
Runtime Assurance from Signal Temporal Logic Safety Specifications

Luke Baird and Samuel Coogan

Abstract— In this paper, we propose a runtime assurance

mechanism for online verification of a control system given a

signal temporal logic (STL) specification that, at each time step,

must hold for the remaining state trajectory. Given a nominal

control input, we propose a mechanism that minimally adjusts

the input at each time step in order to ensure existence of

future inputs that maintain satisfaction of the STL specification.

Because STL constraints generally impose requirements on

future states, the runtime assurance mechanism also enforces

continued satisfaction of the STL constraint evaluated at all

past time steps. Lastly, to ensure a feasible input is always

available, we provide a novel characterization of a persistently

feasible set and require that the system state is always able to

reach this set. We formulate this approach as a mixed integer

convex program and demonstrate it on examples.

I. INTRODUCTION

Modern control systems are highly complex and generally
are intractable to fully verify offline prior to their deployment
[1]. Despite extensive testing, unpredictable edge cases may
arise due to time and cost constraints on testing. For instance,
learning-based controllers often have no simple mathematical
representation and are difficult to fully characterize.

Instead of performing offline verification of a control
system, one path to guaranteed safe behavior is to verify a
system online using a runtime assurance (RTA) mechanism
[2]. RTA mechanisms monitor control systems to detect,
alert, and act when an unsafe condition is detected. This
differs from a simple monitoring scheme in that RTA auto-
matically takes action when an unsafe condition is imminent.
Many techniques aim to enforce safe or correct behavior
online and thus fit in the broad category of RTA. For
example, a simple but effective strategy, referred to as the
simplex architecture [3], is to switch to a backup controller
if needed. A large collection of recent literature uses control
barrier functions to adjust control inputs near the boundary
of a safe region [4]–[6]. See [2] for further discussion on
various approaches to RTA.

With a few exceptions, RTA typically focuses on safety
defined as avoiding a particular unsafe subset of the states-
pace, that is, invariance conditions. However, many practical
specifications are not invariance conditions. For example, the
requirement that “temperature can exceed a threshold for no
more than 2 seconds in any 4 second window” cannot be
posed as an invariance condition. To address a broader class
of specifications, we utilize temporal logics. Temporal logics

This work was supported in part by the National Science Foundation
under awards #1749357 and #2219755.

Luke Baird and Samuel Coogan are with the School of Electrical and
Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30318,
USA {lbaird38,sam.coogan}@gatech.edu. S. Coogan is
also with the School of Civil and Environmental Engineering.

Nominal
Controller

RTA with spec ߶
ݔ ݐ + 1 =
ݔ)݂ ݐ ݑ, ݐ)

ݔ

ොݑ ݑ

Fig. 1. Runtime assurance (RTA) of a signal temporal logic (STL)
specification �. A nominal controller provides inputs to a RTA which
monitors and filters these inputs to ensure that there always exists a control
strategy that satisfies � for all time, i.e. guarantees safety. At each time t,
the RTA uses knowledge of the discretized dynamical system to calculate
future states to predict future safety violation dependent on the horizon of
�.

are formal languages for encoding logical propositions with
respect to time and are well-suited for specifying behavior
of control systems [1], [7]. In particular, in this paper, we
focus on Signal Temporal Logic (STL), which allows for
quantitative satisfaction semantics via a robustness metric [8]
and is well-suited for specifying behavior of control systems
[9]. Our RTA architecture is shown in Figure 1.

There are several tools and developing theory for evaluat-
ing and synthesizing from STL formula efficiently. Breach is
a Matlab toolbox that evaluates STL formulas either offline
or online [10]. The paper [11] uses Breach to monitor an
airpath system in a diesel engine to ensure overshoot limits
and transient decay requirements are met. Stlcg is a Python
library for controller synthesis from STL constraints that
uses autodifferentiation tools to efficiently compute gradients
of STL robustness metrics [12]. Several works propose
using smooth approximations to min and max operations in
order to ensure differentiability of STL robustness metrics
[12], [13]. Most relevant to this paper, [14] introduces a
python library stlpy that efficiently encodes STL formulas
for control synthesis as a Mixed-Integer Convex Program
(MICP) using fewer binary variables than prior methods.

In this paper, we propose a RTA mechanism for a discrete-
time control system subject to a STL safety constraint on the
state that must hold for all times along the system execution.
Given a nominal controller that may not always satisfy the
STL constraint, we propose solving a MICP at each time
step that computes a minimally invasive safe control input
minimizing the distance to the desired nominal input. Since
STL specifications generally impose constraints on future
states, the MICP ensures safety by identifying a possible
sequence of future inputs that guarantee satisfaction of the
STL formula when evaluated at past and future states. When
the STL constraint has a finite horizon, that is, its satisfaction
is determined by a finite subset of the state trajectory, the
MICP need only consider a finite number of past evaluations

of the STL formula. In turn, to ensure a finite number of
future evaluations, we propose a novel characterization of
persistently safe sets defined over multiple time steps of the
trajectory and enforce in the MICP that the state trajectory
is able to reach such a set. Provided that the system is
initialized such that safety is possible, our proposed approach
is guaranteed to maintain safety. We implement our approach
by modifying the stlpy library to suit our problem domain.
Although our approach is developed for future-time STL, by
applying ideas from [15] we can incorporate past-time STL,
including infinite past-time STL. Computationally, only a
finite number of historical time steps are required to evaluate
a past-time STL formula, even with an unbounded history.
This is illustrated in the case study.

The RTA approach in this paper draws from and is related
to several areas of research. First, monitoring a system
trajectory against an STL formula to detect violation has
been considered in [10], [11], [15]–[19]. These monitoring
approaches generally do not consider the system generat-
ing the signal to be monitored and, in particular, do not
provide a method for adjusting control actions to prevent
violation. Next, while our approach poses a MICP that is
reminiscent of optimization approaches to trajectory planning
and model predictive control from STL constraints [9], [20],
[21], our problem setting is different in that we aim to
alter a nominal controller to ensure at all times satisfaction
of a STL safety constraint. Mathematically, this requires a
novel characterization of persistent feasibility and an MICP
that appropriately considers STL evaluations at past states.
Similar to this paper, [21] poses a MICP to minimize a cost at
each time step, but does not guarantee persistent feasibility,
instead synthesizing a minimally violating controller. The
papers [9], [20] present a framework for enforcing satis-
faction of a finite time horizon STL formula for all time
by employing invariant set theory. These works propose
treating a slice of the historical state up to the present as a
higher-dimensional dynamical system and ensure persistent
feasibility by finding robust control invariant sets for the
higher dimensional system. Although our characterization
of persistently feasible sets is similar, our work approaches
the safety problem from an RTA framework while building
on the monitoring literature, hence permitting extensions to
past-time STL. Our selection of a terminal set condition for
persistent feasibility is natural for an STL formula in an RTA
framework. Furthermore, the theory in [20] requires positive
monotone systems to apply the proposed solution techniques
and account for disturbances.

The rest of the paper is laid out as follows. In Section
II, we provide a brief overview of STL. We then formally
pose the runtime assurance problem that is the focus of this
paper in Section III. Then, we provide a necessary terminal
set condition that leads to a theoretical guarantee of safety
in Section IV followed by an algorithmic implementation in
Section V. Section VI demonstrates our method while finally
Section VII concludes the paper with planned future work.

II. SIGNAL TEMPORAL LOGIC PRELIMINARIES

In this section, we provide a brief overview of Signal
Temporal Logic (STL). Let x be a discrete time signal so
that x[t] 2 Rn is the value of x at time t. STL is defined
using the syntax [9], [13]

� , ⇡|¬�|� ^ |�U[t1,t2] (1)

where ⇡ is a logical predicate of the form

⇡ = (µ(x[t])� c � 0) (2)

for a predicate function µ : Rn ! R and a constant c. The
operators conjunction ^, until U , and negation ¬ may be
used to define disjunction _, eventually ⌃, and always ⇤.

The robustness ⇢� of a specification � is calculated at a
time t recursively as [13]

⇢⇡(x, t) = µ⇡(x[t])� c

⇢¬�(x, t) = �⇢�(x, t)

⇢�^ (x, t) = min
�
⇢�(x, t), ⇢ (x, t)

�

⇢�_ (x, t) = max
�
⇢�(x, t), ⇢ (x, t)

�

⇢⇤t1,t2�(x, t) = max
t02[t+t1,t+t2]

�
⇢�(x, t0)

�

⇢⌃t1,t2�(x, t) = min
t02[t+t1,t+t2]

�
⇢�(x, t0)

�

⇢�U[t1,t2] (t, k) = max
t02[t+t1,t+t2]

min

✓
⇢�(x, t0), min

t002[t+t1,t0]

�
⇢ (x, t00)

�◆
.

If a STL formula � has non-negative robustness for signal x
at time 0, then we write x |= � [13].

The time horizon of an STL formula �, denoted k�k,
is defined as the number of future time steps of a signal
necessary to evaluate an STL formula and is characterized
recursively as [18]

k⇡k = 0

k¬�k = k�k
k� ^ k = max (k�k, k k)
k� _ k = max (k�k, k k)
k⇤t1,t2�k = k�k+ t2

k⌃t1,t2�k = k�k+ t2

k�U[t1,t2] k = max (k�k, k k) + t2.

III. PROBLEM FORMULATION

Consider the discrete dynamical system

x[t] = f(x[t], u[t]) (3)

where x 2 X ⇢ Rn is the state and u 2 U ⇢ Rm is the
input. Suppose there is a safety constraint for the system
given as an STL specification that must be satisfied at each
time step, as formalized in the next definition.

Definition 1. Given an STL formula �, a state trajectory x
of the system (3) is safe with respect to �, or simply safe, if

⇢�(x, t) � 0 for all t � 0. (4)

Now, suppose that there exists some unverified nomi-
nal controller that provides inputs û[t] to the system. The
controller is unverified, meaning that this controller is not
guaranteed to generate a safe state trajectory of the system.
For example, the controller might be designed to achieve
some ancillary performance objective with inadequate con-
sideration for the safety constraints. The goal of this paper is
to develop a runtime assurance (RTA) mechanism to modify
the nominal controller to ensure safety.

Problem Statement. Given the system in (3), an initial state
x[0] 2 X from which safety is possible, an STL formula
� with k�k < 1, and a nominal controller providing
inputs û[t], develop an RTA mechanism that modifies the
nominal control inputs in order to provably guarantee that
the resulting state trajectory is safe with respect to � while
minimizing the deviation from nominal inputs.

Although the theory presented in this paper is developed
for future time STL formulas with finite horizons, we
demonstrate in the case study that by applying the methods
proposed in [15], we can extend this work to past-time STL
operators including unbounded past time operators.

IV. SLIDING WINDOW CONTROL SOLUTION

In this section, we propose a solution to the problem
defined in Section III that consists of solving an optimization
problem at each time step. The optimization problem con-
siders a sliding window of future and past states and control
actions to ensure safety. We start by defining a persistently
safe set that is appropriate for a setting with a STL safety
specification.

Definition 2 (persistently safe set, tail length, and persis-
tently safe control strategy). Given an STL formula � and the
dynamical system (3), suppose there exists a set S ⇢ X b for
some b � 1 along with a feedback control strategy µ : X b !
U such that, at time t, if (x[t�b+1], x[t�b+2], . . . , x[t]) 2
S , then applying the control strategy µ maintains satisfaction
of the STL for all future time, that is, applying the inputs
u[⌧] = µ(x[⌧ � b + 1], x[⌧ � b + 2], . . . , x[⌧]) for all ⌧ � t
ensures ⇢�(x, ⌧ � b + 1) � 0 for all ⌧ � t. Then S is called
a persistently safe set for � and (3), b is the tail length of
S, and µ is a persistently safe control strategy for S .

At each time t, our proposed solution projects the future
state of the system to N time steps and ensures that: 1) the
final b steps of the state projection are in some persistently
safe set S with tail length b, and 2) robustness is ensured for
all states up to k�k time steps in the past and N time steps
in the future.

The persistently safe set S is necessary for our receding
horizon solution. At each iteration in our algorithm, we use
this set to ensure that when we find a set of control inputs
that will keep the system safe at time t, there will also exist
a set of control inputs that will keep the system safe at time
t + 1, t + 2, and so on.

Proposition 1. Consider a nonlinear discrete dynamical
system (3). Given STL formula �, let h = k�k < 1, and

suppose that S is a persistently safe set for � and (3) with tail
length b and persistently safe control strategy µ. Let integer
N � b. At some time t0, if there exists a sequence of control
inputs u[t0], . . . , u[t0 + N � 1] such that

x[t0 + N � b + 1], . . . , x[t0 + N] 2 S (5)

and

⇢�(x, ⌧) � 0, 8⌧ 2 {t0 � h, . . . , t0 + N � b}, (6)

where, in order to evaluate ⇢�(x, ⌧), we append this se-
quence with µ, i.e., we take u[t] = µ(x[t� b + 1], . . . , x[t])
for t � t0 +N � b+h, then there exists a sequence of inputs
such that ⇢�(x, t) � 0 for all t � t0 � h.

Proof. At time t0, apply the control strategy u[t0], . . . , u[t0 +
N �1]. By (6), ⇢�(x, t) � 0 for all t satisfying t0�h t
t0 + N � b. Next, (5) implies that by substituting t = t0 + N
into definition 2, there exists a control strategy such that
⇢�(x, t) � 0 for all t � t0 + N � b + 1. ⌅

Note that for the sequence of inputs u[t0], . . . , u[t0 + N �
1], there is flexibility in the inputs as the state need not
remain in S until the last b steps. Thus, similar to MPC,
selecting a larger value of N permits greater flexibility and
less conservativeness in the verified input sequence.

Next, we show that a natural method for obtaining a
persistently safe set is to compute a control invariant set.

Definition 3 (control invariant and invariance-enforcing con-
trol strategy). The set C is control invariant for the system
(3) if, for all x 2 C, there exists u 2 U such that f(x, u) 2 C.
For a control invariant set, if µ : C ! U is a feedback control
strategy such that f(x, µ(x)) 2 C, then whenever x[t0] 2 C
for some t0, applying µ thereafter results in a state trajectory
satisfying x[t] 2 C for all t � t0, i.e., C is forward invariant.
Such a control strategy µ is called invariance-enforcing for
C.

Proposition 2. Given STL formula �, suppose ⌦0 has the
following property: for any signal x with x[t] 2 ⌦0 for all
t � 0, x |= �. Then any control invariant set C ✓ ⌦0

is a persistently safe set with tail length b = 1, and any
invariance-enforcing control strategy for C is a persistently
safe control strategy.

Proof. Substituting b = 1 into Definition 2 implies that,
given x[t] 2 S , there must exist a control strategy u[⌧] =
µ(x[⌧]) for all ⌧ � t such that ⇢�(x, ⌧) � 0. By hypothesis,
any trajectory x with x[t] 2 C for all t � 0 implies that x |=
�. Therefore, it is enough to apply an invariance-enforcing
control strategy for C to guarantee positive robustness for all
⌧ � t. ⌅

Given a set ⌦0 satisfying the conditions of Proposition 2,
it is generally preferable to use the largest control invariant
subset of ⌦0 as the persistently safe set; this set is called
the maximal control invariant set for ⌦0. In practice, the
maximal control invariant is found by iteratively calculating

⌦k+1 = Pre(⌦k) \ ⌦k (7)

until ⌦k+1 = ⌦k where Pre(·) is the precursor operator given
by Pre(A) = {x 2 Rn : 9u 2 U s.t. f(x, u) 2 A} [22].

V. IMPLEMENTATION AS A MIXED-INTEGER CONVEX
PROGRAM

In this section we propose an algorithm to solve the
problem formulation of Section III using the theoretical
developments of Section IV. At each time step, we calculate
a safe backup control strategy that satisfies the conditions of
Proposition 1 while minimizing the deviation from the nom-
inal input. Formally, at each time t we solve the optimization
problem

min
µ={µ[t],...,µ[t+N�1]}

kû[t]� µ[t]k (8)

s.t. x[⌧ + 1] = f(x[⌧], µ[⌧]), t� h ⌧ t + N

x[⌧] 2 S, t + N � b + 1 ⌧ t + N

⇢�(x, ⌧) � 0, max {t� h, 0} ⌧ t + N � b

where S is a persistently safe set, û is a nominal control
strategy, and µ is the optimization variable. The algorithm is
given in Algorithm 1.

Algorithm 1 Runtime assurance for � safety
Ensure x[t + 1] = f(x[t], u[t]) satisfies �
Input: �, û, S , b, N
Output: u where ⇢�(x, t) � 0, 8t

Initialization : x[0] 2 Xsafe
1: h k�k
2: while t � 0 do

3: u[t] µ[t] where µ is the minimizer of (8)
4: t t + 1
5: end while

To show that this algorithm guarantees safety for all time,
we must first define a safe initial condition.

Definition 4 (safe initial condition). Given an STL formula
�, the dynamical system (3), and a persistently safe set
S , a safe initial condition is a state x[0] 2 X such that
there exists a control strategy u[0], . . . , u[h + N � 1] where
⇢�(x, 0), . . . , ⇢�(x, h + N � b) � 0 and the conditions for
Proposition 1 holds at time t = h. We denote the set of safe
initial conditions by Xsafe.

Finally, we make the following technical assumption on
the predicate functions comprising the safety specification
in order to apply theory from [9], [14].

Assumption 1. STL formula � has convex predicate func-
tions µ. That is, µ(✓x1[t]+ (1� ✓)x2[t]) ✓µ(x1[t])+ (1�
✓)µ(x2[t]) where ✓ 2 [0, 1] and x1, x2 2 X .

Theorem 1. Consider a nonlinear discrete dynamical system
(3) with STL formula �, h = k�k < 1 and persistently
safe set S . If x[0] is a safe initial condition, then applying
Algorithm 1 to filter any nominal controller û[t] will maintain
safety for all time.

ݐ െ ݄ ݐ ݐ + ܰ െ ܾ ݐ + ܰ

[ݐ]ݔ
……

Fig. 2. Illustration of the constraints matching Proposition 1. Over the
green region we must ensure positive robustness on x, while over the blue
region we must ensure that x is in a persistently safe set.

Proof. By Proposition 1 and Definition 4, there exists a
safe control strategy for all future time. At each iteration
t of Algorithm 1, we construct an optimization problem
with constraints corresponding to Proposition 1. By [9], a
mixed-integer encoding of STL constraints is both sound
and complete. Therefore, by the construction of Proposition
1 and Definition 4, if there is a solution at time t, then there
is a solution for all future time including time t+1, thereby
guaranteeing persistent feasibility of the algorithm. ⌅

Remark. In general, we can provide a library of persistently
safe sets with varying tail lengths instead of a static pre-
computed persistently safe set.

This method is illustrated in Figure 2. At each time t, we
must ensure that � holds at each time ⌧ where max(0, t �
h) ⌧ t + N � b while the remaining steps up to t + N
must be in a persistently safe set.

Optimization problems in the form of (8) with a convex
cost, STL constraints with convex predicates, and linear
systems may be solved by posing the problem as a MICP.
The advantage of MICPs is that mixed-integer encoding of
robustness constraints yield sound and complete solutions
for any STL formula [9]. However, due to the NP-hardness
of these problems, the application of MICPs are limited to
short STL time horizons and relatively simple STL formulae
[9]. Note that in general, STL formula form non-convex sets
and their evaluation is NP-hard even with convex predicates
[23]. For convex STL formulae other methods like smooth
STL approximations with gradient descent may be more
appropriate [13].

The idea is to decompose an STL formula into its com-
ponents (conjunctions, disjunctions, and predicates) forming
a tree-like structure where the lowest level is composed
of predicates. These predicate constraints are then encoded
using a big-M formulation [9].

Often, the CPU time required to solve MICPs is directly
related to the number of binary variables involved. Much
research has been done in reducing the number of binary
variables. The paper [14] builds on the work of [9], where
the number of binary variables does not increase with con-
junctions and increases logarithmically with disjunctions in
exchange for more linear constraints. The code of [14] is
written to evaluate an STL formula robustness at a single
time t. In our implementation, we modify this open source
library to accommodate multiple time steps.

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20
x1

�0.4

�0.2

0.0

0.2

0.4

x
2

Maximal control invariant set, �t = 0.5

Fig. 3. Maximal control invariant set for a double integrator system with
safe set 0.9 x1[t] 1.1 and discretization size �t = 0.5.

VI. CASE STUDY

Consider a discretized double integrator system where x 2
R2, u 2 [�1, 1], y 2 R given by

x[t + 1] =

✓
1 �t
0 1

◆
x[t] +

✓
0

�t

◆
u[t] (9)

y[t] =
�
1 0

�
x[t]. (10)

We consider the following specification: y must stay
within 10% of unity, but may leave this range for up to
two seconds if it resettles in this range for two seconds.
This specification is a slight modification from [15], where
the past-time version of this formula is used to monitor
an engine air-to-fuel normalized stoichiometric ratio online.
This is encoded as the STL formula

� = ¬(y in bounds) =) ⌃[0,2]⇤[0,2](y in bounds) (11)

where “y in bounds” is (y � 0.9) ^ (�y � �1.1). The
implication operator may be written as a disjunction: A =)
B is logically equivalent to ¬A _B.

The horizon of � is h = k�k = 4/�t. We obtain a
persistently safe set S via Proposition 2 as follows. Let
⌦0 = {x : 0.9 y 1.1}, and notice that ⌦0 satisfies
the hypothesis of Proposition 2, namely, if x[t] 2 ⌦0 for
all t � 0, then x |= �. To find a safe maximal control
invariant set, we apply (7) recursively. For linear time-
invariant systems, this calculation uses standard operations
on polytopes [22]. For the discrete double integrator system,
this routine terminates after 1/�t iterations. An example set
is plotted for �t = 0.5 in Figure 3. Using the notation from
Proposition 1, we then take b = 1 and choose N = h.

We implement Algorithm 1 in Python. We use a modified
version of stlpy [14] to accommodate evaluation of an
STL formula over past and future time relative to a nominal
current time, and we use Gurobi to solve the resulting MICP.
Because u[t] is a scalar, we select a cost of |û[t]� u[t]| and
introduce a slack variable to encode this as a linear cost with
linear constraints. The relative run time results are tabulated
in table I, executed on a 2022 Dell Precision 5570 with
Windows 11.

An example is shown first for a constant nominal input
of û ⌘ 1, x[0] =

�
1.1 0

�>, and �t = 1 in Figure 4. The

TABLE I
RELATIVE RUN TIME FOR TIME STEPS AND INPUTS.

Input �t Formula Compute time per step [s]
û ⌘ 1 1.0 � 0.0099
û ⌘ 1 0.25 � 0.043
û =(13) 1.0 0.011
û =(13) 0.25 0.049

0 5 10 15 20 25 30

t (s)

1.0

1.5

2.0

y[
t]

Output y[t]

A safe trajectory

y in bounds

0 5 10 15 20 25 30

t (s)

�1

0

1

u
[t
]

Input u[t]

Filtered

Nominal

Fig. 4. Safe trajectory (top) and input (bottom) for a nominal input of
û ⌘ 1 and discretization step of �t = 1.

resulting output trace stays at 1.1 for two seconds, changes to
2.1 for two seconds, and then returns to 1.1 for two seconds.

Next, we consider û ⌘ 1, x[0] =
�
0.0 0

�>, and �t =
0.25. Here, k�k = 8, and thus the output trace spends at most
eight time steps outside of the range 0.9 y 1.1 before
returning into that range for eight time steps. The results are
plotted in Figure 5.

Now, consider adding an additional constraint where if y
exceeds 1.3 for two seconds or more in the past, it must then
always remain below 1.3. Now, the specification becomes

 = (·⌃[2,1)(y � 1.3) =) y 1.3)^
¬(y in bounds) =) ⌃[0,2]⇤[0,2](y in bounds)

(12)

where ·⌃ is eventually in the past. This specification demon-
strates that by employing methods from the monitoring liter-
ature [15], we can further generalize the approach presented
in this paper to infinite past time formulas. Consider a
sinusoidal nominal input sequence

û[t] = �0.3 cos
⇡

30
t + 0.2 (13)

Let x[0] =
�
0.9 0

�> and �t = 0.25. Figure 6 shows that
most of the time the filtered input tracks the nominal input
signal and remains safe. Whenever the system approaches
an imminent unsafe future condition, the RTA mechanism
overrides unsafe inputs and returns the system to a safe
operating point. Note that the signal exceeds y � 1.3 only
once and for less than two seconds. The code used to produce
these plots may be found at https://github.com/
gtfactslab/Baird_ACC2023.

https://github.com/gtfactslab/Baird_ACC2023
https://github.com/gtfactslab/Baird_ACC2023

0 5 10 15 20 25 30

t (s)

0.0

0.5

1.0

1.5

y[
t]

Output y[t]

A safe trajectory

y in bounds

0 5 10 15 20 25 30

t (s)

�1.0

�0.5

0.0

0.5

1.0

u
[t
]

Input u[t]

Filtered

Nominal

Fig. 5. Safe trajectory (top) and input (bottom) for a nominal input of
û ⌘ 1 and discretization step of �t = 0.25.

0 5 10 15 20 25 30

t (s)

0.7

0.9

1.1

1.3

1.5

y[
t]

Output y[t]

A safe trajectory

y in bounds

0 5 10 15 20 25 30

t (s)

�1.0

�0.5

0.0

0.5

1.0

u
[t
]

Input u[t]

Filtered

Nominal

Fig. 6. Safe trajectory (top) and input (bottom) for a nominal input of
û[t] = �0.3 cos ⇡

30 t+ 0.2 and discretization step of �t = 0.25.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a method for maintaining a
STL safety specification at each time step of a discrete-time
control system using a runtime assurance mechanism that
filters nominal inputs by solving a MICP. The specification
is assumed to have a finite horizon so that its satisfaction
at a particular time step only depends on a finite number of
future steps. The constraints in the MICP ensure satisfaction
of the specification at past, present, and future steps and
include necessary conditions for persistent safety in order to
always guarantee feasibilty. Thus, our method is both sound
and complete. Future work will explore allowing bounded
uncertainty in the control system.

REFERENCES

[1] C. Baier and J. Katoen, Principles of model checking. MIT press,
2008.

[2] K. Hobbs, M. Mote, M. Abate, S. Coogan, and E. Feron,
“Run time assurance for safety-critical systems: An introduction
to safety filtering approaches for complex control systems,”
arXiv preprint arXiv:2110.03506, 2021. [Online]. Available: https:
//arxiv.org/pdf/2110.03506.pdf

[3] J. G. Rivera and A. A. Danylyszyn, Formalizing the uni-processor
simplex architecture. Citeseer, 1995.

[4] L. Wang, A. Ames, and M. Egerstedt, “Safety barrier certificates for
collisions-free multirobot systems,” IEEE Transactions on Robotics,
vol. 33, no. 3, pp. 661–674, 2017.

[5] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876,
2016.

[6] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath,
and P. Tabuada, “Control barrier functions: Theory and applications,”
in 2019 18th European control conference (ECC). IEEE, 2019, pp.
3420–3431.

[7] C. Belta, B. Yordanov, and E. Gol, Formal methods for discrete-time
dynamical systems. Springer, 2017, vol. 15.

[8] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over
real-valued signals,” in International Conference on Formal Modeling
and Analysis of Timed Systems. Springer, 2010, pp. 92–106.

[9] C. Belta and S. Sadraddini, “Formal methods for control synthesis:
An optimization perspective,” Annual Review of Control, Robotics,
and Autonomous Systems, vol. 2, pp. 115–140, 2019.

[10] A. Donzé, “Breach, a toolbox for verification and parameter synthesis
of hybrid systems,” in International Conference on Computer Aided
Verification. Springer, 2010, pp. 167–170.

[11] J. Deshmukh, A. Donzé, S. Ghosh, X. Jin, G. Juniwal, and S. Seshia,
“Robust online monitoring of signal temporal logic,” Formal Methods
in System Design, vol. 51, no. 1, pp. 5–30, 2017.

[12] K. Leung, N. Aréchiga, and M. Pavone, “Back-propagation through
signal temporal logic specifications: Infusing logical structure into
gradient-based methods,” in International Workshop on the Algorith-
mic Foundations of Robotics. Springer, 2020, pp. 432–449.

[13] Y. Gilpin, V. Kurtz, and H. Lin, “A smooth robustness measure of
signal temporal logic for symbolic control,” IEEE Control Systems
Letters, vol. 5, no. 1, pp. 241–246, 2020.

[14] V. Kurtz and H. Lin, “Mixed-integer programming for signal temporal
logic with fewer binary variables,” IEEE Control Systems Letters,
vol. 6, pp. 2635–2640, 2022.

[15] A. Dokhanchi, B. Hoxha, and G. Fainekos, “On-line monitoring for
temporal logic robustness,” in International Conference on Runtime
Verification. Springer, 2014, pp. 231–246.

[16] D. Ničković and T. Yamaguchi, “Rtamt: Online robustness monitors
from stl,” in International Symposium on Automated Technology for
Verification and Analysis. Springer, 2020, pp. 564–571.

[17] E. A. Gol, “Efficient online monitoring and formula synthesis with
past stl,” in 2018 5th International Conference on Control, Decision
and Information Technologies (CoDIT). IEEE, 2018, pp. 916–921.

[18] O. Maler and D. Nickovic, “Monitoring temporal properties of contin-
uous signals,” in Formal Techniques, Modelling and Analysis of Timed
and Fault-Tolerant Systems. Springer, 2004, pp. 152–166.

[19] E. Bartocci, J. Deshmukh, A. Donzé, G. Fainekos, O. Maler,
D. Ničković, and S. Sankaranarayanan, “Specification-based mon-
itoring of cyber-physical systems: a survey on theory, tools and
applications,” in Lectures on Runtime Verification. Springer, 2018,
pp. 135–175.

[20] S. Sadraddini and C. Belta, “Formal synthesis of control strategies for
positive monotone systems,” IEEE Transactions on Automatic Control,
vol. 64, no. 2, pp. 480–495, 2018.

[21] ——, “Robust temporal logic model predictive control,” in 2015
53rd Annual Allerton Conference on Communication, Control, and
Computing (Allerton), 2015, pp. 772–779.

[22] F. Borrelli, A. Bemporad, and M. Morari, Predictive control for linear
and hybrid systems. Cambridge University Press, 2017.

[23] V. Raman, A. Donzé, M. Maasoumy, R. Murray, A. Sangiovanni-
Vincentelli, and S. Seshia, “Model predictive control with signal
temporal logic specifications,” in 53rd IEEE Conference on Decision
and Control. IEEE, 2014, pp. 81–87.

https://arxiv.org/pdf/2110.03506.pdf
https://arxiv.org/pdf/2110.03506.pdf

	Introduction
	Signal Temporal Logic Preliminaries
	Problem Formulation
	Sliding Window Control Solution
	Implementation as a Mixed-Integer Convex Program
	Case Study
	Conclusion and Future Work
	References

