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Abstract— This paper presents a comprehensive devel-
opment and testing of a Run Time Assurance (RTA) filter for
a torque-controlled spacecraft in free rotational motion with
torque actuation limits for which the objective is to enforce
a line-of-sight constraint. A nondeterministic dynamical
model is considered for the spacecraft that accounts for
disturbance torques, and a guaranteed safe RTA filter is
constructed using recent results from mixed monotone
systems theory for reachable set overapproximations and
optimization-based computation of invariant sets. The RTA
filter ensures that the system is always within reach of an a
priori safe terminal set by computing reachable sets of the
dynamics online at run time. The approach is demonstrated
on the Autonomous Spacecraft Testing of Robotic Opera-
tions in Space (ASTROS) platform at the Georgia Institute
of Technology. In the experiment, potentially unsafe inputs
are provided by a human, and the RTA filter overrides the
human-commanded inputs when necessary to guarantee
safety. The controller update rate for the ASTROS platform
is about 10Hz, while the RTA filter requires about 1 millisec-
ond of computation time per controller update.
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I. INTRODUCTION

THE recent proliferation of commercial and government
space missions, particularly in low-Earth orbit, has mo-

tivated the need for increased autonomy capabilities for space
vehicles. Such advancements in autonomy can save on costs
and risks associated with human-in-the-loop operations while
improving vehicle reliability and performance. The term as-
sured autonomy has been applied in this context to describe
a vehicle or system that has the ability to safely perform
a complex mission or a set of missions in the presence of
uncertainty and without human intervention [1], [2].

Run time assurance (RTA) provides an elegant and highly-
adaptable methodology for assured autonomy, with current
research and applications in the domain of spacecraft systems
[2]–[4]. The approach is associated with the system architec-
ture depicted in Figure 1, where an assurance mechanism is
employed between the plant and primary controller. Given
a desired control policy, an assurance mechanism will filter
online the desired input in such a way that preserves system
safety, while also ensuring that the desired control input is
passed to the system when it is safe to do so. In this way, the
addition of an RTA works to decouple the task of enforcing
safety constraints from all other objectives of the controller, if
any, and allows the designer to sidestep the common trade-
off between performance and safety. Well-known examples
of RTA mechanisms include the Simplex architecture [5]–[8],
which switches to a backup control scheme when necessary
(see Figure 1), and control barrier functions (CBFs) [9]–
[11], which adjust the desired control actions in a minimally
invasive way to ensure forward invariance of a predetermined
safe subset of the state space.

This paper presents a comprehensive development and test-
ing of an RTA filter for a torque-controlled spacecraft in free
rotational motion subject to a line-of-sight constraint. Our
RTA filter uses mixed monotone systems theory to compute
reachable set overapproximations within the control loop, and
system safety is enforced online using a precomputed but con-
servative invariant safe set. Our method accommodates torque
disturbances and guarantees safety for the spacecraft when the
disturbance input is bounded within a given range. Further,
we design a novel Sum-of-Squares optimization program to
compute a robust invariant safe set given the system’s safety
constraint and the disturbance input bounds.”

The proposed algorithm can be summarized as follows. We
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Fig. 1: Run time assured control system architecture. Control
inputs udes are suggested by a potentially unsafe primary
controller, possibly a human operator. When necessary to pre-
serve system safety, the run time assurance (RTA) mechanism
applies, instead, a known safe backup control input ub to the
plant. The backup controller is certified to be safe via the
explicit knowledge of a forward invariant set and, in this way,
system safety is ensured for all time.

first assume the availability of a backup feedback control
policy that is verified a priori to render a given subset
of the state space robustly forward invariant. Motivated by
applications where such subsets are generally conservative,
our objective is to allow the system to safely evolve beyond
this initial verified subset. To do so, we propose computing
an overapproximation of the system’s reachable set under the
backup control policy. This is used to guarantee safety of
states outside the verified subset by proving that the backup
controller provides a safe trajectory that returns the system to
the verified subset. Specifically, if the reachable set becomes
fully contained within the verified safe subset at some time
along the prediction horizon, and it does not intersect with
the set of states where the line-of-sight constraint is violated
before that time, then a safe return trajectory is ensured. We
construct this assurance mechanism in the following way.

We begin by computing a safe backup control policy and
the corresponding safe subset of the state space in Section III.
The backup controller is designed to drive trajectories to the
backup set while saturating to adhere to the input constraints.
These actuation constraints on the backup controller make
it challenging to explicitly obtain a large, robust, and safe
forward invariant set a priori, further motivating the approach
proposed in this study where a conservative-but-verified safe
subset is coupled with reachable set computations to achieve
safety beyond the verified subset.

To compute reachable sets within the control loop, we pro-
pose using the theory of mixed monotone dynamical systems,
which provides an efficient technique for overapproximating
reachable sets using hyperrectangles, and which has previously
been demonstrated in online safety applications [12]–[15]. A
dynamical system, possibly subject to a disturbance input,
is mixed monotone when there exists a related decomposi-
tion function that separates the initial system dynamics into
cooperative and competitive state interactions [16]. Mixed
monotonicity applies to continuous-time systems [17]–[21],
discrete-time systems [22], [23], controlled systems [16], [24],
and systems with disturbances [23]–[25]. This is the main

point of study in Section IV, where we show that closed-
loop spacecraft dynamics under the backup controller are
mixed monotone, and we explicitly compute a decomposition
function for this system. An example is provided in the same
section where we demonstrate how the decomposition function
is applied for the efficient computation of reachable sets. In
summary, mixed monotonicity enables our run time assurance
approach in three main ways:
• Mixed monotonicity provides a computationally efficient

approach for overapproximating the reachable set of the
spacecraft dynamics.

• Mixed monotonicity readily allows for the incorporation
of bounded uncertainties in the state and dynamics, as
well as constraints on the control input.

• In the case of line-of-sight constraints for spacecraft
systems, mixed monotonicity provides an efficient tech-
nique for checking whether the system’s reachable set
overapproximation in the space of line-of-sight angles is
contained fully within the safe region, and this is true
even though the line-of-sight angle is not considered to
be a state of the system.

In Section V, we provide details of our hardware testbed,
the Autonomous Spacecraft Testing of Robotic Operations
in Space (ASTROS) platform, at the Georgia Institute of
Technology. The experimental setup is shown later in Figure 6,
and a video of the experiment is available at https://
youtu.be/g1-zMepDm1I.

Notation
Given two vectors x ∈ Rn, y ∈ Rm we denote the vector

concatenation of x and y by (x, y) := [x>, y>]> ∈ Rm+n. To
denote collections of elements within a vector or a matrix, we
write xi:j ∈ Rj−i+1 to denote the i-through-jth elements of
x ∈ Rn and Ai,: ∈ R1×m to denote the ith row of A ∈ Rn×m;
that is,

xi:j = (xi, xi+1, · · · , xj−1, xj)

Ai,: = [Ai,1 , Ai,2 , · · · , Ai,m−1 , Ai,m].
(1)

Given a matrix A ∈ Rn×m, we denote by [A]+ and [A]− the
positive and negative parts of A, respectively, that is,

[A]+i,j =

{
Ai,j if Ai,j ≥ 0,

0 if Ai,j < 0,

[A]− = A− [A]+.

(2)

Given x, y ∈ Rn we write x � y if and only if xi ≤ yi for
all i. In the instance where x � y, we let

[x, y] := {z ∈ Rn | x � z and z � y} (3)

denote the hyperrectangle defined by the endpoints x and y
and we let

〈〈x, y〉〉 := {z ∈ Rn | zi ∈ {xi, yi} ∀i = 1, . . . , n } (4)

denote the finite set of 2n corners of [x, y]. Finally, given
a = (x, y) ∈ R2n with x � y, we denote by JaK := [x, y] the
hyperrectangle formed by the first n and last n components
of a. Note that for scalars x, y ∈ R with x ≤ y, the set
[x, y] ⊂ R is the interval of real numbers between x and y,
inclusive.
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II. PROBLEM STATEMENT AND PROPOSED SOLUTION
FOR OBSTACLE AVOIDANCE CASE STUDY

We consider the problem of spacecraft attitude control in
the presence of a safety constraint on the allowable line-of-
sight angle of a spacecraft. A safety assured controller is one
that is guaranteed to not violate the line-of-sight constraint.
In this paper, the proposed solution for obtaining an assured
controller is with an RTA mechanism that filters an unverified
control input online in order to ensure system safety at run
time. In this section, we first introduce the model for the
spacecraft attitude dynamics. Next, we discuss the real-world
system requirements that inform the construction of the RTA
mechanism. Finally, we present an overview of the RTA
algorithm that is further detailed in the following sections.

A. Spacecraft Attitude Dynamics

We study a rotating rigid body model of a spacecraft given
by

ω̇(t) = J−1(− ω(t)× Jω(t) + u(t) + w(t)), (5)

where ω(t) = (ωx(t), ωy(t), ωz(t)) ∈ R3 is the vector of
spacecraft angular rates at time t, u(t) ∈ U ⊂ R3 is the
vector of applied torque inputs, and w(t) ∈ W ⊂ R3 is
a vector of disturbance torques. The set U incorporates, for
example, actuation constraints, and W accommodates known
disturbance bounds. Further, the matrix J ∈ R3×3 in (5)
is the inertia matrix for the spacecraft, which is symmetric
and positive-definite. Below, for time-varying functions, we
generally omit the explicit dependence on time t.

The components of ω describe the rotation of the body-fixed
reference frame FB with respect to the inertial frame FI and
the vectors ω, u, and w are expressed in FB; see Figure 2. We
let FI := (O, Î, Ĵ , K̂) and FB := (O, î, ĵ, k̂) so that, without
loss of generality, the origin of the inertial frame O is the
same as that of the body frame, and the unit vectors î, ĵ, k̂
and Î , Ĵ , K̂ form right-handed orthogonal bases for FB and
FI, respectively, so that î× ĵ = k̂ and Î × Ĵ = K̂.

There are many possible ways to represent the attitude
(orientation) dynamics of a rotating body; see [26] for a short
review. For reasons that will become clear in Section III, in
this work, we choose a two-parameter representation of the
attitude that describes only the orientation of the body-fixed
k̂-axis with respect to the inertially fixed K̂-axis1. This two-
parameter attitude description, originally introduced in [27],
enforces a natural dimensionality reduction of the attitude
that eliminates the irrelevant rotation about the pointing axis
from the attitude description. Its utility for solving line-of-
sight/pointing problems has been demonstrated, for example,
in [28], [29]. In particular, we describe the spacecraft attitude
using ρ = (ρ1, ρ2) ∈ R2, where the time-evolution of ρ is

1The general theory posited in this section for parameterizing attitude
extends naturally to other orientation definitions, as well, so that one may
choose to represent orientation using, e.g., the body-fixed î-axis and the
inertially fixed Ĵ-axis. Moreover, the particular parameterization used in this
work, which uses k̂ and K̂, is chosen without loss of generality and serves
only for ease of exposition.
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Fig. 2: Depiction of spacecraft system. The inertially-fixed
reference frame FI := (O, Î, Ĵ , K̂) is shown in red and
the body-fixed reference frame FB := (O, î, ĵ, k̂) is shown
in green. The line-of-sight angle, which is the angle made
between the k̂ and K̂ directions is given by (7) and is shown
in blue. Note that the vectors ω, u, and w in (5) are all taken
with respect to FB.

described by

ρ̇1 = ωzρ2 + ωyρ1ρ2 +
ωx
2

(1 + ρ2
1 − ρ2

2),

ρ̇2 = −ωzρ1 + ωxρ1ρ2 +
ωy
2

(1 + ρ2
2 − ρ2

1).
(6)

Following the derivations of [27], observe that the line-of-sight
angle of the spacecraft, which is the angle made between the
k̂ and K̂ directions, is given by

θ(ρ, ω) := arccos

(
1− ρ2

1 − ρ2
2

1 + ρ2
1 + ρ2

2

)
, (7)

i.e., ρ = 0 when k̂ points in the K̂-direction. See Figure 2.
Combining the orientation dynamics (6) with the rotational

velocity dynamics (5), we have that the full spacecraft dynam-
ics are given byρ̇1

ρ̇2

ω̇

 =

 ωzρ2 + ωyρ1ρ2 + ωx

2 (1 + ρ2
1 − ρ2

2)
−ωzρ1 + ωxρ1ρ2 +

ωy

2 (1 + ρ2
2 − ρ2

1)
J−1(−ω × Jω + u+ w)

 , (8)

which we hereafter denote as

ẋ = f(x, u, w), (9)

with state x = (ρ, ω) ⊂ X ∈ R5 and where u ∈ U ⊂ R3

and w ∈ W ⊂ R3 retain their definitions from (5). In the
following, we say that a control policy u : R × X → R3 is
admissible on the set S ⊂ X if u(t;x) ∈ U for all x ∈ S and
for all t ≥ 0.

Additionally, we denote by Φ(t;x,u,w) the state of (9)
reached at time t when starting from state x ∈ X at time 0
and evolving subject to the feedback control u( · ) and the
disturbance w( · ). Throughout this paper, we assume that
Φ(t;x,u,w) is unique when it exists. The time-t reachable
set of (9) from S ⊂ X under u is denoted as

R(t;S,u) := {Φ(t;x,u,w) ∈ X |x ∈ S
for some w : [0, t]→W}, (10)



4 TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. XX, NO. XX, XXXX 2022

which is the set of states reachable from S at time t ≥ 0 under
some disturbance signal.

B. Safe Operational Behavior for Spacecraft Systems

Safety for the spacecraft system (9) is formalized via a
line-of-sight constraint. Specifically, we say that a state x =
(ρ, ω) ∈ X is safe when θ(x) ≤ θmax, where θ(x) is given by
(7) and where θmax is a parameter describing the maximum
allowable line-of-sight angle, which is assumed to be fixed
a priori. To assess the safety of states, we employ a safety
constraint function

ϕ(x) := (1 + ρ2
1 + ρ2

2) (cos (θ(x))− cos (θmax)) , (11)

or, equivalently,

ϕ(x) := (1− cos(θmax))− (1 + cos (θmax))
(
ρ2

1 + ρ2
2

)
, (12)

where we observe that ϕ(x) ≥ 0 only when x is safe and
ϕ(x) < 0 otherwise. The set of all states x ∈ X that satisfy
ϕ(x) ≥ 0 is referred to as the constraint set and is denoted
by

CA := {x ∈ X |ϕ(x) ≥ 0}. (13)

Thus, the goal is to construct a controller u that ensures
Φ(t;x0,u,w) ∈ CA for all t ≥ 0 and for all disturbance
signals w : [0,∞)→W .

C. Run Time Assurance Solution

Our goal is to design a feedback controller that ensures
the satisfaction of the safety constraint (12) along trajectories
of (9). One way to establish controller safety is through
invariance.

Definition 1 (Robust Forward Invariance). A set S ⊆ X is
robustly forward invariant for (9) under the feedback control u
if Φ(t;x,u,w) ∈ S for all x ∈ S, all t ≥ 0 and all disturbance
inputs w : [0, t]→W, whenever Φ(t;x,u,w) exists. �

A feedback control policy u is said to be safe for (9)
if there exists a set S so that S is forward invariant for
(9) under u and S ⊆ CA. Applying u to (9) then ensures
θ(x) ≤ θmax for all time, so long as x(0) ∈ S. While
forward invariance provides a theoretical foundation for as-
sessing safety, for complex nonlinear systems, such as (9), with
control input constraints and disturbances, there generally do
not exist prescriptive formulas for generating safe controllers
and forward invariant regions. The solution in this work is to
employ a run time assurance mechanism (RTA) in-the-loop,
which filters an unsafe desired control input at run time to
ensure the existence of an implicitly defined forward invariant
set in the statespace; see Figure 1. The RTA switches between
two competing control policies: a performance-driven desired
control policy and a verified backup control policy.

First, consider a desired control policy udes(t;x) for the
system (9). The desired controller is assumed to satisfy some
performance control objective but is not directly applicable
to (9) due to the fact that (i) udes may not be safe, that is,
applying udes may cause the system to leave CA, and (ii) udes

may not be admissible, that is, there may exist a state x ∈ CA
so that udes(t;x) /∈ U at some time t.

Next, suppose we have knowledge of a backup control
policy ub(x) for (9), which is certifiable safe via an explicitly
defined, but potentially conservative, forward invariant safe
terminal set Cb ⊆ CA and is also admissible, i.e., ub(x) ∈ U
for all x ∈ Cb. Applying ub(x) to (9) now ensures that all
state trajectories remain in Cb ⊆ CA and guarantees system
safety for all time. However, applying such a backup controller
may not be preferable; indeed, backup controllers are typically
designed without considering performance objectives and it
is possible that, for instance, Cb is too small to allow for
satisfaction of performance criteria.

We now have the requisite tools to construct our RTA
mechanism; see Figure 3 for a topological description of the
algorithm. We assume the control input is updated with a time
step of ∆t. At every update time t = k∆t for k = 0, 1, 2, . . .,
the RTA consists of the following steps:
Step 1) Receive as inputs:

• The current system state, x0 := x(t) = x(k∆t)
• The desired control policy udes, and
• The backup control policy ub.

Step 2) Compute an overapproximation
Xp ⊇ R(tdes;x0,udes) for some constant tdes > 0.

Step 3) Compute a sequence of overapproximations under the
backup controller X kb ⊇ R(ktb/k

∗;Xp,ub) for k =
1, . . . , k∗ for some k∗.

Step 4) If ϕ(x) ≥ 0 for all x ∈ X b
k and all k ∈ {1, · · · , k∗},

and X b
k∗ ⊆ Cb, the desired input udes(t, x0) is allowed

to pass to the system unaltered for the next controller
update step of length ∆t. Otherwise, when the above
constraints are not met, the backup control input
ub(x0) is applied to the system.

We make the following remarks:
• In the above RTA algorithm, tdes, tb, and k∗ are tunable

parameters. Note that we do not require tdes or tb to be
a multiple of ∆t.

• While the controller is updated with discrete time step
∆t, the reachable set overapproximations are computed in
continuous-time. In principle, these sets are obtained by
any method for obtaining overapproximations of reach-
able sets of continuous-time systems, but many reachabil-
ity methods are not computationally efficient enough to
be used in realtime in the control loop. Below, we propose
a method for obtaining reachable set overapproximations
with a single simulation of an ordinary differential equa-
tion representing an appropriately constructed embedding
system.

• The RTA logic is executed at the beginning of each
controller update step. We assume that the computation
time required for evaluating the RTA logic is negligible
compared to the time step ∆t. In the hardware demon-
stration below, the RTA logic execution time is about one-
hundredth of the controller update time.

• We assume that the entire desired control policy udes

is available to the RTA, however, in practice, we only
need the desired input for the current controller update
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Fig. 3: Topological depiction of the RTA algorithm. The state
space of (9) is X ⊂ R5, and the set of states satisfying the
safety constraint (12) is CA ⊂ X . The RTA is constructed via
a backup controller ub, and the set Cb is forward invariant for
(9) under ub. At each time t, when (9) is at state x(t), the RTA
first computes an overapproximation of the time-tdes reachable
set of (9) from x(t) under udes, and this overapproximation is
denoted Xp. Next, for all t ∈ [tp, tp + tb], the RTA computes
an overapproximation of the time-t reachable set of (9) from
Xp under ub. In instances where (i) there exists a time T ∈
[0, tp+tb] for which R(T ;x(t)) ⊂ Cb and (ii) for all τ ∈ [0, T ]
we have R(τ ;x(t)) ⊂ CA, the desired control input udes(x) is
applied to (9). Otherwise, the backup control input ub(x) is
applied. In this way, we guarantee that x(t) ∈ CA for all t ≥ 0,
that is, the control input produced ensures the satisfaction of
the safety constraint (12).

step, and then it is sufficient to have an approximation of
the desired policy from t + ∆t to tp, which is required
to compute Xp in Step 2. This approximation can be
obtained by, e.g., assuming a zero-order hold on the
desired input. This is done in the example of Section V,
where the desired control inputs are generated by a human
with a joystick.

The RTA mechanism acts to filter the desired control input
online, and this approach guarantees system safety while also
ensuring that the desired control input is passed to the system
when it is safe to do so. A benefit of this approach, as we
shall see later on, is that it allows system trajectories to leave
the backup set Cb when it is verified online that the current
system state can safely return to Cb on a finite time horizon.
In this way, employing an RTA mechanism eases the task of
computing a large forward invariant set Cb a priori and offloads
computation to online reachability analysis.

We begin by computing a safe backup control policy ub and
the corresponding safe set Cb for (9) in Section III. The backup
controller is designed to cancel nonlinearities in the dynamics
but saturates in order to remain admissible. This saturation
contributes to the difficulty of computing an explicit, large
robust forward invariant set a priori, further motivating the
approach proposed in this paper in which a conservative-but-
verified safe subset is coupled with reachable set computations

to achieve safety beyond Cb. Computing reachable sets in the
presence of disturbances can be computationally costly and not
suitable for run time implementation. Nonetheless, we show
how the theory of mixed monotone dynamical systems can be
leveraged for the efficient computation of robust reachable sets
for (9). This is the main point of study in Section IV where
we show that the closed-loop spacecraft dynamics (9) under
a particularly constructed ub is a mixed monotone system
and where we compute a decomposition function for this
system. An example is provided in the same section where
we demonstrate how the decomposition function is applied
for the efficient computation of reachable sets.

III. CONSTRUCTING A ROBUSTLY FORWARD INVARIANT
SAFE TERMINAL SET

In this section we construct a safe terminal set Cb that is
robustly forward invariant under some terminal control policy
ut constructed jointly with Cb. Such a set and controller is gen-
erally computed offline, either analytically or via optimization
techniques, and inserted into the RTA filtering mechanism as
an assurance that the backup controller will lead to safety.

Definition 2 (Safe Terminal Set and Terminal Control Policy).
A nonempty set Cb with accompanying feedback control
policy ut is a safe terminal set and a terminal control policy
if:

i) Cb ⊆ CA,
ii) The control policy is admissible, i.e. ut(x) ∈ U for all

x ∈ Cb, and
iii) Cb is robustly forward invariant for (9).

�

We aim to construct a safe terminal set Cb as a zero
superlevel set of some function hb(x), i.e., Cb = {x ∈
X |hb(x) ≥ 0} for some continuously differentiable function
hb : X → R.

Proposition 1. Given a continuously differentiable function
hb(x) and a control policy ut, the set Cb = {x ∈ X |hb(x) ≥
0} is a safe terminal set, and ut a corresponding terminal
control policy, if the following two conditions hold:

i) For all x such that hb(x) ≥ 0, ϕ(x) ≥ 0 and ut(x) ∈ U .
ii) For all x such that hb(x) = 0 and for all w ∈ W ,
∇hb(x) 6= 0 and

∇hb(x)f(x, uT(x), w) ≥ 0. (14)

Remark 1. The above conditions imply that Cb ⊆ CA, ut(t)
is admissible , and (14) ensures that Cb is robustly forward
invariant [30]. �

The set Cb should be as large as possible to give the primary
controller the flexibility to operate over a wide range of states.
In other words, a large Cb will ensure that a safe backup
strategy will almost always be available, and only infrequently
will the primary controller find itself approaching a state where
a future safe backup policy may not exist. Furthermore, a large
Cb can ease the computational workload of the RTA because
a larger set generally reduces the time-horizon which must be
searched to show that a safe backup policy exists.
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Several strategies are available to find a set that satisfies the
conditions in Proposition 1. Such strategies generally resemble
a multi-objective non-convex optimization problem that can
be broken into convex subproblems; iterating through these
subproblems can yield a set Cb which both satisfies Proposition
1 and allows for the system to perform satisfactorily with the
RTA in the loop. An example of two competing objectives
are the need to maximize the size (volume) of the set while
maintaining the robustness requirement. These two objectives
compete because a low-gain controller is necessary to ensure
that u(x) ∈ U when θ(x) is far from the origin, but a high-gain
controller is needed to produce a set that is forward invariant
for all w ∈ W .

Since the attitude dynamics of the spacecraft are polyno-
mial functions, we propose using the sum-of-squares (SOS)
optimization framework to obtain a safe terminal set Cb
that certifiably satisfies the positivity requirements given in
Proposition 1. A comprehensive description of the theory of
SOS optimization and its applications to control systems is
given in [31], [32]. The search for an SOS polynomial can
be written as a semi-definite programming (SDP) problem,
for which many proven solvers exist. A related approach uses
the same underlying machinery to solve a similar spacecraft
control verification problem by framing it as a generalized
moment problem [33]. In the following, we assume a general
knowledge of SOS optimization and the tools used to translate
the requirements of Proposition 1 into an SOS search problem,
such as the S-Procedure [34].

A procedure to compute Cb is now outlined. We say that
a real polynomial s(x) ∈ SOS if there exist some real
polynomials pi(x) such that s(x) =

∑
i p

2
i (x).

1) Stabilize to Safety. We first hypothesize a control policy
ut(x) that will create a forward invariant safe region for
the spacecraft system (9). To do this, we exploit structural
properties of the system and design a controller with a
Lyapunov certificate of stability on a bounded safe subset
of the statespace, assuming the disturbance is not present.
In general, any stabilizing controller can be used with the
main results of this work and Step 2) below; see [35], for
example, for a stabilizing linear controller for (9), which is
inertia-free and in terms of the state variables ρ1, ρ2 and
ω, and where stability is certified via a quadratic Lyapunov
function. For experimental convenience, in this section, we
focus specifically on the linearizing controller

ut(x) = ω × Jω +Kx, (15)

which can tuned via the gain matrix K ∈ R3×5 in order to
ensure the stability of the closed-loop dynamics of (9). To
prove local stability we use a linearization of the closed-
loop dynamics ẋ = Ax. We then compute a positive
definite matrix P which satisfies the Lyapunov equation
A>P + PA + Q = 0 for some positive definite matrix
Q. In this way, V (x) = x>Px is a Lyapunov function
for the linearized system, which implies that the nonlinear
dynamics in (9) are also locally exponentially stable to
the origin. Furthermore, this local Lyapunov function V (x)
for (9) can be used to construct an hb(x) which satisfies
Proposition 1. In practice, the linearizing controller will

be applied to the system via a monotonically increasing
saturation function ub(x) = φ(ω × Jω + Kx) where the
saturation function φ : R3 → U ensures the admissibility
of ub. In the following, we use knowledge of the input
constraints U to construct controller gains and verify a
safe controlled invariant set for (9) in the presence of
disturbances using the Lyapunov function V .

2) Specify Candidate Cb. In this step, we establish that
ϕ(x) ≥ 0 and ut(x) ∈ U are satisfied by all states
in the sublevel set V (x) ≤ γ for an appropriately
chosen γ. To that end, we assume U is of the form
[−u1,max, u1,max]×[−u2,max, u2,max]×[−u3,max, u3,max],
although it is straightforward to incorporate other semial-
gebraic set characterizations for U . We then perform a line
search over γ in order to find the largest value of γ such
that there exists si(x) ∈ SOS and εi ≥ 0 that satisfy

−εi − ci(x) + si(x)(γ − V (x)) ∈ SOS (16)

for all i = 1, . . . , 7 where

{c1(x), . . . , c7(x)}
= {ϕ(x), uj,max − uT,j(x), uj,max + uT,j(x)}

is a set of constraints encoding the safety and control
constraints. Then, we have h(x) = γ−V (x) as a candidate
level set function for defining Cb.

3) Certify Robust Forward Invariance. In this step, we estab-
lish that (14) is satisfied by finding a λ ≥ 0, a polynomial
p(x,w), and SOS polynomials s1(x,w), s2(x,w), and
s3(x,w) satisfying

− λ+ ḣ(x,w)− p(x,w)h(x)− s1(x,w)(w2
max − w2

x)

− s2(x,w)(w2
max − w2

y)− s3(x,w)(w2
max − w2

z) ∈ SOS.

Then we set the resulting hb(x) as h(x) and take Cb =
{x ∈ X | hb(x) ≥ 0}.

4) Measure Set and Iterate. Comparison functions can be
constructed in order to describe the “volume” of the set
Cb. Then, various control policies ut(x) can be tested to
find a Cb of a size and shape which allows for satisfactory
performance of the system with RTA in-the-loop while
satisfying the safety and control constraints. Examples of
such an iterative procedure are given in [36].

The above procedure computes certificates that are sufficient
to verify that the conditions of Proposition 1 are satisfied. Note
that if an optimization problem does not generate a feasible
set of decision variables, it does not necessarily mean that the
conditions of the proposition are not satisfied. In some cases,
a set of higher-order polynomial constraints can be specified
when the second-order polynomials used in this paper do not
produce results; examples are given in [32]. Additionally, the
parameters εi and λ provide a measure of the margin by which
a condition is satisfied in the worst case, which may occur at
some location on the boundary of Cb.

IV. EFFICIENT REACHABILITY ANALYSIS VIA MIXED
MONOTONICITY

The RTA architecture proposed in this work uses mixed
monotone systems theory to efficiently compute reachable set



M. ABATE, M. MOTE,M. DOR, C. KLETT, S. PHILLIPS, K. LANG, P. TSIOTRAS, E. FERON AND S. COOGAN: RUN TIME ASSURANCE FOR SPACECRAFT ATTITUDE
CONTROL UNDER NONDETERMINISTIC ASSUMPTIONS 7

overapproximations online. We present the basic theory of
mixed monotone systems in Section IV-A. Then, in Section IV-
B, we show that closed-loop backup dynamics (9) under (15)
are mixed monotone and we explicitly compute a decomposi-
tion function for this system. We present an example in Section
IV-C, where we demonstrate how the decomposition function
for (9) enables the efficient overapproximation of reachable
sets for (9).

A. Preliminaries on Mixed Monotone Systems Theory

Consider a dynamical system

ẋ = F (x,w), (17)

where x ∈ X ⊆ Rn and w ∈ W := [w,w] ⊂ Rm denote the
system state and a bounded time-varying disturbance input.

Definition 3 (Mixed Monotonicity [16]). Given a locally
Lipschitz continuous function d : X ×W × X ×W → Rn,
the system (17) is mixed monotone with respect to d if for all
x, x̂ ∈ X and all w, ŵ ∈ W all of the following hold:

1) d(x,w, x, w) = F (x,w).
2) ∂di

∂xj
(x,w, x̂, ŵ) ≥ 0, for all i, j ∈ {1, · · · , n}, with i 6= j,

whenever the derivative exists.
3) ∂di

∂x̂j
(x,w, x̂, ŵ) ≤ 0, for all i, j ∈ {1, · · · , n} whenever

the derivative exists.
4) ∂di

∂wj
(x,w, x̂, ŵ) ≥ 0 for all i ∈ {1, · · · , n} and all j ∈

{1, · · · , p} whenever the derivative exists.
5) ∂di

∂ŵj
(x,w, x̂, ŵ) ≤ 0 for all i ∈ {1, · · · , n} and all j ∈

{1, · · · , p} whenever the derivative exists. �

If (17) is mixed monotone with respect to d, then d is a
decomposition function for (17) and[

ẋ
˙̂x

]
= E(x, x̂) :=

[
d(x,w, x̂, w)
d(x̂, w, x, w)

]
(18)

is the embedding system relative to d. An important feature of
mixed monotone systems is that overapproximations of reach-
able sets can be efficiently computed via a single simulation
of the embedding system.

Proposition 2. [16] Let (17) be mixed monotone with respect
to d and choose S := [x, x] ⊂ X . If ΦE(t; (x, x)) ∈ X × X
for all t ∈ [0, T ] then

R(t;S) ⊆ JΦE(t; (x, x))K, (19)

where ΦE(t; s) is the state of the embedding system (18) at
time t when beginning at state s ∈ X × X at time 0, and
where R(t;S) is the time-t reachable set of (17).

Proposition 2 provides an efficient algorithm for overap-
proximating reachable sets for (17): a simulation of the em-
bedding system for time-horizon t, starting from state (x, x),
identifies a hyperrectangular overapproximation of R(t; [x, x])
where the largest and smallest points in the rectangular approx-
imation are taken to be the first n and last n coordinates of the
simulation endpoint ΦE(t; (x, x)). The main challenge in this
approach, however, is in identifying a suitable decomposition
function for (17); generally, a mixed monotone system will be

mixed monotone with respect to many decomposition func-
tions, however, certain decomposition functions may provide
more/less conservative approximations of reachable sets than
others when used with Proposition 2. This is the main point of
study in [37] where the authors show that all systems of the
form (17) with a locally Lipshitz continuous vector field are
mixed monotone with respect to a unique tight decomposition
function that provides a tighter approximation of reachable sets
than any other decomposition function for (17).

Proposition 3. Any system (17) is mixed monotone with
respect to decomposition function d constructed elementwise
according to

di(x,w, x̂, ŵ) =



min
y∈[x,x̂]
yi=xi

z∈[w,ŵ]

Fi(y, z), if (x,w)�(x̂, ŵ),

max
y∈[x̂,x]
yi=xi

z∈[ŵ,w]

Fi(y, z), if (x̂, ŵ)�(x,w).
(20)

Moreover, for all other decomposition functions d′ for (17)
and any initial set S = [x, x],

R(t;S) ⊆ JΦE(t; (x, x))K ⊆ JΦE
′
(t; (x, x))K (21)

where ΦE and ΦE
′

denote the state transition functions of the
embedding systems constructed from d and d′, respectively.

We refer to the unique decomposition function constructed
in (20) as the tight decomposition function for (17). While it
is sometimes possible to attain a tight decomposition function
in closed-form, as posed in (20), computing a tight de-
composition function generally requires solving a nonconvex
optimization problem for each quadruple (x,w, x̂, ŵ) and the
computational infeasibility of (20) implies that it is of limited
direct use. For this reason, computing decomposition functions
using other means can be preferable; see [24], [38] for an
algorithm for computing decomposition functions for systems
with uniformly bounded Jacobian matrices and see [39] for an
algorithm for computing decomposition functions for systems
defined by polynomial vector fields.

Computing a decomposition function for (9) is the subject
of the next section.

B. Decomposition Function Construction
In the setting of the spacecraft system (9), we construct

a decomposition function by viewing the closed-loop backup
dynamics as an interconnection between two subsystems; one
describing the time-evolution of ρ and the other describing
the time-evolution of Ω := Jω, where J is the inertia matrix
in (9). Studying a linearly-transformed set of the dynamics in
this way enables reduced conservatism in the approximation
of reachable sets using Proposition 2—as studied further in
[40] and [41]—and we demonstrate this assertion later through
example in Section IV-C.

Proposition 4. The closed-loop spacecraft dynamics (9) un-
der (15) are mixed monotone. In particular, the orientation
dynamics (6) in (9) are mixed monotone with respect to a
tight decomposition function attainable in closed-form.
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We sketch the proof of Proposition 4 in the following two
sections where we compute individual decomposition func-
tions for the orientation and velocity dynamics, respectively.

1) Orientation dynamics: We first show that the orientation
dynamics (6) are mixed monotone with a tight decomposition
function attainable in closed-form. The proof of this result is
sketched below through the derivation of dρ1 , the first entry of
the tight decomposition function for (6) which later becomes
the first entry of a decomposition function for (9). For the
purpose of this section, we write the ρ1 dynamics as

ẋ1 = F ρ1(x) = x2x5 + x1x2x4 +
x3

2
(1 + x2

1 − x2
2), (22)

where we recall that x = (ρ, ω) ∈ R5, so that, e.g., x1 = ρ1.
The derivation of dρ1 is given in Table I and we elaborate on
the derivation below; in Table I we use dρ1(x, x̂) to denote
the decomposition function, where we now omit the 2nd and
4th arguments of dρ1(x,w, x̂, ŵ) to reflect the fact that (22)
contains no disturbance input.

Computing a tight decomposition function for (22) requires
solving the nonconvex optimization problem (20) in closed-
form, where F (x,w) in (20) is taken to be the vector field
F ρ1(x). This optimization problem is given by (23). A key
observation in our approach is that (i) each constraint in (23)
depends on only one state variable, and (ii) the vector field
F ρ1(x) which forms the objective function in (23) is linear
in x3, x4 and x5. This allows us to rewrite (20) as a nested
optimization problem (24), where now the outer optimization
problem in (24) is evaluated over the finite set and the inner
optimization problem in (24) is evaluated over the single
variable y2.

The next step in the derivation involves replacing the inner
optimization problem in (24) with a closed-form expression.
To do this, consider a system with quadratic polynomial
dynamics

ẋ = FQuad(w) = aw2 + bw + c (26)

where x ∈ R is the state, w ∈ R is the input and a, b, c ∈ R
are fixed parameters of the vector field. Observe that (26) is
mixed monotone with a tight decomposition function given in
closed-form by

dQuad
(
w, ŵ,

[
a
b
c

])
=

=


min

z∈[w,ŵ]
az2 + bz + c if w≤ ŵ,

max
z∈[ŵ,w]

az2 + bz + c if ŵ≤w.
(27)

=


−b2+4ac

4a if −b2 ∈ [aw, aŵ],

FQuad(w) if −b2 6∈ [aw, aŵ] and 0 ≤ aw + aŵ + b,

FQuad(ŵ) if −b2 6∈ [aw, aŵ] and 0 ≥ aw + aŵ + b,

where, we omit the second and fourth input in
dQuad(x,w, x̂, ŵ) to reflect the fact that FQuad(w) depends
only on w and we include (a, b, c) as an input to dQuad

so that the formulation is applicable across all choices of
a, b, c. Observe that the optimization problem in (27) is the
same as the inner optimization in (24), when w, ŵ, z, a, b and
c in (27) are taken to be x2, x̂2, y2,−y3/2, y3 + x1y4 and

y3(1 + x2
1)/2 in (24), respectfully. Thus, we can replace the

inner optimization problem in (24) with a single evaluation of
dQuad, which has a closed-form solution; see (25). Evaluating
dρ1 involves computing a finite optimization problem over
eight evaluations of dQuad and, thus, we have arrived at a
tractably computable representation of the tight decomposition
function for (22).

2) Angular Velocity Dynamics: We next study the closed-
loop angular velocity dynamics (5) under the backup controller
(15), namely,

ω̇ = J−1 (−ω × Jω + φ(ω × Jω +Kωω +Kρρ) + w)
(30)

where, as in (15), φ : R3 → U is a monotonically increasing
saturation function and K = [Kω,Kρ] ∈ R3×3 × R3×2 are
linear controller gains. For reasons that will be made clear
later, we consider a linear transformation on the state space of
(30) Ω = Jω so that the dynamics of Ω are given by

Ω̇ = FΩ(x′, w) = −(J−1Ω)× Ω

+ φ
(
(J−1Ω)× Ω +KωJ

−1Ω +Kρρ
)

+ w (31)

with state x′ = (ρ,Ω). The purpose of this section is to
construct a decomposition function for (31), as in [40], where
the authors discuss how considering a linear transformation of
the system dynamics can allow for reduced conservatism in
the approximation of reachable sets using Proposition 2.

We sketch the construction of a decomposition function
for (31) through the derivation of dΩ1 , the first entry. This
derivation is provided in Table II.

The first entry of the dynamics (31) is given by (28), where
FQuad is given by (26) and where we use the shorthand
notation

T 1
Ω1

=

[
J−1
3,2

J−1
3,1Ω1

0

]
, T 2

Ω1
=

[
−J−1

2,3

−J−1
2,1Ω1

0

]
, (32)

T 3
Ω1

=

[
−J−1

3,2

−J−1
3,1Ω1+J−1

1,2K1,3+J−1
2,2K1,4+J−1

3,2K1,5

(J−1
1,1K1,3+J−1

2,1K1,4+J−1
3,1K1,4)/2

]
, (33)

T 4
Ω1

=

[
J−1
2,3

J−1
2,1Ω1+J−1

1,3K1,3+J−1
2,3K1,4+J−1

3,3K1,5

(J−1
1,1K1,3+J−1

2,1K1,4+J−1
3,1K1,4)/2

]
, (34)

c = J−1
2,2 − J

−1
3,3 . (35)

Observe that the terms T 1
Ω1

, T 2
Ω1

, T 3
Ω1

, and T 4
Ω1

are functions
of Ω1. Since (28) is constructed as the sum of functions
with known decompositions, we can compute a decomposition
function for (28) as the sum of the decomposition functions
for the individual elements of the sum; See (29) in Table II2.

2Even though (29) is constructed from tight decomposition functions for
(26) and (37), the resulting decomposition function is not tight for (28).
Viewing the vector field as a sum, in this way, is known to lead to non-
tight decomposition functions and, in general, it is preferable to minimize
the number of sum elements, when possible, to attempt to minimize the
conservatism. This is the main reason for considering a transformation of the
dynamics, i.e., considering (31) rather than (5), as the transformed dynamics
are constructed via sums of fewer elements and therefore yields a tighter
decomposition function using this approach.
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TABLE I: Derivation of the first entry of decomposition function

dρ1 (x, x̂) =


min
y∈[x,x̂]
y1=x1

y2y5 + y1y2y4 + y3
2

(1 + y2
1 − y2

2) if x� x̂,

max
y∈[x̂,x]
y1=x1

y2y5 + y1y2y4 + y3
2

(1 + y2
1 − y2

2) if x̂�x.
(23)

=


min

y3:5∈〈〈x3:5,x̂3:5〉〉
min

y2∈[x2,x̂2]
(− y3

2
)y2

2 + (y5 + x1y4)y2 + y3
2

(1 + x2
1) if x� x̂,

max
y3:5∈〈〈x̂3:5,x3:5〉〉

max
y2∈[x̂2,x2]

(− y3
2

)y2
2 + (y5 + x1y4)y2 + y3

2
(1 + x2

1) if x̂�x.
(24)

=


min

y3:5∈〈〈x3:5,x̂3:5〉〉
dQuad

(
y2, ŷ2,

[
−y3/2
y5+x1y4
y3(1+x21)/2

])
if x� x̂,

max
y3:5∈〈〈x̂3:5,x3:5〉〉

dQuad

(
y2, ŷ2,

[
−y3/2
y5+x1y4
y3(1+x21)/2

])
if x̂�x.

. (25)

TABLE II: Derivation of the third entry of decomposition function

Ω̇1 = FQuad
(

Ω2, T
1
Ω1

)
+ FQuad

(
Ω3, T

2
Ω1

)
− cΩ2Ω3 + φ

(
FQuad

(
Ω2, T

3
Ω1

)
+ FQuad

(
Ω3, T

4
Ω1

)
+ cΩ2Ω3 +Kρ

1,:ρ
)

+ w1 (28)

dΩ1 (x,w, x̂, ŵ) = dQuad
(

Ω2, Ω̂2, T
1
Ω1

)
+ dQuad

(
Ω3, Ω̂3, T

2
Ω1

)
+ dMult

(
Ω2:3, Ω̂2:3,−c

)
+

+ φ
(
dQuad

(
Ω2, Ω̂2, T

3
Ω1

)
+ dQuad

(
Ω3, Ω̂3, T

4
Ω1

)
+ dMult

(
Ω2:3, Ω̂2:3, c

)
+ [Kρ

1,:]
+ρ+ [Kρ

1,:]
−ρ̂
)

+ w1 (29)

In Table II, we denote by

dMult(w, ŵ, a) =

{
min

z∈〈〈w,ŵ〉〉 a z1z2 if w � ŵ,

max
z∈〈〈ŵ,w〉〉 a z1z2 if ŵ � w,

(36)

the tight decomposition function for the mixed monotone
system

ẋ = FMult(w) = aw1w2, (37)

where x ∈ R is the state, w ∈ R2 is the input, and a is a fixed
parameter of the vector field. Moreover, since (29) contains
only optimization problems over finite sets, we have arrived
at a tractably computable decomposition function for (28).

C. Application of Mixed Monotonicity in Spacecraft
Attitude Control

Combining the subsystem decomposition functions for (6)
and (31) requires rectifying the fact that the two systems
contain different state variables, that is, (6) depends on x =
(ρ, ω) whereas (31) depends on x′ = (ρ,Ω). For this reason, in
our work, we construct a decomposition function for (9) using
a slight modification of the decomposition function dρ1 from
(25), modified to account for the fact that the state vector has
changed to include Ω. Nonetheless, the resulting dynamics (6)
are still linear in Ω = Jω and thus the resulting decomposition
function used in this work is still tight for (6).

Letting dρ(x′, x̂′) denote this decomposition function, we
have that ẋ′ = F (x′, w) is mixed monotone with respect to

d(x′, w, x̂′, ŵ) =

[
dρ(x′, x̂′)

dΩ(x′, w, x̂′, ŵ)

]
, (38)

and Proposition 2 now implies that the reachable set of (6)–
(31) from state x′ ∈ R5 is efficiently overapproximated using

R(t;x′,ub) ⊆ JΦE(t; (x′, x′))K, (39)

where ΦE is the state transition function of the embedding
system (18), taken with respect to d, and R(t;x′,ub) is the
reachable set of (6)–(31) under ub as in (10). Equivalently,
for all w : [0, t]→W we have that

(ρ, Jω) ∈ JΦE(t; (x, x))K (40)

where (ρ, ω) = Φ(t;x,ub,w) and x ∈ X is the initial state.
Furthermore, defining by

Rθ(t;x′,ub) := {θ(y) | y ∈ R(t;x′,ub)} , (41)

the system’s reachable set in the space of line-of sight angles,
we have that

Rθ(t;x′,ub) ⊆ Θ
(
JΦE(t; (x′, x′))K

)
, (42)

where Θ( · ) is an inclusion function for θ( · ) as defined in
[42]; see also [41]. A demonstration is provided in Figure 4
where we apply (42) in order to overapproximate Rθ(t;x′,ub)
for t ∈ [0, 15] and where

x =

(
1√
3
, 0, 0.1, 0.1, 0.1

)
, (43)

that is, θ(x) = 60° and ω0 = (0.1, 0.1, 0.1) rad/s.
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Fig. 4: Demonstration of the reachability procedure posited
in (42). The initial state x given by (43) is shown in blue,
and the deterministic trajectory θ(Φ(t;x,ub, 0)), arising from
the case with no disturbances, is shown in black. The over-
approximation of Rθ(t;x′,ub) attained from applying (42)
with the decomposition function (38) for the transformed
dynamics (6)–(31) is shown in red. As a comparison, we show
also a similar reachable set approximation, attained from a
decomposition function for the untransformed dynamics in (9).
This second approximation, which is much more conservative,
is shown in blue.

V. HARDWARE DEMONSTRATION OF ASSURED SAFETY

We demonstrate the proposed framework for assured safety
with an experiment at the Autonomous Spacecraft Robotic
Operations in Space (ASTROS) experimental facility [43],
located at the Dynamics and Control Systems Laboratory of
the Georgia Institute of Technology.

Fig. 5: Main Components of ASTROS Experimental Test-Bed

The ASTROS platform is composed of two structures,
namely, the upper and lower stages. The motion of these
two stages is restricted or rendered free by exploiting two
pressurized-air bearing systems, allowing for frictionless mo-
tion in up to 5 degrees of freedom, 3 of which are of rotation
and 2 of translation. A hemispherical air-bearing situated
between the lower and upper stages allows for free rotation
of the upper stage around two perpendicular horizontal axes.
Additionally, a linear air-bearing system between the lower
stage and the floor levitates its lower stage off the near-
perfectly flat floor, providing two degrees of planar translation
plus one degree of rotation (2+1 configuration), although this

mode of motion was fixed during our experiment. The platform
is fitted with 12 cold-air gas thrusters in a 3-3-3-3 pack
configuration, which, when fired, generate forces and torques
to allow it to actively maneuver in the test arena.

The ASTROS test-bed also possesses an inertial measure-
ment unit and a rate gyro, which when paired with an
extended Kalman filter (EKF), allow it to estimate the position,
attitude, linear velocity and angular velocity of the upper stage.
Additionally, a 12-camera VICON™ motion capture system
provides accurate position and orientation measurements of
the ASTROS upper stage at a rate of 100Hz, which are also
incorporated into the EKF.

The actuation of the thrusters is performed by dedicated
power electronics in response to control signals computed
onboard using an embedded SpeedGoat™ computer. The
computer compiles and executes a program derived from a pro-
totyped Simulink™ model incorporating sensor measurement
acquisition, control computation, actuator allocation and input-
output communications with devices on the platform in real-
time. A linear program leveraging GLPK [44] runs in real-time
and allocates control to the 12 thrusters such that the resulting
torque equals the requested torque control computed by our
controller while minimizing pressurized air (fuel) usage. The
12 allocated control values are then emulated via a pulse width
modulation (PWM) scheme, thus generating thruster on-off
commands which are executed at cycle rate of 10Hz with a
duty cycle resolution of 0.01s.

The experiments were conducted with an admissible control
set U = [−2, 2]× [−0.5, 0.5]2 Nm and considered disturbance
torques in W = [−0.02, 0.02]3 Nm. Also, the inertia matrix
of the spacecraft was considered to be

J =

17.5 −0.8 0.3
−0.8 14.9 0.4
0.3 0.4 20.8

 kg m2. (44)

We first design a controlled forward invariant set via the
procedure in Section III. We use the control policy (15) result-
ing from the solution to a Linear Quadratic Regulator (LQR)
problem involving the linearized dynamics. In particular, we
consider a backup controller

ub(x) = φ (ω × Jω +Kx) , (45)

where the term φ : R3 → U is a saturation function, included
in order to ensure the admissibility of ub. An LQR problem
is solved in order to penalize torque control effort along axes
that have smaller actuation limits. This approach was iterated
over using various cost functions in order to find a controller
that would permit the largest possible set that is both robust
and that does not saturate the actuators. The gain used is

K = 10−2 ×

100.0 −0.4 467.3 3.5 −1.4
0.3 70.6 5.1 330.8 4.2
1.4 −5.9 4.0 −20.0 99.8

 . (46)

The resulting closed-loop linear system is then used to com-
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pute a Lyapunov function V (x) = x>Px with

P =


20.0 2.1 6.5 1.1 −1.5
2.1 26.7 1.1 10.0 −2.4
6.5 1.1 323.3 17.6 −2.8
1.1 10.0 17.6 378.5 −4.4
−1.5 −2.4 −2.8 −4.4 288.1

 . (47)

The set Cb was computed via the procedure outlined in
Section III, and optimal sets of the decision variables were
computed for γ = 17.1 using second-order polynomial and
SOS multipliers. The set Cb is therefore defined with hb(x) =
γ − V (x).

In the experiment, a 5° avoid cone is considered (θmax =
175°). As shown in Figure 6, the avoid cone is constructed in
such a way that prevents an onboard laserbeam from entering
a ring placed approximately 18 feet away from the vehicle’s
center of rotation. The desired control input to the vehicle
is provided by a human-controlled pilot joystick. The user
attempts to orient the vehicle in such a way that the laserbeam
enters the ring, however, the RTA mechanism is effective at
preventing the safety constraint from being violated. That is,
the user has full control of the vehicle when the RTA is
inactive, and the RTA activates only as necessary to prevent
violations of the line-of-sight constraint (12).

In particular, unsafe primary control actions are chosen by a
human operator via a joystick with a controller update rate of
10 Hz. A tp = 0.6 sec reachable set computation is conducted
assuming a zero-order hold for this duration on the human
operator’s command control action, followed by a tb = 15 sec
reachability computation under the backup controller. In the
reachability computations, we explicitly compute reachable
set overapproximations at each increment of 0.1 sec along
the system’s trajectory; that is, six reachable set overapprox-
imations are computed along the tp = 0.6 sec application
of the performance controller and k∗ = 150 reachable set
overapproximations are computed along the tb = 15 sec
application of the backup controller. On average, computing
all 156 reachable set overapproximations of the system takes
about 1 ms. Therefore, the RTA filter logic computation is
about two orders of magnitude faster than the controller
update rate. When necessary to avoid collisions, the RTA
mechanism applies the backup controller to the system in order
to guarantee system safety.

Results from the experiment are provided in Figures 7 and 8.
Observe that, while the human operator commands unsafe
control actions via the joystick, the RTA mechanism applies
the backup control input when necessary in order to ensure the
satisfaction of the safety constraint for all time. Furthermore,
the angle θ(x) ≤ 175 deg, as required, for all states x(t) along
the system trajectories. A video of the experiment is available
at https://youtu.be/g1-zMepDm1I.

VI. CONCLUSION

We developed and demonstrated an RTA filter for a torque-
controlled spacecraft in free rotational motion subject to
disturbances and a line-of-sight safety constraint. To design
the RTA filter, we first compute a terminal set that is contained
within the safety constraint set along with a feedback control

Fig. 6: Experimental Setup: The inertially-fixed K̂ vector is
chosen to point toward a ring, with the border of the ring
describing the extent of the unsafe set. A laser pointer is fixed
to the body-fixed k̂ direction, so that the laser touches the ring
when θ(x) = 175◦. Nominal, possibly unsafe, control actions
are suggested by a human operator via a joystick.
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Fig. 7: Line-of-sight angle versus time. Green color indicates
time iterations that are unfiltered and red color indicates times
when the RTA filter is active. The extent of the admissible set,
θmax = 175◦, is shown dashed in blue color.

policy that renders this set robustly forward invariant. We
then propose an RTA mechanism that, given a desired control
policy, determines if the desired control can be safely applied
to the system. Because the a priori computed terminal set is
generally conservative, the RTA mechanism allows the system
to evolve beyond this set provided a safe return is possible.
In turn, this is ensured by computing an overapproximation of
the reachable set of states obtained by applying the desired
controller followed by a backup control strategy. Reach-
able sets are efficiently overapproximated as hyperrectangules
using the theory of mixed monotone systems and include
system disturbances in the computation. The key innovation
of our approach is to couple efficient online reachable set
computations with a safe-but-conservative terminal set that is
computed offline. Applying this methodology to an underactu-
ated, five-dimensional spacecraft hardware platform required
innovations in mixed monotone systems theory to allow for
efficient, provably correct reachable set approximations that
are computable online.
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