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ABSTRACT

In this work, we show how controlled robustly forward invariant

sets for systems with disturbances are efficiently identified via the

application of the mixed monotonicity property. A mixed mono-

tone system can be embedded in a related deterministic embedding

system with twice as many states but for which the dynamics are

monotone; one can then apply the powerful theory of monotone

dynamical systems to the embedding system to conclude useful

properties of the initial mixed monotone system. Using this tech-

nique, we present a method for verifying state-feedback controllers

against safety (set invariance) constraints, and our approach in-

volves evaluating a control barrier function type condition that

requires the vector field of the embedding system to point into

a certain southeast cone. This approach also facilitates the con-

struction of runtime assurance mechanisms for controlled systems

with disturbances, and we study system safety in the presence of

state uncertainty as well. The results and findings of this work are

demonstrated through two numerical examples where we study (i)

the verification of a controlled spacecraft system against a safety

constraint, and (ii) the formation of a runtime assurance mechanism

that functions in the presence of uncertain state measurements.
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1 INTRODUCTION

Mixed monotone systems are separable, via a decomposition func-

tion, into increasing and decreasing components, and this decompo-

sition function enables embedding the system dynamics in a higher-

order deterministic embedding systemwith twice as many states but

for which the dynamics are monotone. Mixed monotonicity applies

to continuous-time dynamical systems [27], discrete-time dynami-

cal systems [13], controlled systems [21], and systems with distur-

bances [1, 4], and in all cases, the essential tool of mixed monotonic-

ity is the resulting monotone embedding system. It has been shown,

for instance, how robust reachable sets for the initial mixed mono-

tone systems are approximated efficiently via a single simulation of

the embedding system; see [13, 21] for over-approximating forward

reachable sets, [1] for over-approximating backward reachable sets,

and [4] for under-approximating forward/backward reachable sets.

See also [8, 24] for fundamental results on monotone dynamical

systems theory.

While most works, including those discussed previously, ana-

lyze the initial mixed monotone system via a simulation of the

embedding system, it was recently shown in [1] how useful system

information is surmised from simply computing the valuation of

the vector field of the embedding system at certain choice states. In

particular, [1] shows how robustly forward invariant and attractive

sets for continuous-time dynamical systems with disturbances are

efficiently identified via the computation of an equilibrium for the

embedding system, and this procedure is extended to a discrete-time

setting in [12]. See also [23] for an algorithm to compute robustly

forward invariant sets for discrete-time monotone control systems.

In this work, we consider continuous-time controlled mixed

monotone systems with disturbances, and we answer an analogous

question to that of [1] by showing how controlled robustly for-

ward invariant sets are identified by studying only the valuation

of the vector field of the embedding system, without simulation.

Our approach involves a control barrier function type condition,

requiring the vector field of the embedding system to point into an

appropriate southeast cone in the embedding space. This creates

an intuitive procedure for verifying feedback controllers against

safety (invariance) constraints, and we show also how feedback
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controllers that make control decisions based on uncertain state

measurements are verified in a similar way.

A main assumption in our approach is that the system dynam-

ics are mixed monotone with respect to a known decomposition

function; large classes of systems have been shown to be mixed

monotone with respect to closed-form decomposition functions

constructed from, e.g., bounds on the system Jacobian matrix [21]

or domain-specific knowledge [14, 25], and in some instances de-

composition functions can also be found by solving an optimization

problem [4].

When a candidate control policy cannot be verified safe a priori,

it is desirable to enforce safety online; this approach is referred to

in literature as runtime assurance or active set invariance filtering

[15–17]. An active set invariance filter decouples the performance

goals of the candidate controller from the system safety goals so

that the latter is prioritized in application. Thus, when supplied

with a, perhaps unverified, candidate control policy, an active set

invariance filter will preempt certain candidate control inputs on-

line in a way that ensures system safety; see [6, 10, 18, 26] for

application examples.

Numerousmechanisms exist for enforcing invariance constraints

at runtime and, notably, control barrier functions are well suited

for this task. This is a main idea of [5, 6] where the resulting con-

troller is formulated as a quadratic program for systems without

disturbances, and this idea is extended in [7] to the setting with

disturbances. In the case with disturbances, the number of con-

straints in the optimization program can grow exponentially in the

dimension of the disturbance space and, notably, [2] presents a con-

trol barrier function based active set invariance filter, formed as a

quadratic program, for mixed monotone systems with disturbances;

this program contains 2p linear constraints, where p is the dimen-

sion of the disturbance space, and a simulation of the embedding

system is computed at each time step. Nonetheless, the quadratic

program structure allows the filter to be minimally invasive to the

candidate controller in the sense that the candidate input is left

unmodified in instances where system safety is verifiable online.

In this work too we explore the construction of active set in-

variance filters for mixed monotone systems, and we show how

such mechanisms are formed by applying control barrier function

based reasoning to the embedding system. Unlike [2], our approach

avoids online simulation of the embedding system and, instead,

control inputs are chosen online to guarantee that the vector field

of the embedding system obeys certain linear constraints inside

a safe subset of the statespace. Moreover, the resulting active set

invariance filter is formulated as a quadratic program with q linear

constraints, for a polytopic safe set with q faces.

In summary, we provide a foundational theory of how controllers

can be designed in the embedding space, so that without simulation

of the embedding system, one can verify the existence of robustly

forward invariant regions for the initial system. We study two

useful applications that arise from this theory: (a) the offline verifi-

cation of controllers against safety constraints, and (b) the online

enforcement of safety constraints. The results and findings of this

work are demonstrated through two numerical examples1.

1The code that accompanies these examples, and generates the figures
in this work, is publicly available through the GaTech FactsLab GitHub:
https://github.com/gtfactslab/Abate_HSCC2021.

2 NOTATION

We denote vector entries via subscript, i.e., xi for x ∈ Rn de-

notes the ith entry of the n-dimensional vector x , and we denote

by 0n ∈ Rn the n-dimensional vector fully populated with ze-

ros. Let (x , y) denote the vector concatenation of x , y ∈ Rn , i.e.
(x , y) := [xT yT ]T ∈ R2n , and let � denote the componentwise

vector order, i.e. x � y if and only if xi ≤ yi for all i . Let �SE denote

the southeast order on R2n defined by

(x , x ′) �SE (y, y′) ⇔ x � y and y′ � x ′ (1)

where x , y, x ′, y′ ∈ Rn . Given x ,y ∈ Rn with x � y,

[x , y] :=
{
z ∈ Rn | x � z and z � y

}
(2)

denotes the hyperrectangle defined by the endpoints x and y, and
given a nonsingular transformation matrix T ∈ Rn×n ,

[x , y]T :=
{
z ∈ Rn | T−1z ∈ [x , y]

}
(3)

denotes the parallelotope defined by the endpoints x and y and

shape matrix T .

3 PRELIMINARIES

In this work, we consider dynamical systems with disturbances

�x = F (x , u, w) (4)

with state x ∈ Rn , control input u ∈ Rm , and disturbance input

w ∈ W ⊂ Rp . We assume that W := [w, w] is a hyperrectangle,

for some w � w , and we assume also that the vector field F :

R
n × Rm ×W → Rn is locally Lipshitz continuous.

3.1 Mixed Monotone Systems

We begin by recalling fundamental results in mixed monotone

systems theory.

Definition 1 (Mixed Monotonicity). Given a locally Lipschitz con-

tinuous function d : Rm × Rn ×W × Rn ×W → Rn , the system
(4) is mixed monotone with respect to d if

(1) For all x ∈ Rn , all u ∈ Rm and allw ∈ W
d(u; x , w, x , w) = F (x , u, w).

(2) For all i, j ∈ {1, · · · , n}, with i 
= j,

∂di
∂x j

(u; x , w, x̂ , ŵ) ≥ 0

for all u ∈ Rm and all ordered x , x̂ ∈ Rn , and w, ŵ ∈ W
such that ∂d

∂x exists.

(3) For all i, j ∈ {1, · · · , n},
∂di
∂x̂ j

(u; x , w, x̂ , ŵ) ≤ 0

for all u ∈ Rm and all ordered x , x̂ ∈ Rn , and w, ŵ ∈ W
such that ∂d

∂x̂
exists.

(4) For all i ∈ {1, · · · , n} and all j ∈ {1, · · · , p},
∂di
∂w j

(u; x , w, x̂ , ŵ) ≥ 0 ≥ ∂di
∂ŵ j

(u; x , w, x̂ , ŵ)

for all u ∈ Rm and all ordered x , x̂ ∈ Rn , and w, ŵ ∈ W
such that ∂d

∂w and ∂d
∂ŵ

exist. �
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When (4) is mixed monotone with respect to d , d is a decom-

position function for (4), and when d is clear from context or not

germane to the discussion we simply say that (4) is mixedmonotone.

Given d , [ �x
�̂x
]
= E(u; x , x̂ ) :=

[
d(u; x , w, x̂ , w)

d(u; x̂ , w, x , w)

]
(5)

is the embedding system relative to d and E is the embedding function

relative to d [1].

Remark 1. It was recently shown in [4] that all systems of the form

(4) are mixed monotone with a unique tight decomposition function

that provides a tighter approximation of reachable sets when used

with [1, Proposition 1] than any other decomposition function for

(4). In practice, it is often difficult to obtain a closed-form expression

for the tight decomposition function, and for this reason other

decomposition function constructions are often used; see [14, 20,

21, 27] for an algorithm to generate decomposition functions for

systems with uniformly bounded Jacobian matrices, and see also [1]

for an algorithm to generate decomposition functions for systems

defined by polynomial vector fields. �

When F does not depend on u, we omit the first argument in d
and E, so that (4) is mixed monotone with respect to d(x , w, x̂ , ŵ)

and E(x , x̂ ) is the embedding function relative to d .
We relate d and F in the following Proposition.

Proposition 1. Choose x , x ∈ Rn such that x � x . For all x ∈ [x , x]
such that xi = x i ,

Fi (x , u, w) ≥ di (u; x , x ) (6)

for all u ∈ Rm and allw ∈ W. For all x ∈ [x , x] such that xi = x i ,

Fi (x , u, w) ≤ di (u; x , x ) (7)

for all u ∈ Rm and allw ∈ W. �

Next, we recall how robustly forward invariant regions for un-

controlled systems are identified by studying the vector field of the

embedding system. We consider

�x = F (x , w) (8)

where x ∈ Rn and w ∈ W retain their definitions from (4) and

where F : Rn ×W → Rn is assumed to be Lipshitz continuous. We

denote by Φ(t ;x , w) the unique state of (8) reached at time t ≥ 0

when beginning at state x ∈ Rn at time 0 and evolving subject to

piecewise continuous input signal w : [0, t] → W. Additionally,

we assume (8) is mixed monotone with respect to d(x , w, x̂ , ŵ),

and we denote by E(x , x̂ ) the embedding function relative to d .

Definition 2. A set S ⊆ Rn is robustly forward invariant for (8) if

Φ(t ; x , w) ∈ S for all x ∈ S , all t ≥ 0 and all piecewise continuous

inputs w : [0, t] → W whenever Φ(t ; x , w) exists. �

Proposition 2. [1] If there exists a x , x ∈ Rn with x � x so that

02n �SE E(x , x ) (9)

then [x , x] ⊂ Rn is robustly forward invariant for (8). �

3.2 Robust Control Barrier Functions and
Active Set Invariance Filtering

We next review active set invariance filtering (ASIF) and the on-

line enforcement of safety constraints for controlled systems with

disturbances as in (4). For ease of exposition, we assume in the

following that (4) is affine in control so that

�x = F (x , u, w) = f (x , w) + д(x , w)u, (10)

where f : Rn ×W → Rn and д : Rn ×W → Rn×m are continu-

ously differentiable functions. The primary goal of the ASIF is to

filter an unverified candidate control lawud(x ) in such a way that is

least invasive to the candidate signal and guarantees system safety.

We assume further that ud(x ) is Lipschitz continuous x .
Safety of (10) is formalized by a set invariance requirement; that

is, given a set of allowable states S ⊂ Rn , the closed-loop system

is safe if it renders a S robustly forward invariant. To that end, we

assume a safe set S defined as the intersection of the super-zero

level set of q continuously differentiable scalar valued functions.

Assumption 1 (Safe Set). We assume that S is represented

S = {x ∈ Rn | h(x ) 
 0q } (11)

for continuously differentiable h1 · · ·hq : Rn → R. �

An equivalent condition for robust forward invariance of S is

provided by Nagumo’s theorem [9, 22]. Denote by

�x = Fd(x , w) = f (x , w) + д(x , w)ud(x ), (12)

the closed loop dynamics of (10) under the candidate controller

ud(x), and let Lf h(x , w) and Lдh(x , w) denote the lie derivatives

of h along f and д, respectively. Under mild technical conditions

ensuring that S is a practical set [9], the proposition below holds.

Definition 3 (Class-K). A continuous function α : R→ R is class-

K if α is strictly increasing and α (0) = 0. we extend this notation

to vector valued functions as well, so that α : Rn → Rn is class-K
when αi (x ) = αi (xi ) and αi is class-K for all i . �

Proposition 3. The set S is robustly forward invariant for (12) if

there exists a class-K function α : Rq → Rq such that

Lf h(x , w) + Lдh(x , w)ud(x ) + α (h(x )) 
 0q (13)

holds for all x ∈ S and allw ∈ W. �

If the candidate controller ud satisfies (13) for some α then S is

robustly forward invariant for (12) and ud is considered safe. In the

following, we refer to constraints of the form (13) as barrier con-

straints and such constraints are linear inequalities on the variable

u for any x ∈ Rn and anyw ∈ W.

Definition 4 (Robust Control Barrier Function). A continuously

differentiable function h : Rn → R
q is a robust control barrier

function for (10) if there exists a class-K function α : Rq → R
q

such that for all x ∈ S there exists a u ∈ Rm satisfying

Lf h(x , w) + Lдh(x , w)u + α (h(x )) 
 0q (14)

for allw ∈ W. �
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In [7], the authors propose an ASIF, constructed as a quadratic

program where the constraints in this program are given by (14).

This filter is given below as CBF-QP.

CBF-QP

ua(x ) = argmin
u ∈Rm

| |u − ud(x )| |22 (15)

s.t. Lf h(x , w) + Lдh(x , w)u + α (h(x )) 
 0q
for allw ∈ W (16)

Proposition 4. If h is a robust control barrier function for (10)

and satisfies (14) with the class-K function α , then for all Lipshitz

continuous ud(x) and all continuous signals w : [0; ∞) → W the

CBF-QP is always feasible and the set S is robustly forward invariant

for closed loop dynamics of (10) under ua. �

While the program CBF-QP is always feasible when h(x) is a
robust barrier function for (10), note that the program contains

an infinite number of linear constraints and, thus, is not always

practically implementable. We discuss this concern further in the

following sections.

4 PROBLEM SETTING

In this section, we introduce the problem statements of this work,

and we discuss the differences between controller verification and

runtime assurance. We assume a system of the form (4), and a safe

set of operating conditions S ⊂ Rn .
Assumption 2 (Safe Set). Assume a set of safe states given by a

hyperrectangle S := [s, s] ⊂ Rn . �

Traditionally, mixed monotone systems theory has been em-

ployed for the analysis of hyperrectangular sets of interest (see e.g.

Proposition 2), however it was recently shown in [3] how alterna-

tive set geometries, i.e. polytopic sets, can be analyzed similarly

using the tools of mixed monotonicity. Thus, while S is assumed hy-

perrectangular, the basic results and tools generated in this work are

applicable to the more general class of polytopic safe sets, and we

demonstrate this assertion through discussion and examples later

in the work. Therefore, Assumption 2 is not particularly restrictive

on the problem setting.

The goal is to construct a (feedback) controller for (4) that en-

sures the robust forward invariance of S . One approach to this

problem involves verifying a candidate controller a priori. For ex-

ample, assume a candidate controller ud : Rn → Rm ; denote by

�x = Fd(x , w) = F (x , ud(x ), w) (17)

the closed loop dynamics of (4) under ud(x ).

Problem 1 (Controller Verification). Given a feedback controller

ud(x ), show that S = [s, s] is robustly forward invariant for (17). �

There are two natural ways to solve Problem 1 using the theory

and tools discussed thus far:

(i) One can construct a robust barrier function for the closed

loop dynamics (17).

(ii) One can compute a decomposition function d for the closed

loop dynamics (17) and show that E satisfies (9), as discussed

in Proposition 2.

Solving Problem 1 via method (i) involves computing a class-K
function α : R2n → R2n so that

∂h

∂x
(x )Fd(x , w) 
 −α (h(x )) (18)

for all x ∈ S and for allw ∈ W, where h : Rn → R2n is given by

h(x ) := (x − s, s − x ). (19)

In this case, h(x) 
 02n implies x ∈ S , and S is robustly forward

invariant for (17) by virtue of the fact that h(x) is a robust bar-

rier function for (17). Solving Problem 1 via method (ii) involves

computing a decomposition function d for (17) so that (9) holds.

When methods (i) and (ii) fail to solve Problem 1, i.e. when ud

cannot be verified a priori, it is desirable to enforce safety online.

This procedure involves filtering ud at runtime to ensure the robust

forward invariance of S , as discussed in Problem 2.

Problem 2 (Runtime Assurance). Given a feedback controller

ud(x), design a controller ua(x) such that S is robustly forward

invariant for

�x = F (x , ua(x ), w) (20)

and such that ua(x ) evaluates to ud(x ) whenever possible. �

A controller that solves Problem 2 is referred to as a runtime

assurance mechanism or an active set invariance filter (ASIF). Sev-

eral methods exist for solving Problem 2 and we have discussed

previously how robust barrier functions are well suited for this

task. However, the CBF-QP is not always implementable as the pro-

gram contains an infinite number of linear constraints. A solution

is presented in [2], which also considers mixed monotone systems,

where an ASIF is constructed as a quadratic problem with 2p linear

constraints, and where p is the dimension of the disturbance-space.

This construction, however, is not suitable for systems with state

uncertainty, another limitation we address in this work. In particu-

lar, we accommodate uncertainty in state via a set-valued observer

as formalized next.

Definition 5 (Uncertain Observer). At time t ≥ 0 an uncertain

observer provides a hyperrectangle X(t ) := [x (t ), x (t )] ⊂ Rn satis-

fying x (t ) ∈ X(t ) where x (t ) is the current system state. We assume

always that x (t ), x (t ) vary continuously in t . �

In the following, we study the verification and construction of

feedback controllers which operate based on the uncertain observer

output. Such a controller is denoted u(X) = u(x , x ), where we note
that x (t ), x (t ) fully characterise the observer output X(t ).

Problem 3 (Controller Verification with State Uncertainty). Given

a feedback controller ud(X), show that for all observer signals X(t ),

S is robustly forward invariant for (4) when ud(X) is employed. �

Problem 4 (Runtime Assurance with State Uncertainty). Given a

feedback controller ud(X), design a controller ua(X) such that S is

robustly forward invariant for

�x = F (x , ua(X), w) (21)

for all observer signals X(t ) := [x(t ), x(t )], and such that ua(X)

evaluates to ud(X) whenever possible . �
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Remark 2. Importantly, Problems 3 and 4 do not require X(t ) ⊆ S
for all t . Rather, we allowX(t ) to leave S (at least partially). Nonethe-
less, the proposed control methodology below will still ensure

x (t ) ∈ S for all t ; that is, even though the observer only guarantees

x(t ) ∈ X(t ), the proposed controller guarantees x(t ) ∈ X(t ) ∩ S ,
provided that initially X(0) ⊆ S . �

In the following, we solve Problems 1, 2, 3 and 4, and our solutions

rely on mixed monotonicity theory and the tools presented thus

far. In particular, Problems 2 and 4 are solved with a controller

designed as an optimization problem, in a similar way to the CBF-

QP (15)-(16); however, our construction requires only 1 constraint

for each face of S and the complexity of the optimization problem

is agnostic to the dimension of the disturbance space.

5 CONTROLLER VERIFICATION VIA MIXED
MONOTONICITY

In this section, we solve Problems 1 and 3 by applying control

barrier function based reasoning to the embedding system (5). As

before, we consider a system of the form (4) and a safe set S = [s, s].
We also take the following assumption on our problem setting.

Assumption 3. We assume that (4) is mixed monotone with de-

composition function d(u; x , w, x̂ , ŵ), and we denote by E(u; x , x̂ )
the embedding function relative to d , as given in (5). �

5.1 Controller Verification with Full-State
Feedback

We begin by addressing Problem 1—the controller verification

problem—and we show how traditional barrier based reasoning

can be applied to the embedding system to verify a given desired

controller ud(x ) renders S robustly forward invariant for (4).

Proposition 5. Assume a desired controller ud(x). If there exists a
class-K α : R2n → R2n so that

− α ( (x , x ) − (s, s) ) �SE E(ud(x ); x , x ) (22)

for all x ∈ S , then S is robustly forward invariant for (17). �

Proof. Choose ud(x) and assume that (22) holds for all x ∈ S .
Additionally, choose x ′ ∈ S so that x ′i = si , i.e. x

′ is on the ith-

bottom-face of S , and let u ′ = ud(x ′). Then
−αi (x ′i − si ) ≤ Ei (u

′; x ′, x ′)
= di (u

′; x ′, x ′)
≤ Fi (x

′, u ′, w)

(23)

for allw ∈ W, where the first inequality in (23) is a result of (22)

and the last inequality in (23) is a result of Proposition 1. Moreover,

αi (x
′
i − si ) = 0 and therefore Fi (x

′, u(x ′), w) ≥ 0 for all w ∈ W
when x ′i = si . Using a similar argument, it can be shown that when

x ′ ∈ S is chosen so that x ′i = si , we have Fi (x
′, u(x ′), w) ≤ 0 for all

w ∈ W. Therefore, S is robustly forward invariant for (17). This

completes the proof. �

Proposition 5 provides a basic method for solving Problem 1.

This method has two steps:

• Compute a decomposition function d for (4), and form the

the corresponding embedding function E via (5).

• Given a desired controller ud(x ), compute a class-K function

α : R2n → R2n , so that (22) holds for all x ∈ S .

When such an α exists, S is robustly forward invariant for (17), and

Problem 1 is solved via this approach.

5.2 Controller Verification in the Presence of
State Uncertainty

We next address Problem 3 and show how a candidate controller

ud(X) that operates based on the uncertain system measurement

X(t ) is verified against safety constraints. As discussed in Remark

2, the goal is not to ensure that X(t ) ⊂ S for all t ; rather, Problem 3

is solved when the current system state x satisfies x (t ) ∈ S for all t .

As such any controller ud(X) that solves Problem 4 can choose to

make control decisions based only on X(t ) ∩ S and, for this reason,

we next introduce the concept of an observer filter, as defined in

Definition 6.While such a filter need not be implemented in practice,

we introduce this concept to facilitate the following derivations.

Definition 6 (Observer Filter). An observer filter receives the

current observer outputX(t ) and returns the filtered outputZ(t ) :=
X(t )∩ S . Equivalently, an observer filter receives X(t ) = [x (t ), x (t )]
and returnsZ(t ) = [z(t ), z(t )] where

zi (t ) = max{x i (t ), si }, zi (t ) = min{x i (t ), si }, (24)

for i ∈ {1, · · · , n}. This is a result of the fact that both S and X(t )
are hyperrectangles. �

As discussed above, it is without loss of generality to assume

that a controller that solves Problem 3 makes control decisions after

referencing the filtered observer output Z(t ), rather than X(t ). We

now have the requisite tools to solve Problem 3.

Theorem 1. Consider a desired controller ud : Rn ×Rn → Rm with

the property that ud(x ,x) = ud(z, z) whenever [x ,x] ∩ S 
= ∅ where

z and z are as defined in (24), i.e., the control policy acts on filtered

observer states. If there exists a class-K α : R2n → R2n so that

− α ( (z, z) − (s, s) ) �SE E(ud(z, z); z, z) (25)

for all z, z ∈ S with z � z, then for all observer signals X(t ), S is

robustly forward invariant for (4) when ud(X) is employed. �

Proof. Choose ud(x , x ) and assume that (25) holds for all z, z ∈
R
n satisfying s � z � z � s . Additionally, choose x ′ ∈ S so that

x ′i = si , i.e. x
′ is on the ith-bottom-face of S , and choose z′, z′ so

that x ′ ∈ [z, z] ⊆ S . Lastly, let u ′ = ud(z′, z′).
Since x ′i = si and x ′ ∈ [z, z] ⊆ S , note that zi = si . Note also

that

−αi (z′i − si ) ≤ Ei (u
′; z′, z′)

= di (u
′; z′, z′)

≤ Fi (x
′, u ′, w)

(26)

for allw ∈ W, where the first inequality in (26) is a result of (25)

and the last inequality in (26) is a result of Proposition 1. Moreover,

αi (z
′
i − si ) = 0 and therefore Fi (x

′, u(z′, z′), w) ≥ 0 for allw ∈ W
when x ′i = si . Using a similar argument, it can be shown that when

x ′ ∈ S is chosen so that x ′i = si , we have Fi (x
′, u(z′, z′), w) ≤ 0 for

all w ∈ W. Therefore, for all observer signals Z(t ) = [z(t ), z(t )]
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S is robustly forward invariant for (4) when ud(z, z) is employed.

This completes the proof. �

The results of Theorem 1 subsume those of Proposition 5 as

a special case; that is, when X(t ) = [x(t ),x(t )] for all t , i.e. state
uncertainty is not present, the constraint (25) resolves to (22) and

the hypothesis of Theorem 1 is equivalent to that of Proposition 5.

5.3 Extending to General Polytopic Sets

Problems 1 and 3 assume a hyperrectangular safe set of operating

conditions S , however, we show in this section how the basic theory

posited in Proposition 5 and Theorem 1 extends to more general

class of polytopic safe sets, in a similar way.

To that end, we next assume a convex polytope safe set, defined

as the intersection of several parallelotopes in Rn .

Assumption 4. We assume a convex polytope safe set S ⊂ Rn ,
defined as the intersection of q parallelotopes {S j }qj=1 so that S :=

∩qj=1S j and S j := [s j , s j ]Tj where s
j � s j for all for j ∈ {1, · · · , q}

and Tj ∈ Rn×n is a nonsingular transformation matrix. �

As in Problem 3, we aim to verify that a candidate feedback

controllerud(X) renders S robustly forward invariant for (4), where

ud(X) makes control decisions after referencing the current uncer-

tain observer output X(t ). Here, however, we allow X(t ) to take a

nonhyperrectangular geometry, and we assume only that X(t ) is
bounded in the intersection of parallelotopes in a way similar to

that of S .

Assumption 5. At time t ≥ 0 the uncertain observer receives

the current system state x(t ) and returns a set X(t ) ⊂ Rn so that

x (t ) ∈ X(t ). Moreover, we assume access to q parallelotope signals

X1(t ), · · · , Xq (t ) so that

X(t ) ⊆
q⋂
j=1

X j (t ), and X j (t ) := [x j (t ), x j (t )]Tj (27)

for all t where x j (t ), x j (t ) are known and where Tj ∈ Rn×n main-

tains its definition from Assumption 4. Additionally, an observer fil-

ter receives the current observer outputX(t ) and returns the filtered
output Z(t ) ⊂ Rn , where Z(t ) = ∩qj=1Z j (t ) and Z j = X j (t ) ∩ S j .

Equivalently Z j (t ) = [z j , z j ]Tj where

z
j
i (t ) = max{x ji (t ), s

j
i }, z

j
i (t ) = min{x ji (t ), s

j
i }. (28)

�

The fundamental idea in Assumption 5 is that an uncertain ob-

server, in this setting, will return a set of parallelotopes {X j }qj=1
so that the current system state x(t ) is contained in the intersec-

tion and X j has the same geometry as S j . The observer filter then
operates in a manner similar to that described in Definition 6.

We next show how a candidate controller ud(Z) is verified to

render S robustly forward invariant for (4). For all j ∈ {1, · · · , q}
construct the transformed dynamics

�x = T−1
j F (Tjx , u, w) (29)

with state y ∈ Rn , control input u ∈ Rm , and disturbancew ∈ W,

and where F andW maintain their definitions from (4). For each j ,
let (29) be mixed monotone with respect to d j (u; x , w, x̂ , ŵ) and

let E j (u; x , x̂ ) denote the embedding function relative to d j .

Figure 1: Problem Setting of Section 5.4: the target spacecraft

is shown in blue and the chaser spacecraft is shown in green.

Unit vectors in the y1 and y2 directions are also shown, and

are notated e1 and e2.

Theorem 2. Assume a desired controller ud(Z). If, for each j ∈
{1, · · · , q}, there exists a class-K α : R2n → R2n so that

− α ( (z j , z j ) − (s j , s j ) ) �SE E(ud(Z); z j , z j ) (30)

for all Z(t ) = ∩qj=1[z j , z j ]Tj satisfying s j � z j � z j � s j , then S is

robustly forward invariant for (17). �

We omit a formal proof for Theorem 2, as the result follows di-

rectly from the general theory posited in Theorem 1 and the results

of [3]; the work [3] shows how parallelotope sets are analyzed by

applying the tools of mixed monotonicity to the related system (29)

formed via a linear transformation of the initial state space.

Theorem 2 shows how a candidate controllerud(X), whichmakes

control decisions based on the uncertain observer output X, is

verified in rendering S robustly forward invariant, where we now

allow for a general polytope safe set S and X is not restricted to

any geometry, so long (27) is satisfied.

5.4 Numerical Example

To demonstrate the utility of Proposition 5, we next present a nu-

merical example where we verify a controlled spacecraft system

against a safety constraint. This problem setting is taken from [19].

We consider two spacecraft in orbit around the earth: (i) a target

spacecraft, which is in a fixed circular orbit with period τ , and
(ii) a chaser spacecraft of mass m. In this setting, the dynamics

of the chaser spacecraft are given by the Clohessy-Wiltshire-Hill

equations, as developed in [11]:

�y1 = 3γ 2y1 + 2γ �y2 + 1
mu1 +w1

�y2 = −2γ �y1 + 1
mu2 +w2

�y3 = −γ 2y3
(31)

with state (y, �y) ∈ R6, control input u ∈ R2 and disturbance input

w ∈ [w, w] ⊂ R2. In this setting, y1, y2,y3 denote the relative dis-
tances between the spacecrafts and �y1, �y2, �y3 denote the respective
relative velocities. Additionally, γ = 2π

τ [11]. This problem setting

is depicted graphically in Figure 1.
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We consider also x ∈ R2, as defined by

x1 := �y1 − γ
2y2,

x2 := �y2 + 2γy1.
(32)

The system (31) is said to be in a periodic natural motion trajec-

tory when x = 02 and, in this case, y(t ) will make periodic orbits

about the origin, provided u(t ) = w(t ) = 02 for all t ≥ 0; that is,

x = 02 defines a linear subspace in R
6 that is invariant for (31) when

u(t ) = w(t ) = 02. This invariant subspace is defined by the collection

of periodic orbits about x = 02 and, thus, the norm of x provides

a metric of distance to this surface. While the nondeterministic

nature of the disturbance input w prevents the system (31) from

maintaining a single natural motion trajectory in orbit, it is prefer-

able to minimize x along trajectories of (31), when possible, so that

if the ability to actuate the system is ever lost, the system will not

drift significantly off course. Thus, it is the goal of this study to

verify that a candidate control policy ud ensures x(t ) ∈ S := [s, s]

for all t , and we assume full state feedback so that ud is allowed

to make control decisions based on the current system state x(t ).
Note also that the dynamics governing x are

�x = F (x , u, w) =

[ 3γ
2 x2 +

1
mu1 +w1

1
mu2 +w2

]
. (33)

The system (33) is monotone, i.e. mixed monotone with respect

to d(u; x , w, x̂ , ŵ) = F (x , u, w), and we form the respective em-

bedding function E using (5). We take a candidate controller

ud(x ) =

[
−mx1 − 3γ

2 mx2
−mx2

]
, (34)

and a class-K function αi (x) = xi , for i ∈ {1, · · · , 4}. So that the

constraint (22) becomes

s � w � w � s . (35)

Thus, it follows from Proposition 5 that ud renders S = [s, s] ro-
bustly forward invariant for (33), in all instances where (35) holds.

6 RUNTIME ASSURANCE VIA MIXED
MONOTONICITY

In this section, we solve Problems 2 and 4, by applying control

barrier function based reasoning to the embedding system (5). As

before, we consider a system of the form (4) and hyperrectangular

safe set S = [s, s]. We assume that (4) is mixed monotone with

respect to d and E is the embedding function relative to d .

6.1 Runtime Assurance with Full State
Feedback

In this section, we solve Problem 2. We begin with a structural

assumption on the embedding function E.

Assumption 6. We assume that for all x ∈ S , E(u; x , x) is affine

in control so that

E(u; x , x ) = E1(x ) + E2(x )u (36)

for some E1 : Rn → Rn and E2 : Rn → Rn×m . �

Assumption 6 is not particularly restrictive and, in particular, we

note that if F from (4) takes the form

F (x , u, w) = F 1(x , w) + F 2(x )u, (37)

for suitable F 1 : Rn ×W → Rn and F 2 : Rn → Rn×m , then (4) will

always have a decomposition function satisfying the hypothesis of

Assumption 6; see the tight decomposition function construction

[4]. Next, we introduce the concept of embedded-invariance.

Definition 7 (Embedded-Invariance). The set S ⊂ Rn is embedded-

invariant for (5) if there exists a class-K α : R2n → R2n so that for

all x ∈ S there exists a u ∈ Rm satisfying

− α ( (x , x ) − (s, s) ) �SE E1(x ) + E2(x )u . (38)

�

We next show how an ASIF, which renders S forward invariant

for (4) and solves Problem 2, is constructed when S is embedded-

invariant for E. This ASIF is constructable when there existsu ∈ Rm
satisfying the constraint (38) for each x ∈ S . Moreover, the result-

ing ASIF, given below as ECBF-QP, is also defined as a minimally

invasive quadratic program.

ECBF-QP

ua(x ) = argmin
u ∈Rm

| |u − ud(x )| |22 (39)

s.t. −α ( (x , x ) − (s, s) ) �SE E1(x ) + E2(x )u . (40)

Theorem 3. If S is embedded-invariant for (4), then the ECBF-QP

is always feasible, and the controller (39)-(40) solves Problem 2; that

is, S is robustly forward invariant for the closed loop dynamics of (4)

under ua, and ua(x ) evaluates to ud(x ) when it is safe to do so. �

Proof. From the fact that S is embedded-invariant for (5), there

will always exists u satisfying the constraint (40). Moreover, the

ECBF-QP is always feasible. When ud(x) satisfies (38), i.e., apply-

ing ud(x) ensures that trajectories of (4) do not leave S , ua(x(t ))

will always evaluate to ud(x). Thus, the controller (39)-(40) solves
Problem 2. This completes the proof. �

6.2 Runtime Assurance in the Presence of State
Uncertainty

We next solve Problem 4 and design an ASIF for (4) that provides

assurance in the presence of state uncertainty. As before, we assume

the presence of an observer filter (Definition 6) in the candidate

controller so that ud(X(t )) = ud(Z(t )) for all t ≥ 0, where Z(t ) =
[z(t ), z(t )] is given by (24). Additionally, we take the following

structural assumption on the embedding system.

Assumption 7. We assume that for all x , x̂ ∈ S with x � x̂ ,
E(u; x , x̂ ) is affine in control so that

E(u; x , x̂ ) = E1(x , x̂ ) + E2(x , x̂ )u (41)

for some E1 : Rn × Rn → Rn and E2 : Rn × Rn → Rn×m . �

Wenext introduce the concept of uncertain embedded-invariance

(Definition 8).
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Definition 8 (Uncertain Embedded-Invariance). The set S is uncer-
tain embedded-invariant for (5) if there exists a class-K α : R2n →
R
2n so that for all z, z ∈ S with z � z there exists a u ∈ Rm

satisfying

− α ( (z, z) − (s, s) ) �SE E1(z, z) + E2(z, z)u . (42)

�

We next propose a construction for an ASIF that renders S for-

ward invariant for (4) and solves Problem 4 when S is embedded-

invariant for E. Moreover, the resulting ASIF, given below as UECBF-

QP, is defined as a minimally invasive quadratic program.

UECBF-QP

ua(z, z) = argmin
u ∈Rm

| |u − ud(z, z)| |22 (43)

s.t. −α ( (z, z) − (s, s) ) �SE E1(z, z) + E2(z, z)u . (44)

Theorem 4. If S is embedded-invariant for (4), then the UECBF-QP

is always feasible, and the controller (43)–(44) solves Problem 4; that

is, ua(z, z) evaluates to ud(z, z) whenever possible and S is robustly

forward invariant for �x = F (x , ua(z, z), w) for all observer signals

Z(t ) = [z(t ), z(t )] satisfying x (t ) ∈ Z(t ) ⊆ S for all t . �

6.3 Numerical Example

To demonstrate the utility of Theorem 4, we study a polynomial

system and form an ASIF to ensure the forward invariance of a

polytope subset of the statespace. We consider the system[ �x1
�x2

]
= F (x , u, w) =

[−x1 − x31 + x2 + u1 +w
3

−x2 − x32 − x1 + u2 −w

]
(45)

with state x ∈ R2, control input u ∈ R2 and scalar disturbance

w ∈ W, for hyperrectangularW = [w, w] withw = −w = 1/2.

The goal of this study is to design an ASIF for (45) that enforces

the robust forward invariance of a safe set S in the presence of

state uncertainty. We choose an octagon safe set S ⊂ R2, described
as the intersection of parallelotopes S = [s, s] ∩ [s, s]T where

s = −s = (1, 1) and where

T =
1√
2

[
1 −1
1 1

]
, (46)

and control decisions are made via an uncertain observer, which

provides a circular subsetX(t ) so that x (t ) ∈ X(t ) for all t . Addition-
ally, an observer filter Z(t ) = Z1(t ) ∩ Z2(t ) is employed, which

provides two parallelotope over-approximations of X(t ) ∩ S . This
problem setting is depicted graphically in Figure 2.

We next go about designing an ASIF for (45) by applying the pro-

cedure detailed in Section 6.2. The system (45) is mixed monotone

with respect to

d(u; x , w, x̂ , ŵ) =

[−x1 − x31 + x2 + u1 +w
3

−x2 − x32 − x̂1 + u2 − ŵ

]
(47)

and we denote by E the embedding function relative to d as pre-

scribed in (5). Using an analogous procedure, a decomposition func-

tion dT for (29) is also formed , and we denote by ET the embed-

ding function relative to dT . Both E and ET satisfy Assumption 7,

and we numerically verify that S is uncertain embedded invariant

−1 0 1

−1

0

1

x1

x
2

Figure 2: Problem setting of Section 6.3. The octagon safe set

S is shown in green, and [s, s] and [s, s]T are shown in blue.

For a state x (t ), shown in blue, the observation X(t ) is shown

in red, and the filtered observation, which is comprised of

two parallelotopes, is shown in blue.

for both E and ET with the class-K function αi (x) = 5000x3i for

i ∈ {1, · · · , 2n}. Thus we form an ASIF for (45), using (43)-(44),

where the constraint (44) is understood to hold for both E and ET .
A demonstration of the ASIF formed in this study is shown in

Figure 3, where we take an initial state x (0) = 02 and simulate the

closed loop system behavior under ua on the time interval [0, 3/4].

A random disturbance input w(t ) ∈ W is chosen, and we choose

also a candidate control policy

ud(t ) =

[
6 cos (πt )
6 sin (πt )

]
(48)

where we note that the theory and tools discussed above, which

apply to state-feedback controllers ud(X), can accommodate an

explicit time-dependent control policy equivalently. As shown in

Figure 3a the observed set X(t ) leaves S partially along trajecto-

ries of (45) when ua is employed; however, S is robustly forward

invariant for (45) as a result of Theorem 4 and we find x (t ) ∈ S for

all t ∈ [0, 3/4]. This study was conducted using MATLAB 2020a,

which ran on a 2017MacBook Pro. The simulation used a discretized

timestep of 0.005 seconds and, at each timestep, the optimization

problem (40)-(44) was solved using Quadprog.m. The average solver

time reported in this study was 0.0029 seconds per optimisation.

6.4 Discussion

The UECBF-QP controller, which allows for state uncertainty, is

defined in (43)-(44) as an optimization problem with a quadratic

cost function and 2n linear constraints. This is in contrast to the

CBF-QP controller (15)-(16), which can retain an infinite number

of linear constraints without structural assumptions on the vector

field and the disturbance inputw . Note also that the general theory

posited in Sections 6.1–6.2 for the construction of ASIFs for systems

as in (4) can be extended to the case of general polytopic safe sets

by applying similar reasoning to that presented in Section 5.3; in

this instance, the resulting ASIF will contain q constraints for a

polytopic safe set with q faces.

Last, it is instructive also to discuss the purpose of the class-

K function α in the programs presented in this work. We have

discussed previously how in the CBF-QP controller (15)–(16), α
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(a) Trajectories resulting from the application of ua and ud. The as-

sured trajectory, resulting from the application of ua is shown in

blue, and the nominal trajectory, resulting from the application of

ud is shown in red. Note that the observation X(t ) leaves S partially

along trajectories of (45)when ua is employed; nonetheless, x (t ) ∈ S

for all t ∈ [0, 3/4].
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(b) Visualisation of the control input signals on the time interval

[0, t ]. The candidate input ud, given by (48), is shown in red. The

ASIF input is shown in blue.

Figure 3: Numerical demonstration. A simulation of the sys-

tem (45) is conducted on the time interval [0, 3/4], where the

system begins with an initial state x (0) = 02.

is a strengthening term that relaxes the constraint (16) when the

current system state x (t ) is far from the boundary of S . In contrast,

the ASIF constraints for ECBF-QP and UECBF-QP instead require

the valuation of the vector field of the embedding system to be

pointing in an appropriate cone. For instance, when α (x) = 02n
the constraint (40) requires 02n �SE E(x , x)u, i.e. the requirement

is that E(x , x)u points into the southeast cone. When alternative

class-K functions α are chosen, this requirement relaxes so that

u is allowed to steer E(x , x )u into a less restrictive cone, provided

x (t ) is not on the boundary of S .

7 CONCLUSION

In this work, we consider controlled mixed monotone systems

with disturbances, and we show how controlled robustly forward

invariant sets are identified by studying only the valuation of the

vector field of the embedding system, without simulation. This

approach provides a basic theory as to how controllers can be

designed in the embedding space, and allows one to verify the

existence of robustly forward invariant regions for the initial system.

We study two useful applications that arise from this observation:

(a) the offline verification of controllers against safety constraints,

and (b) the online enforcement of safety constraints. The results

and findings of this work are demonstrated through two numerical

examples. The fast computation times reported in the examples here

are expected to scale well to other systems; additional examples

and experiments building on the theoretical foundations of this

paper are the subject of ongoing work.
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