 7 > 0,27 > 0 for some i, then d} > z; for all
i. Also, Proposition @l implies that y;; = r}; = 0 here for all
1,7, and then d} = x} + 2} for all i. Therefore, we observe

that
d; i = T
ds - 2

* *
s 7 1

= min {z},d}

= max {d} —z},0}.

Thus, the optimal solutions for the HV and AV priority
assignments are always feasible for weighted priority as-
signment. Hence, under Assumption [3] any optimal solution
{p;,6;, x5, y55, 25,r5; } for (66) is such that di > 0 for all i.

O

The following theorem establishes that weighted priority
assignment obtains the same optimal profits as the HV and
AV priority assignments, which were already shown to obtain
the same optimal profits in Theorem [3]

Theorem 4. Under Assumptions [I| and [3] for any choice of
w, s, B and A, a feasible solution u for (13) or (I7) is optimal
for (13) or (T7) if and only if u is an optimal solution for (66).

Proof.
By recombining the constraints in (66), we can obtain
another optimization problem given by

st ds =6, ( Fp))

Z ajid; + Zyji + eri +6;
: : J j j
Zyij +Z7“ij =; + 2 — d;
j=1 j=1
n n n n
=) iz =Y T )iy Tk
j=1 j=1 j=1 k=1

Vi, j.

x; + Pz =P

0iy2i, Ty Yig, Tij = 0 (67)

By construction, any optimal solution for (66) will be feasible
for and thus the optimal profit of (67) will be no less than
that of (66).

As we have already proved in Lemma the optimal
solution of the optimization problem in priority assignment
is always a feasible solution for (66).



Consider the optimization problem (67), and rewrite it by
considering d; as the variable instead of p;. Notice that since
d; = 0;(1— F(p;)) is monotonically decreasing, we are able to
write p; as a function d; because the inverse mapping exists.
Moreover, we can relax the constraint p; > 0 for all 4 since d;
is always positive and thus a negative price cannot be optimal.

Below lists the KKT conditions related to while re-
garding d; as a variable instead of p;:

(constraints on d; -7 =0 (68)
(constraints on §;) : —w + A\; < O (69)

(constraints on z;) : — \; +7v; <0 (70)
(constraints on z;) : — s — ZO&ij(ﬂ)\j — 1)+ v — 1 <0

J

(71)

(constraints on y;;) :f\; —7; <0 (72)
(constraints on ;) :BA\; —v; — pj + Zaijuj <0. (73)

J

By Assumption [3] is a convex optimization problem
with affine constraints, and thus the KKT conditions are not
only necessary, but also sufficient for optimality. Hence in
order to show a solution to be optimal for (67), it is enough
to show that it satisfies all the KKT conditions (68)—(73):

Given the optimal solution and the KKT variables A} and ~}
resolved from the optimal solution of AV priority assignment
with the conditions (#4)-@7), let p; = p; for all ¢, j. Then the
conditions (68)—(73)) and the constraints for weighted priority
assignment can all be satisfied. Therefore, any optimal solution
for AV priority assignment is also optimal (and feasible) for
67).

At the same time, since the optimal profits for are
higher than or equal to that of (66), and since any optimal
solution for AV priority assignment is feasible for (66), then
we can conclude that any optimal solution for AV priority
assignment is also optimal (and feasible) for (66).

O

VII. CASE STUDY: STAR-TO-COMPLETE NETWORKS

In this section, we consider the family of star-to-complete
networks introduced in [17].

Definition 4. The class of demand patterns (A%, 1) with n >
3, £€]0,1], and

1 1 1
0 73 7 =
C1 0 Co C2
Af — |1 C2 0 C2 , (74)
C1 C2 e C2 0
£ £
a=—=t(1-0, @=—m 1

is the family of star-to-complete networks. It is a star network
when & = 0 for which we write A® = A° and a complete
network when & = 1 for which we write A© = A'. Therefore

the general adjacency matrix of a star-to-complete network
can be written as A¢ = EAC + (1 — &)AS.

In addition, we make the following assumption throughout
this section.

Assumption 4. All locations have the same mass of potential
riders, which we normalize to one, i.e., 0 = 1. Also, the riders’
willingness to pay is uniformly distributed in [0,1] so that
F(p) =p for p € [0,1].

Consider fixed outside option earnings w, and recall the
parameter k determining the cost of operating AVs for the
same lifetime of an HV relative to w. In this section, we
confirm the intuition that, for large k, i.e. high relative cost
of AVs, the profit maximizing strategy for the platform is an
HV-only deployment, and for small k, i.e. low relative cost
of AVs, the profit maximizing strategy for the platform is an
AV-only deployment. We also show that in some cases, but not
all, for some values of k, the platform finds it optimal to use
both HVs and AVs at equilibrium, i.e., a true mixed autonomy
deployment.

Recall that Proposition [I| provides a sufficient condition
for when a platform will not find it optimal to use AVs.
In the next Theorem, we sharpen this result for the class of
star-to-complete networks and fully characterize the regions
in which the profit-maximizing platform will deploy an HV-
only deployment, an AV-only deployment, and a truly mixed
autonomous network.

Theorem 5. Consider a star-to-complete network under As-
sumption [d| Define

1+ By
Ky =
c1+1
' lff < [ (n )2;1a ]-]
— c1(148)+(n— 1)[32p3+1 A( -1
kQ B (Cl+1)((n 1)B2c3+1) lfg € [Blzma nn72))
c 1
M)i(l;rﬁ[j) lfge [ 5ﬂlim),
where

n—1

i =m0 =29

\/ B2(n—1)+48—4 0
n—1 ] ’ }

If k1 < ko, then: when k € [0, k1], it is optimal for the
platform to deploy an AV-only deployment, i.e., optimal profits
are obtained with x; = 0 for all i; when k € (k1,ks), it
is optimal for the platform to deploy a mixed autonomous
network, i.e., optimal profits are obtained with x; > 0 and
zj > 0 for some 4,3, when k > ko, it is optimal for the
platform to deploy an AV-only deployment, i.e., optimal profits
are obtained with z; = 0 for all i.

If k1 > ko, then: when k € [0, k3], it is optimal for the
platform to deploy an AV-only deployment; when k > ks, it
is optimal for the platform to deploy an HV-only deployment,

where
—2)[1 = (1—-c1)B] - B
(n=2)14+ec)A-5)

ey = O (76)



For the numerical study, consider a star-to-complete network
with n = 3, £ = 0.2. We consider two cases: § = 0.8 and
B = 0.95, and we compute optimal equilibria and profits using
the optimization problems formulated above. For the first case
with 8 = 0.8, applying Theorem 5, we obtain k1 = 0.9053
and ke = 0.9181 so that k; < ko. Figure Top) confirms that
for k < kq, it is optimal for the platform to deploy only AVs,
for k1 < k < ks, it is optimal for the platform to use both AVs
and HVs, and for k > ko, it is optimal for the platform to use
only HVs. In constrast, when 8 = 0.95 so that the expected
lifetime of HVs in the network is longer, then k1 > ko and
we then compute ks = 0.9763. Figure |1| (Bottom) confirms
that for k& < ks, the platform finds it optimal to deploy only
AVs, and for k > k3, the platform finds it optimal to use only
HVs; there is no regime in which the platform finds it optimal
to use both AVs and HVs. The plots in Figure [T| are generated
by solving the optimization problem (I8 in MATLAB using
CVX, a package for specifying and solving convex programs
[22]], [23]].

It is interesting to note from the above thresholds that even
if AVs are cheaper than HVs, when the price difference is
small, the platform may still choose to deploy only HVs or
to deploy a mix of AVs and HVs. An explanation for this
observation is as follows. Recall that with probability 1 — 3, a
driver leaves the network and does not seek to be matched to
a new rider after finishing a ride and thus essentially provides
one-way service. In contrast, AVs are assumed to remain in the
network and must be recirculated to a new location. When the
demand is uneven so that some destinations are more popular
than others, the platform can exploit this one-way service to
obtain a higher profit with HVs, even if AVs are less expensive
on a per ride basis.

VIII. CONCLUSION

We proposed three models for ride-sharing systems with
mixed autonomy under different ride-assigning schemes and
showed that under equilibrium conditions, the optimal profits
can be computed efficiently by converting the original prob-
lems into alternative convex programs. In addition, we proved
that the optimal profits of the three models are the same.

We found that the optimal profits for the ride-sharing
platform with AVs in the fleet will be the same as that of
the human-only network when £ is large, i.e., the cost for op-
erating an AV is relatively high compared to the outside option
earnings for drivers’ lifetime. In particular, in Proposition
we showed that if the cost of operating an AV exceeds the
expected compensation to a driver in the system, the platform
will find it optimal to not use AVs, an intuitive result.

The case study illustrates that the platform may not nec-
essarily find it optimal to use AVs even when the cost of
operating an AV is less than the expected compensation to a
driver in the system. Moreover, there are some situations when
it is optimal to have both drivers and AVs in the platform.
We quantify the conditions for which the mixed autonomy
deployment allows for higher profits than a forced AV-only or
forced HV-only deployment.

The model proposed and studied here includes a several
simplifying assumptions that can be relaxed in future work.

Optimal profits, 3 = 0.8

0.4665
Mixed autonomy
Forced HV-only
0.466 | L Forc?d AV-only | |
- | ] Profit at k;
% A Profit at ky
g
= 0.4655 + J
e
=
jon
© .
0.465 + % 4
.
. R
.
.
0.4645 . A . .
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k
Optimal profits, 6 = 0.95
0.666 |- Mixed autonomy | |
Forced HV-only
0.665 smmns Forced AV-only |
- A Profit at ky
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—
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e
2. 0.662 | ]
o —
0.661 | o, ]
*
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Fig. 1. Optimal profits for a star-to-complete network with n = 3, £ = 0.2
under a mixed autonomy deployment, a forced HV-only deployment, and
a forced AV-only deployment. (Top) When 8 = 0.8, it is optimal for the
platform to use only AVs when k, the ratio of the cost of AVs to HVs,
satisfies k£ < k1 = 0.9053, only HVs when & > k2 = 0.9181, and a mix of
AVs and HVs when k1 < k < k2. (Bottom) When 8 = 0.95, it is optimal
for the platform to use only AVs when £ < k3 = 0.9763 and only HVs
when k > kg3, and it is never optimal for the platform to use a mix of HVs
and AVs.

For example, destinations are often not equidistant and ride
costs might then depend on destination. Nonetheless, these
simplifying assumptions are important for illuminating funda-
mental properties of ride-sharing in a mixed autonomy setting.
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