
Interval Signal Temporal Logic for Robust Optimal Control

Luke Baird and Samuel Coogan

Abstract— We propose a robust optimal control strategy for

linear systems subject to bounded disturbances constrained to

satisfy a Signal Temporal Logic (STL) formula with uncertain

predicates. We encode such constraints using Interval STL

(I-STL), an extension of STL to interval signals and predicates

that accommodates efficient numerical implementations for

verification and synthesis using interval arithmetic methods.

Given an I-STL constraint, a quadratic cost function, and a

bounded hyper-rectangular disturbance set, we construct a sec-

ond robust optimal control problem using an embedding system

with double the state dimension and the same cost function

such that a solution to this second problem is feasible for the

original problem. Moreover, owing to the numerical efficiencies

of I-STL and the embedding, the computational complexity of

this problem is, at worst, approximately equivalent to solving

a non-robust optimal STL synthesis problem with double the

state dimension, and we solve this problem as a mixed-integer

quadratic program. We present a case study of a miniature

blimp modeled as a 12-dimensional linear system subject to

disturbances and tasked with a mission specified in I-STL with

multiple nested temporal operators.

I. INTRODUCTION

Robust optimal control seeks solutions to control problems
while minimizing a cost in the presence of disturbances and
constraints [1] and encompasses many engineering problems.
Mature methods exist for solving such problems both online
and offline [1]–[3]. However, as systems and specifications
become increasingly complex, it becomes challenging to
represent desired or allowed behavior with an explicit set
constraint on the state and control. For instance, suppose
that a drone must visit a charging station every twenty
minutes while completing a mission. Instead, such time-
varying constraints are naturally represented using Signal
Temporal Logic (STL).

STL is a language for encoding high-level, temporally rich
behavioral specifications [4]. STL links functions of state,
called predicates, with Boolean and temporal operators and is
equipped with both logical semantics and quantitative seman-
tics with a robustness metric. Synthesizing control strategies
to satisfy STL constraints has been studied from multiple
vantage points [5] including gradient methods [6], mixed-
integer linear programs [7], [8], control barrier function
approximations [9], learning [10], and non-convex smooth
approximation algorithms [11]. Notably, it is known that
a sound and complete encoding for linear systems with
convex predicates can be achieved by a mixed-integer convex
program [7], [8]. To improve computational tractability, it

Luke Baird and Samuel Coogan are with the School of Electrical and
Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30318,
USA {lbaird38,sam.coogan}@gatech.edu. S. Coogan is
also with the School of Civil and Environmental Engineering.

is possible to limit the space of valid STL formulas to a
fragment of the language space [6], [9] or to introduce con-
servatism by considering only locally optimal solutions [11].

In a traditional robust optimal control problem, there
are two primary sources of uncertainty: uncertainty in the
dynamics and uncertainty in the constraints. Both types of
uncertainty may be handled by constraint tightening for
the worst-case realization of the uncertainty [1]. However,
to accommodate uncertain STL constraints with uncertain
dynamics, direct constraint tightening is not straightforward
due to the time-varying and state-dependent nature of the
specification. For instance, the worst-case realization at some
time k may depend on the worst-case realization at time k�1,
or two different portions of the specification may have com-
peting and different worst-case realizations of uncertainty.

For optimal control synthesis against STL specifications,
there are several approaches for accommodating uncertainty
in the state [5], [12]–[14]. In [12], a probabilistic extension
of STL is introduced to handle probabilistic uncertainty in
the state, but it cannot handle uncertainty in the predicates
themselves. In [13], [15], given a polytopic disturbance in the
system dynamics, a model predictive control approach is pro-
posed using a slack variable and the positive normal form of
the STL formula. The papers propose enforcing non-negative
robustness on the lower-left corner of a hyper-rectangular
over-approximation of the uncertain system. However, this
method scales poorly with state and disturbance dimension.
Moreover, to our knowledge, no prior work accommodates
uncertainty in the predicates or STL formula construction
itself.

To overcome these limitations, we propose to use Interval
STL (I-STL), introduced in [16], to model uncertainty in
the specification and accommodate uncertainty in dynamics.
I-STL is an interval-valued extension of STL that naturally
handles uncertain predicates and interval-valued signals us-
ing natural inclusion functions recursively in its definition,
leading to a sound over-approximation of the true worst-case
STL robustness. The syntax and semantics of I-STL are a
natural interval extension of STL, and thus I-STL retains the
intuitive appeal of STL. Moreover, algorithms for verification
and synthesis are extended from STL in a computationally
efficient and sound way by using mature interval arithmetic
methods [17], [18]. In particular, [16] presented a compu-
tational package for I-STL by extending stlpy [7] using
the npinterval implementation of interval arithmetic [17]
that was demonstrated on a verification example and a simple
proof-of-concept control synthesis problem.

In this paper, we present a framework for robust optimal
control synthesis of linear systems subject to bounded dis-

turbances and constrained to satisfy an I-STL specification.
To avoid the computational explosion that occurs when
computing reachable tubes, and because I-STL is evaluated
over interval-valued signals, we embed the system into a new
system with twice the state space dimension such that hyper-
rectangular reachable sets of the original system are obtained
from a single trajectory of the embedding system [19]. We
then construct a new optimal control problem using the
embedding system that is cast as a mixed integer quadratic
program using the approaches of [16]. Owing to the numer-
ical efficiencies of I-STL and the embedding, the computa-
tional complexity of this problem is, at worst, approximately
equivalent to solving a non-robust optimal STL synthesis
problem with double the state dimension. We demonstrate
our approach on a case study of a miniature blimp as a 12-
dimensional linear system subject to disturbances.

This paper is outlined as follows. Section II presents
notation and I-STL semantics. Section III formalizes the
optimal control problem that this paper addresses. Section
IV provides the theory used to solve this problem while
providing formal guarantees. A simulated miniature blimp
case study is presented in Section V along with a discussion
of the empirical computational burden of our approach.
Section VII concludes the paper.

II. PRELIMINARIES

A. Notation
Let IRn denote the set of all intervals on Rn. We denote an

interval [x] 2 IRn with [x] := [x, x]. We denote the standard
partial order on Rn by , that is, for x, y 2 Rn, x y if
and only if xi yi for all i 2 {1, . . . , n}. Denote a signal
as x : N! Rn and an interval signal as [x] : N! IRn. For
two sets X, Y ⇢ Rn, let denote the Pontryagin difference,
X Y = {x 2 X : x + y 2 X, 8y 2 Y }.

B. Interval Signal Temporal Logic
I-STL was introduced recently as an interval extension of

signal temporal logic [16]. The syntax, logical semantics, and
quantitative semantics of I-STL, reviewed below, are natural
interval interpretations of their counterpart for (non-interval)
STL [4]. I-STL requires a set of interval predicate functions
I, which are interval-valued functions of the state, assumed
to be in Rn, or intervals of the state, that is, M 2 I is a
map M : IRn ! IR. For example, in practice, a predicate
function is commonly obtained as an inclusion function [20]
that gives guaranteed interval overbounds of a continuous
function of state.

Definition 1 (I-STL Syntax [16]). Given a set I of interval
predicate functions, I-STL syntax is defined by

' , (M([x]) ✓ [0,1]) | ¬' | ' _ | 'U[t1,t2] (1)

for M 2 I.

The I-STL quantitative and logical semantics follow.

Definition 2 (I-STL Quantitative Semantics [16]). The in-
terval robustness [⇢]' of an I-STL specification ' evaluated

over an interval signal [x] at time step t 2 N is calculated
recursively using natural inclusion functions [18] as

[⇢]⇧([x], t) = M([x](t)), ⇧ = (M([x]) ✓ [0,1])

[⇢]¬'([x], t) = �[⇢]'([x], t)

[⇢]'^ ([x], t) = [min]
�
[⇢]'([x], t), [⇢] ([x], t)

�

[⇢]'_ ([x], t) = [max]
�
[⇢]'([x], t), [⇢] ([x], t)

�

[⇢]⇤[t1,t2]'([x], t) = [min]
t02[t+t1,t+t2]

�
[⇢]'([x], t0)

�

[⇢]⌃[t1,t2]'([x], t) = [max]
t02[t+t1,t+t2]

�
[⇢]'([x], t0)

�

[⇢]'U[t1,t2] ([x], t) =

[max]
t02[t+t1,t+t2]

[min]

[⇢]'([x], t0), [min]

t002[t+t1,t0]

�
[⇢] ([x], t00)

�
!

.

(2)

If the satisfaction of an I-STL specification can be com-
pletely determined by the values of the interval signal x over
the first N time steps, we say that the I-STL specification
has a finite horizon with horizon N . See [8], [21] for details
on computing horizon lengths.

Definition 3 (I-STL Three-Valued Logical Semantics [16]).
The truth-value of I-STL formula ' evaluated over interval
signal [x] is denoted

⇥
[x] |= '

⇤
and is given by

⇥
[x] |= '

⇤
=

8
><

>:

TRUE if [⇢]'([x], 0) ✓ [0,1]

FALSE if [⇢]'([x], 0) ✓ [�1, 0)

UNDEF else.
(3)

When x is understood to be a signal of singleton sets, we
write the above as

⇥
x |= '

⇤
.

Definition 4 (Safety). We say that an interval signal [x] is
safe with respect to I-STL formula ' if

⇥
[x] |= '

⇤
= TRUE.

III. PROBLEM FORMULATION

Let
xk+1 = Axk + Buk + Gwk (4)

be a linear time-invariant dynamical system with, at time
k, state xk 2 Rn, control input uk, and disturbance wk. Let
w 2W ✓ IRq lie in an hyper-rectangle, and let u 2 U ✓ Rm

lie in a polytope. Define the signal x as the sequence of states
{x0, x1, . . . } with xk 2 Rn and signal u as the sequence
of inputs {u0, u1, . . . } with uk 2 Rm. Thus, x(k) = xk

and u(k) = uk. Unlike STL, I-STL handles uncertainty in
the predicates themselves. Therefore, we first formulate the
optimal control problem with an I-STL formula to permit
uncertain predicates and then use I-STL with an interval
signal to handle uncertainty. For clarity, we formulate our
problem using a nominal cost—the cost function as if there
were no disturbances, as defined in [1, Equation 15.6].

Problem Statement. Given a finite-horizon I-STL formula
', initial state x̃, and a quadratic nominal cost function J0 :

RnN ⇥ UN ! R, solve the optimal control problem

min
u2UN

J0(x̂,u) (5)

s.t. xk+1 = Axk + Buk + Gwk

x̂k+1 = Ax̂k + Buk

uk 2 U
⇥
x |= '

⇤
= TRUE

u 2 UN x0 = x̃ 8wk,2W

assuming that a feasible solution exists. That is, we want to
find a sequence of control inputs uk minimizing J0 where
⇢'(x, 0) � 0 for all wk 2W .

IV. I-STL EMBEDDING SOLUTION

A. Embedding and Interval STL Reformulation

To solve our proposed problem, we use mixed monotone
systems theory [19] to derive a sound lower and upper bound
on the system state subject to uncertain dynamics. Then,
by converting the dynamics to interval dynamics, we apply
I-STL [16] to construct a sound over-approximation of the
true interval robustness.

Let A 2 Rn⇥n have entries {aij}. Then, A+ has entries
a+
ij = max{0, aij} and A� has entries a�

ij = min{0, aij}.
We note that (4) has a decomposition function [19] given by

xk+1

xk+1

�
=

A+ A�

A� A+

�
xk

xk

�
+

B
B

�
uk +

G+ G�

G� G+

�
wk

wk

�

(6)
By re-casting the optimal control problem with mixed

monotonicity and I-STL, we pose a solution to problem (5)
by solving the optimal control program,

min
u2UN

J(x̂,u) (7)

s.t. (6) uk 2 U wk 2 [w]
⇥
[x] |= '

⇤
= TRUE,

where as before, x̂ is the trajectory corresponding to the
nominal system dynamics in absence of disturbances. The
explicit mixed-integer encoding of I-STL is given in [7], [16].

B. Soundness of the Optimal Control Problem

Our main theoretical contribution follows from the combi-
nation of the over-approximation from I-STL and the over-
approximation from the embedding system dynamics.

Theorem 1 (Soundness of optimal control problem). Let u
be a solution to (7). Then, u is feasible for (5).

Proof. Let [x] be the interval state in the embedding dynam-
ics (6) and let x be the state in the original dynamics (4).
It suffices to show that if

⇥
[x] |= '

⇤
= TRUE, then⇥

x |= '
⇤

= TRUE. Assume
⇥
[x] |= '

⇤
= TRUE. We

know that x 2 [x] as the dynamics are mixed monotone
with respect to the decomposition function d(x, w, x̂, ŵ) =
A+x + G+w + A�x̂ + G�ŵ [19, Example 9]. We do not
include u as there is no uncertainty associated with it—it is
a singleton. Furthermore, by [16, Theorem 1], we know that
⇢'(x, 0) ✓ ⇢'([x], 0). Therefore, ⇢'(x, 0) � ⇢'([x], 0) and
thus

⇥
x |= '

⇤
= TRUE. ⌅

V. CASE STUDY - MINIATURE AUTONOMOUS BLIMP

In this section, we present a case study of a a miniature
blimp modeled as a 12- dimensional linear system subject to
disturbances that is tasked with a mission specified in I-STL
with multiple nested temporal operators. We use the compu-
tational package for I-STL presented in [16] and compare the
computation time of our method to three restricted cases that
removes sources of uncertainty: the first case removes the
uncertainty in the I-STL predicates, the second case removes
the disturbances in the dynamics, and the third case removes
both sources of uncertainty. This third case reduces to the
stlpy control synthesis method [7]. All experiments are
performed on a computer with a Intel Xeon Gold 6230 CPU
running Kubuntu 22.041.

A. Blimp Model and I-STL Specification

The model for the blimp is derived from 6-DOF rigid-
body kinematics [22], with numerical parameters found in
the papers [23], [24], linearized about the hover position and
discretized in time. The blimp has an undermounted gondola
with four lateral and six vertical fans, enabling holonomic
control. The four inputs available are thus fx, fy, fz , and ⌧z .
The resulting model is

xk+1 = eA�txk +

Z �t

0
eA⌧Bd⌧uk + G�twk (8)

where

A =

A1 A2

I6⇥6 06⇥6

�
,

A1 =

2

4
�.073 0 0 0 .007 0

0 �.073 0 �.007 0 0
0 0 �.268 0 0 0
0 �.208 0 �.189 0 0

.208 0 0 0 �.189 0
0 0 0 0 0 �.168

3

5,

A2 =

2

4
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 �20.4 0
0 0 0 0 0 �20.4
0 0 0 0 0 0

3

5,

B =

2

64

5.83 0 0 0
0 5.83 0 0
0 0 5.57 0
0 20.62 0 0

20.62 0 0 0
0 0 0 171.8

04⇥6

3

75, G =

I6⇥6

06⇥6

�
,

with �t = 0.25s, xk 2 R12, uk 2 [�0.6, 0.6]4 ⇢ R4, and
wk 2 [�.0002, .0002]6 ⇢ R6 at each time step k. The first
six elements of the state x are linear and angular velocity
states, and the last six states are the world-frame position
and orientation as Euler angles. The disturbance lies in an
interval in the velocity states.

Consider a scenario where we wish to service a target
location with the blimp while periodically visiting charging
stations and then returning to the starting location. Specifi-
cally, starting in region B we require that the blimp reaches A
within 6 seconds and remains there for 1.5 seconds. However,
the blimp may not spend more than 3 seconds in region
B to make way for, e.g., other actors to visit the region.

1The code used to generate figures in this paper may be found at
https://github.com/gtfactslab/Baird CDC2024/

�� � � � 	
 � �
�����

��

�

�

�

	

�

�

��
��

�

�

�

�

�

�

������������

Fig. 1. Top-down view of the blimp mission setup. The blimp must reach
the uncertain region A within 6 seconds, remain there for 1.5 seconds but
not more than 3 seconds, and then return to region B within 20 seconds
of the mission start time. It must visit a charging station C within the time
intervals [0, 6], [7, 12], and [13, 20].

Additionally, the blimp must visit a charging station every 6
seconds.

Let p 2 R2 be the horizontal planar position coordinates
of the blimp. Define region A as a square at (5, 5) with
an uncertain but bounded width in the interval [0.5, 0.7]m.
Choose B as a 0.7m-wide square at (0, 0). The charging
stations C are located at (1, 4), (4.3, 3), and (3, 1), drawn
as a triangle, rectangle, and triangle, respectively. This is
illustrated in Figure 1. This mission specification is encoded
with the following STL formula:

' |=⌃[0, 6
�t]

⇤[0, 1.5�t]
(p 2 A) ^ (p /2 A|⌃[0, 3

�t]
p /2 A)

⌃[19
�t ,

20
�t]

(p 2 B) ^ ⌃[0, 6
�t]

(p 2 C)

^ ⌃[7
�t ,

12
�t]

(p 2 C) ^ ⌃[13
�t ,

20
�t]

(p 2 C).

(9)

We choose
P

k x̂>
k Qx̂k + u>

k Ruk, with Q =
diag(I3⇥3, 09⇥9) to minimize the velocity states and
R = I4⇥4, where x̂ is the nominal system state.

B. Stability in the Embedding Space via Feedback Control
and Transformation

To achieve a feasible solution to our problem, we need
to ensure that the uncertainty bounds do not grow expo-
nentially, otherwise they will become too large over a 20
second horizon. The linear system contains double integrator
chains from velocity to position, and thus is only marginally
stable. Borrowing from the tube model predictive control
literature [2], we first define the nominal system dynamics,
x̂k+1 = Ax̂k+Bûk. Then, we introduce a feedback matrix K
to stabilize the system, requiring that uk = K(xk� x̂k)+ ûk

where the input to the nominal system ûk is a feed-forward
term. Next, we apply this input to the error dynamics
equation with ek := xk � x̂k. Define AK := A + BK.
Solving for the error dynamics gives ek+1 = AKek + Gwk.

However, due to the interval over-approximations and
interactions, the embedding system is unstable. To achieve
stability, we additionally apply a transformation matrix T
derived from the eigen decomposition before applying our

feedback matrix [25]. Thus, the reachable set of the embed-
ding system converges to a bounded set, reminiscent of linear
tube MPC [2].

Define ⇠ := Tx, " := Te, and AT,K = TAKT�1. The
nominal dynamics become ⇠̂k+1 = AT,K ⇠̂k +TBûk and the
error dynamics become

"k+1 = AT,K"k + TGwk. (10)

The I-STL formula robustness [⇢]' is a function of the
original coordinates x. Although it is possible to create a
new formula in ⇠ coordinates '⇠ by applying T�1 to each
predicate in ', we instead add x := T�1⌘ as a constraint in
our optimization program and use ' for computational rea-
sons: because the predicates define regions in the horizontal
plane, all but two coordinates of linear predicates of the form
{x : [↵]>x [�]} are zero, and thus require fewer binary
variables.

Now, we finally construct the interval version of our
optimization problem,

min
û0,...,ûN�1

X

k

x̂>
k Qx̂k + u>

k Ruk

s.t. uk = ûk + K(⇠k � ⇠̂k)
⇠̂k+1 = AT,K ⇠̂k + TBûk
"k+1

"k+1

�
=

A+

T,K A�
T,K

A�
T,K A+

T,K

�
"k
"k

�

+

(TG)+ (TG)�

(TG)� (TG)+

�
w
w

�

[⇠] = ⇠̂ + ["] [x] = T�1[⇠]
⇥
[x] |= '

⇤
= TRUE uk 2 U

(11)

where N = 20/�t = 80. We choose an initial condition
x̂0 = [0 0 0 0 0 0 0 0 �1.5 0 0 0]> to place the blimp
at rest 1.5m off the ground, noting that the blimp is in a
North-East-Down frame [23].

STL constraints may be soundly written as mixed-integer
linear constraints [7], [8]. Building off the original stlpy
implementation [7], the I-STL formulation is applied to
convert the I-STL safety constraints to mixed-integer linear
constraints [16]. We use the Gurobi 11.0.1 solver2.

C. Results of the I-STL Control Synthesis
The implementation of our program directly tran-

scribes (11) as an optimization problem in Gurobi but leads
to both extra continuous and binary variables. However,
Gurobi performs a presolve step that reliably removes a large
number of redundant variables. The optimization program
in Gurobi originally contains 187 308 continuous variables
and 2 862 binary variables, but after Gurobi performs a
presolve step there are 16 033 continuous and 2 862 binary
variables remaining. The program takes 126.1s to solve. The
resulting trajectory has a robustness for ' in the interval
[⇢]'([x], 0) = [0.0, 0.098], while the nominal trajectory x̂
has interval robustness [⇢]'(x̂, 0) = [0.098, 0.098]. Note that

2https://www.gurobi.com/

0 1 2 3 4 5

x (m)

0

1

2

3

4

5
y

(m
)

Blimp horizontal plane trajectory with interval bounds

Fig. 2. Solution to the robust optimal control problem. The horizontal
planar trajectory of the blimp obeying the specification ' is plotted. The
magenta rectangles represent the uncertainty intervals at each time step. The
blimp starts at (0, 0) and is tasked with satisfying (11).

4.4 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2

x (m)

4.2

4.4

4.6

4.8

5.0

5.2

y
(m

)

Zoomed-in trajectory

Fig. 3. Close-up view of the trajectory near A. The upper and lower green
regions are the first box inside A and the first box outside A, respectively,
for any realization of A. Depending on the realization of the disturbance
and specification, the blimp is within A for between 1.75 and 3.0 seconds,
depending on the realization of A. The first green box corresponds to time
6.0s, and the second green box corresponds to time 8.5s. Thus, this plot
demonstrates that the trajectory satisfies the first part of '.

the interval robustness comes from the uncertain predicates
of A for the nominal trajectory, while the overall interval
robustness represents the worst-case robustness depending
on the uncertain predicate and disturbance. Figure 2 plots
the horizontal planar trajectory along with the uncertainty
from the mixed-monotone embedding system. Figure 3 is an
expanded view of region A, showing that the I-STL formula
component regarding A is satisfied. Specifically, we note that
the blimp is inside A for at least 1.75 seconds, but not more
than 3.0 seconds for the respective worst-case disturbance
and realization of A. The time from when the blimp is
guaranteed to lie inside A to when it is guaranteed to leave
A is 2.5 seconds.

Although the program takes a long time to solve due to
the exponential complexity of mixed-integer programs, the
control solution is computed offline. Furthermore, we have
a 12-dimensional model with a 24-dimensional embedding

system considering a total of 80 time steps with a compli-
cated I-STL formula ' containing nested temporal operators
and uncertain predicates, leading to a relatively complex
mixed-integer quadratic program.

D. Comparison to Control without I-STL or Disturbances
In this section, we offer a comparison regarding con-

servatism and implementation details to competing robust
linear optimal control methods. Specifically, we explore the
conservatism introduced by I-STL coupled with the conser-
vatism introduced by mixed-monotonicity with polytopic set
computations.

We note that it is not immediately obvious how to trans-
form I-STL constraints into a traditional linear robust optimal
control setting. One standard approach is, given a sequence
of constraint sets X ✓ Rn⇥N enforcing an STL specification,
one can write xk 2 Xk at each time step along the horizon.
For each time step k, one can compute a disturbance set
Sk [1]. Then, the tightened constraints become X̂k = Xk
Sk. For invariance conditions such as “always avoid an
obstacle,” it is apparent that a constraint tightening approach
is to simply dilate the obstacle by a margin dependent on
k. However, a time-dependent constraint with an uncertain
I-STL predicate such as the one proposed for the target set
A requires a careful analysis of the worst-case realization of
the uncertain predicate.

Similar to [13], one method is to take each predicate ⇡j
and consider the sets ⇧ = {↵>x �}, representing the
satisfying set of a predicate. One can compute the exact dis-
turbance polytope Sk by propagating the disturbance through
the dynamics Minkowski summing with Sk�1. Then, one can
tighten the constraint by computing ⇧ Sk. However, the
number of vertices grows to an intractable number, especially
for integer programming. Therefore, one can instead tighten
the constraints by computing ⇧ Sk, where Sk is a hyper-
rectangle over-approximation of Sk.

This approach struggles to deal with the portion of '
that require competing conservative estimates: eventually
reaching A would shrink A in the worst case, while spending
no more than 3 seconds in A would dilate A in the worst
case. The paper [13] constructs a secondary signal equal to
the negation of the first signal. Then, the same constraint
tightening can be applied to both predicates, but one predi-
cate monitors the original signal while the second monitors
the secondary signal. However, this can artificially introduce
model infeasibility. One can alleviate this by introducing a
slack variable [13], but our method does not require this extra
ingredient. Furthermore, by leveraging interval arithmetic
afforded by npinterval, the implementation of this does
not require the construction of a secondary signal. The
proper tightening of the time-varying constraints are handled
natively with natural inclusion functions [17], [18].

Although we mitigate the vertex explosion problem via
mixed-monotonicity, there are other methods for handling
this problem in the literature. For instance, one could use
zonotopic [26] approximations and then take bounding boxes
as needed to keep the program feasible [27], [28].

TABLE I
COMPUTE TIME AND NUMBER OF VARIABLES AFTER PRESOLVE

Cont. Var. Bin. Var. Nom. Cost Mean Time
All uncertainty 16 033 2 862 24.13 241.6s
No interval A 16 033 2 862 16.79 225.6s

No w 15 887 2 862 15.03 183.8s
No int. A or w 1 426 2 439 11.89 112.7s

To verify safety, consider the error dynamics equation in
the transformed coordinate space (10). Instead of performing
a mixed monotone step, we can instead compute polytopic
reachable sets given wk 2 [w, w]. Then, we can compute
the true lower bound on the robustness by solving a separate
mixed-integer linear program, enumerating the vertices on
the disturbance sets generated by mixed-monotonicity. We
report that the true ⇢ from this computation is 0.0.

We compare the computation time of our method for four
scenarios in Table I. For each scenario, we uniformly sample
an initial condition from a 0.2m-wide box located at the
origin. Then, we report the mean time over 10 solutions to
mitigate variability in numerical solver times from Gurobi.
The costs are reported for x̂0 = 0 except for the z position
at �1.5m. First, we have our results from above. Then, we
remove the uncertainty in the predicates defining A. Next,
we remove the disturbance but keep the uncertainty in the
predicate. Finally, we reduce the problem to no disturbance
and no uncertainty, which is equivalent to an STL control
synthesis problem from stlpy [7]. We note that the last
scenario does not use embedding dynamics and thus is
a significantly smaller optimization problem, as shown in
Table I. Furthermore, we note empirically that the average
time for the no uncertainty case is roughly twice the average
time of the predicate and dynamics uncertainty case.

VI. CONCLUSION

In this paper we demonstrated a sound method of solv-
ing a linear robust optimal control problem with interval
disturbances and an I-STL constraint containing uncertain
predicates. By applying I-STL and mixed monotone system
theory, we soundly over-bound the dynamics and the inter-
val robustness. Our program is implemented as a mixed-
integer quadratic program and we demonstrated it with a
12-dimensional model of a miniature blimp. In this paper, we
focused on the single shot optimal problem, but this could
be used in a model predictive control scheme similar to [8],
[13]. Future work could investigate extending this method for
a model predictive control or runtime assurance framework
and could explore alternative reachability methods including
ellipsoidal or zonotopic methods.

REFERENCES

[1] F. Borrelli, A. Bemporad, and M. Morari, Predictive control for linear
and hybrid systems. Cambridge University Press, 2017.

[2] J. Rawlings, D. Mayne, and M. Diehl, Model Predictive Control:
Theory, Computation, and Design. Nob Hill Publishing, LLC, 2022.

[3] S. Chen, V. Preciado, M. Manfred, and N. Matni, “Robust model
predictive control with polytopic model uncertainty through system
level synthesis,” Automatica, vol. 162, p. 111431, 2024.

[4] O. Maler and D. Nickovic, “Monitoring temporal properties of contin-
uous signals,” in Formal Techniques, Modelling and Analysis of Timed
and Fault-Tolerant Systems. Springer, 2004, pp. 152–166.

[5] C. Belta and S. Sadraddini, “Formal methods for control synthesis:
An optimization perspective,” Annual Review of Control, Robotics,
and Autonomous Systems, vol. 2, pp. 115–140, 2019.

[6] K. Leung, N. Aréchiga, and M. Pavone, “Back-propagation through
signal temporal logic specifications: Infusing logical structure into
gradient-based methods,” in International Workshop on the Algorith-
mic Foundations of Robotics. Springer, 2020, pp. 432–449.

[7] V. Kurtz and H. Lin, “Mixed-integer programming for signal temporal
logic with fewer binary variables,” IEEE Control Systems Letters,
vol. 6, pp. 2635–2640, 2022.

[8] L. Baird and S. Coogan, “Runtime assurance from signal temporal
logic safety specifications,” in American Control Conference (ACC),
2023, pp. 3535–3540.

[9] L. Lindemann and D. V. Dimarogonas, “Control barrier functions for
signal temporal logic tasks,” IEEE control systems letters, vol. 3, no. 1,
pp. 96–101, 2018.

[10] K. Wabersich and M. Zeilinger, “Nonlinear learning-based model
predictive control supporting state and input dependent model uncer-
tainty estimates,” international journal of robust and nonlinear control,
vol. 31, no. 18, pp. 8897–8915, 2021.

[11] Y. Gilpin, V. Kurtz, and H. Lin, “A smooth robustness measure of
signal temporal logic for symbolic control,” IEEE Control Systems
Letters, vol. 5, no. 1, pp. 241–246, 2020.

[12] D. Sadigh and A. Kapoor, “Safe control under uncertainty with prob-
abilistic signal temporal logic,” in Proceedings of Robotics: Science
and Systems XII, 2016.

[13] S. Sadraddini and C. Belta, “Robust temporal logic model predictive
control,” in 2015 53rd Annual Allerton Conference on Communication,
Control, and Computing (Allerton), 2015, pp. 772–779.

[14] S. Farahani, V. Raman, and R. Murray, “Robust model predictive
control for signal temporal logic synthesis,” IFAC-PapersOnLine,
vol. 48, no. 27, pp. 323–328, 2015.

[15] S. Sadraddini and C. Belta, “Formal synthesis of control strategies for
positive monotone systems,” IEEE Transactions on Automatic Control,
vol. 64, no. 2, pp. 480–495, 2018.

[16] L. Baird, A. Harapanahalli, and S. Coogan, “Interval signal temporal
logic from natural inclusion functions,” IEEE Control Systems Letters,
2023.

[17] A. Harapanahalli, S. Jafarpour, and S. Coogan, “A toolbox for fast
interval arithmetic in numpy with an application to formal verification
of neural network controlled systems,” in ICML 2023 Workshop on
Formal Verification of Machine Learning, 2023.

[18] L. Jaulin, M. Kieffer, D. Olivier, and E. Walter, Applied Interval
analysis. Springer, 2001.

[19] S. Coogan, “Mixed monotonicity for reachability and safety in dy-
namical systems,” in 2020 59th IEEE Conference on Decision and
Control (CDC), 2020, pp. 5074–5085.

[20] S. Walcher, “On cooperative systems with respect to arbitrary order-
ings,” Journal of Mathematical Analysis and Applications, vol. 263,
no. 2, pp. 543–554, 2001.

[21] A. Dokhanchi, B. Hoxha, and G. Fainekos, “On-line monitoring for
temporal logic robustness,” in International Conference on Runtime
Verification. Springer, 2014, pp. 231–246.

[22] T. I. Fossen, Handbook of marine craft hydrodynamics and motion
control. John Wiley & Sons, 2011.

[23] Q. Tao, J. Wang, Z. Xu, T. X. Lin, Y. Yuan, and F. Zhang, “Swing-
reducing flight control system for an underactuated indoor minia-
ture autonomous blimp,” IEEE/ASME Transactions on Mechatronics,
vol. 26, no. 4, pp. 1895–1904, 2021.

[24] Q. Tao, J. Tan, J. Cha, Y. Yuan, and F. Zhang, “Modeling and control
of swing oscillation of underactuated indoor miniature autonomous
blimps,” Unmanned Systems, vol. 9, no. 01, pp. 73–86, 2021.

[25] M. Abate and S. Coogan, “Improving the fidelity of mixed-monotone
reachable set approximations via state transformations,” in American
Control Conference, 2021, pp. 4674–4679.

[26] A. Girard, “Reachability of uncertain linear systems using zonotopes,”
in International workshop on hybrid systems: Computation and con-
trol. Springer, 2005, pp. 291–305.

[27] S. Bak and P. S. Duggirala, “Hylaa: A tool for computing simulation-
equivalent reachability for linear systems,” in Proceedings of the
20th International Conference on Hybrid Systems: Computation and
Control, 2017, pp. 173–178.

[28] M. Althoff and D. Grebenyuk, “Implementation of interval arithmetic
in CORA 2016,” in Proc. of the 3rd International Workshop on Applied
Verification for Continuous and Hybrid Systems, 2016, pp. 91–105.

