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Abstract— This letter presents a method to mitigate the
risk of violation of a temporal logic specification. Given a
time-varying signal with interval-valued uncertainty at each
time step, we propose an optimization approach to identify
time instances for which a tighter uncertainty bound is
required to satisfy the specification, knowledge which can
be used to, e.g., focus sensing resources to strategically
reduce uncertainty. We demonstrate our method on a simu-
lated unmanned underwater vehicle where GPS calibration
is informed by the identified time instances. In contrast
to existing methods that solve an uncertainty-aware op-
timal control program with temporal logic mixed-integer
constraints, our proposed interval-tightening approach is
several orders of magnitude faster to compute. Addition-
ally, we survey methods to produce interval-valued uncer-
tainty, specifically how probabilistic bounds may translate
to confidence intervals about an entire signal.

Index Terms— Uncertain systems, Computational meth-
ods, Fault detection

I. INTRODUCTION

VERIFICATION of autonomous systems is critical to in-
corporating modern control techniques such as learning-

based controllers into safety-critical systems. Although perfect
performance is impossible to attain, an accurate estimate of
performance is informative to an operator about the reliability
of the system. That is, a real engineering system always incurs
some risk of failure. Risk estimation informs the operator of
the likelihood that remedial actions will be necessary and
the expected frequency and cost of failures. Additionally it
is useful to identify likely points of failure within a system.

The principle of focusing engineering effort on anticipated
failure points may be applied to the domain of formal ver-
ification for autonomous systems with safety encoded by
temporal logics. A large margin of safety does not necessarily
indicate success if the measurement of the relevant signal is
incorrect. On the other hand, a small margin of safety may be
sufficient if the signal trace is both precisely and accurately
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estimated. Temporal logics may be equipped with a quanti-
tative robustness measure providing a margin of satisfaction.
Analogously, this robustness is only immediately useful if the
signal against which a temporal logic formula is evaluated is
perfectly determined. It is helpful as a second-order notion
to consider the probability that the reported satisfaction or
violation of a temporal logic formula is correct. Additionally,
there exist scenarios where violation may be remedied by
changing the signal trace at a few points. For instance, if
precise position information at a specific point in time would
assure that an unmanned underwater vehicle (UUV) completes
its mission, this information can improve a resurfacing strategy
for GPS position recalibration.

In this work we consider a variant of Signal Temporal Logic
(STL) [1] termed Interval Signal Temporal Logic (I-STL) [2]
due to the innate margin of satisfaction present with its robust
semantics along with sound and efficient overapproximations
of interval-valued robustness. I-STL views satisfaction from
a worst-case perspective. If its robustness overapproximation
contains zero, it is unclear whether the specification will be
satisfied or not. Another perspective common in the literature
is that of probabilistic satisfaction. There are several variants
of STL that encode this, such as the paper [3] which incor-
porates the probability of satisfaction directly into the STL
syntax. Probabilistic confidence intervals about a signal may
be propagated through the syntax of STL using I-STL.

In this letter we use an arithmetic geometric mean (AGM)
approximation [4] of the min and max operators to compute
the gradient of robustness with respect to a signal. Although
there are several variants of differentiable robustness in the lit-
erature with advantages such as soundness [5] and resilience to
masking and locality [6], the AGM approximation is sufficient
for our purposes since we do not use it for verification. See [7]
for a survey of desirable properties of approximate robustness
measures for varied applied scenarios.

The work most similar to ours is [8] which uses a risk
measure on random variables that obeys axioms from [9].
The paper develops a notion of risk-tightened predicates
where predicate robustness is written as the sum of a zero-
mean random variable and its expectation. Then, robustness is
required to be greater than a risk threshold from the zero-mean
random variable in a control synthesis problem. Our method
is designed to complement the literature by approaching the
problem from a different standpoint, modifying an existing
risk-agnostic solution to avoid resolving an integer program.
In contrast, [8] resolves the solution in a risk-aware fashion.



The purpose of this letter is to characterize and mitigate
the risk of violating STL formulas in both a monitoring and
control synthesis framework using I-STL. Prior works using
I-STL treat uncertainty as bounded [10]. This letter is born out
of the observation that if either the interval bound is uncertain
or if zero lies strictly in the interval-valued robustness, then
satisfaction is undetermined. First, this letter surveys methods
of constructing confidence intervals about a signal. Second,
this letter presents a method to identify points of failure in
a signal, identifying the specific points in time when precise
knowledge of the signal is necessary to determine satisfaction
or violation. Given a trace with interval uncertainty, we com-
pute the interval robustness of the signal. Then, we propose
a tightening approach with either a gradient ascent/descent
approach or with a mixed-integer linear program (MILP) to
shrink the interval until zero no longer lies in the interval
using PyTeLo [11] and stlpy [12], both combined with
npinterval [13]. Finally, we provide a simulation of a
UUV scenario where this interval tightening strategy is used
to inform a resurfacing strategy for position estimation.

II. PRELIMINARY MATERIAL

A. Notation
Let N be the natural numbers. Let [x] = [x, x] where x, x →

Rn are the endpoints of an interval. We denote the space of
intervals in Rn by IRn ↑ R2n. Then, [x] → IRn or [x] ↓ Rn.
We denote a sequence with subscripts, x0:2 = {x0, x1, x2}.
Intervals are extended to functions by inclusion functions [14].

B. Interval Signal Temporal Logic
In STL, the robustness ωω of a specification ε evaluated

over a signal x at a time t is a scalar. We often assume
t = 0 and consider x → Rn→↑ω↑. By contrast, Interval Signal
Temporal Logic (I-STL) is evaluated over interval signals with
quantitative semantics that give an interval-valued robustness.
An I-STL specification ε is evaluated over a discrete-time
interval signal [x] → IR↑ω↑→n. Using the minimal inclusion
functions [min] and [max] given in [2, Proposition 1] we recall
the quantitative interval robustness semantics of I-STL.

Definition 1. (I-STL Quantitative Semantics) The interval
robustness [ω]ω of an I-STL specification ε evaluated over
an interval signal [x] at time step t is calculated recursively
using natural inclusion functions [14] as

[ω]!([x], t) = M([x]t), ! = (M([x], t) ↓ [0, ↔])

[ω]¬ω([x], t) = ↗[ω]ω([x], t)

[ω]ω↓ε([x], t) = [min]
(
[ω]ω([x], t), [ω]ε([x], t)

)

[ω]ω↔ε([x], t) = [max]
(
[ω]ω([x], t), [ω]ε([x], t)

)

[ω]↭[t1,t2]ω([x], t) = [min]
t→↗[t+t1,t+t2]

(
[ω]ω([x], t↘)

)

[ω]↫[t1,t2]ω([x], t) = [max]
t→↗[t+t1,t+t2]

(
[ω]ω([x], t↘)

)

[ω]ωU[t1,t2]ε([x], t)

= [max]
t→↗[t+t1,t+t2]

[min]

(
[ω]ω([x], t↘), [min]

t→→↗[t+t1,t→]

(
[ω]ε([x], t↘↘)

)
)

,

(1)

where M : IRn ↘ IR.

The horizon of an I-STL formula is the number of future
time steps needed to evaluate the robustness of a signal at
the current time step and is given in [1]. [x] |= ε means that
[x] satisfies ε at time 0 for any realization of ε or [x], e.g.,
ωω([x], 0) ≃ 0.

III. RISK ANALYSIS OF STL VIOLATION

In this section we survey ways of soundly handling un-
certain signals. We discuss propagating probabilistic bounds
on a signal through an STL formula, point-wise probabilistic
bounds, and limitations of these approaches. The fundamental
question we consider is: what happens when zero lies inside
of an interval-valued overapproximation of robustness?

An advantage of the interval-based approach is the ease
of implementation and computational efficiencies afforded by
I-STL. Risk encoded by intervals on state is easily propagated
through a specification without an increase in computation
time compared to propagating the nominal signal.

A natural way of defining risk is simply the probability of
violation of an I-STL formula.

Definition 2 (Risk). The risk of violation is P([x] ⇐|= ε).

This definition of risk shrouds the difficult portions of
the problem; namely, how to compute the aforementioned
probability. Often ωω([x], t) cannot be treated as a random
variable with a known distribution. Rather, information about
uncertainty in state or time is present from which risk of
violation must then be derived.

The paper [8] presents a systematic development of the
notion of risk using axioms applied first in the finance litera-
ture [9]. The paper provides desirable properties for a measure
of risk such that risk associated with individual predicates
and subformulae of an STL formula may be meaningfully
combined into a final measure of risk. In a sense, Definition 2
is a subset of the risk proposed in [8] in that the severity of
violating any given predicate is not encoded. In this letter, we
are concerned with a binary question of satisfaction.

Challenges arise from two scenarios. First, suppose that
P(x → [x]) = 1 ↗ ϑ with ϑ > 0, a natural case representing
a confidence interval. If this holds, then because [2] uses
natural inclusion functions yielding sound overapproximations
of robustness, we have that P(ω → [ω]) ≃ 1 ↗ ϑ. However,
constructing such confidence intervals along entire trajectories
is nontrivial and is often highly conservative. We note that the
conservatism from such methods motivates our approach, in
that we consider when such conservatism matters and pinch the
bounds at particular points instead of along an entire trajectory.
Conformal prediction [15], [16] and Gaussian processes [17,
Theorem 7] are two possible methods for constructing such
confidence intervals of trajectories. Conformal prediction con-
siders the question: given a calibration data set of trajectories,
what is the probability that a given trajectory lies within a
tube generated by the calibration data set? This entire tube
may be evaluated over an STL formula by evaluating the
vertices of a polytope along the STL formula, or using an
interval overapproximation. Gaussian processes can be used



to compute confidence intervals around uncertain trajectories
if the underlying statistics are estimable [18]. The paper [17]
presents a way to combine this with trajectory prediction from
mixed monotone systems theory to generate interval trajec-
tories are varying confidence levels. An alternative approach
from approximate semi-infinite programming is to sufficiently
sample an uncertainty set to verify non-negative robustness for
some risk level [19].

Second, the estimated [ω] may have zero strictly in the
interior the interval. Thus, the question remains of computing
the risk of violation. If ω ⇒ U(ω, ω) and ϑ ⇑ 0, then
P(ωω([x], t) > 0) ⇑ 1 ↗ ≃ϑ

ϑ≃ϑ . In general, however, ω will
depend upon the distribution of the signal along time, passed
through order statistics from the robust semantics recursive
formulation.

In discrete time, if pointwise probabilities of xk → [xk, xk]
are computed, the probability that the entire trajectory lies
in its respective bounds is the product of the probabilities.
This uncertainty may be directly passed through the STL
computation. This method is in general conservative beyond
usefulness, but for situations where the vast majority of
P(xk → [x]k) ⇑ 1 except for a few points of interest, the
results may approximate reality.

Another risk consideration is when in time is signal un-
certainty likely to cause a violation. In Example 1, for both
monitoring and control synthesis violation or satisfaction is
determined by the point in time where the robot drives through
the narrow corridor.

Example 1. Suppose that a robot must navigate from region A
to region B through a small, narrow corridor C. The state may
have large ⇑100% confidence bounds within A and B, but
may need to use 50% confidence bounds for three time steps
in C, yielding P(x → [x]) ⇑ .53 = .125. Then, through I-STL
(see Section IV-A), P(ω → [ω]ω([x], t)) ≃ .125.

Remark 1. Uncertainty in delays of the system may introduce
another degree of risk. For example, it may be that x0:↑ω↑ |= ε,
but x1:↑ω↑+1 ⇐|= ε. In this work we treat such uncertainty as
uncertainty in spatial robustness rather than uncertainty in
temporal robustness [20]. A full analysis of the relationship
between spatial and temporal robustness is worthy of its own
full investigation and is beyond the scope of this letter.

IV. RISK MITIGATION WITH TIGHTENING INTERVALS

We present our approach to mitigate risk by estimating
where along a state trajectory precise knowledge of the
state is necessary to determine satisfaction. We begin by
discussing the propagation of trajectory probabilistic bounds
through I-STL and highlight the limitations of this approach.
Then, we provide an assumption to extract a singular number
representing risk from our method. Finally, we construct our
interval-tightening algorithm.

A. Confidence Interval Analysis
We consider where interval bounds are given around a signal

where the signal is modeled as a sequence of random variables.

Proposition 1. Let X be a random variable in Rn, [x] → IRn,
and ϑ → (0, 1). Let [f ] : IRn ↘ IRm be an inclusion function
of a continuous function f : Rn ↘ Rm. If P(X → [x]) ≃ 1↗ϑ,
then P(f(X) → [f ]([x])) ≃ 1 ↗ ϑ.

Proof. By definition, f(x) → [f ]([x]) for any x → [x] [14].
If f is continuous, we can construct an interval by evaluating
f(x) for every x → [x]. The conclusion follows as if some
interval [y] ⇓ [x], then P(x → [y]) ≃ P(x → [x]).

Remark 2. We may apply the above proposition to I-STL
robustness over IRn→↑ω↑. Let X0,...,↑ω↑ be a sequence of
random variables. Because [ω]ω([x], 0) : IRn→↑ω↑ ↘ IR is
an inclusion function for the robustness of an STL formula
ϖ formed from any realization of ε’s predicate inclusion
functions [2, Theorem 1], we have that if P(X0,...,↑ω↑ →
[x]0,...,↑ω↑) ≃ 1 ↗ ϑ, then P(ωϖ(X, 0) → [ω]ω([x], 0)) ≃ 1 ↗ ϑ.

Next, we consider the stochastic setting where X is a
sequence of random variables. This demands that we compute
a sound method of computing (over)approximations of the
order statistics to complete the I-STL semantics. However,
the bounds quickly become too conservative to be meaningful.
Consider P(min(X1, X2) → [x]). If X1 and X2 are indepen-
dent, the worst case reduces to the probability that X1 → [x]
and X2 → [x], that is, ≃ (1 ↗ ϑ)2. If X1 and X2 are perfectly
correlated or anti-correlated , then the probability is bounded
below by 1 ↗ ϑ. Over horizon length ⇔ε⇔, an eventually
or always operator will result in a bound that looks like
(1 ↗ ϑ)↑ω↑, similar to Example 1.

B. Constricting Intervals for Risk Estimation
We present our algorithm of a computationally efficient

method for risk estimation as follows. In this section we
consider state uncertainty as the size of intervals around a
nominal trajectory. To recover Definition 2 for risk, we make
an assumption regarding a mapping from confidence intervals
to a risk estimate.

Assumption 1. There exists a function [f ] : IRn ↘ [0, 1]
mapping intervals to probability that the signal x : R+ ↘ Rn

lies in the interval signal [x] → IRn.

Thus, as we iteratively shrink intervals, we can quantify risk.
Approximations of [f ] can come from conformal prediction or
any of the aforementioned methods. For example, we note one
control-theoretic example of how an [f ] may be computed.
Consider the first case study in [17, Section VI]. The interval-
valued reachable sets for varying probability levels can be
computed in a few milliseconds. The case study uses a
probabilistic bound of ϱ ⇑ 99% (from 3ς for a Gaussian).
This parameter can be tuned to generate intervals of varying
widths, approaching zero as ϱ ↘ 0. A simple line search
can therefore be used to map trajectory interval uncertainty to
probabilistic bounds. [17, Theorem 7] provides a constructive
method and conditions for constructing these intervals.

Now, suppose that we are given an interval-valued signal
[x] → IRn→↑ω↑ and a bounded-horizon STL formula ε.
Assume that [x] is a large overapproximation of a nominal
signal x → Rn→↑ω↑ such that is virtually certain that x →



[x]. If 0 → [ω]ω([x], t) when evaluated through I-STL, it is
indeterminate whether the true x |= ε.

We propose two methods to perform interval tightening,
one using gradients and the other using a MILP. The former
performs gradient ascent on x and gradient descent on x
with a stopping condition that for each, robustness is non-
negative. Afterwards, the final interval robustness is checked
against [x, x] to ensure that the solution is valid. The gradient
approach is simpler, but like all gradient algorithms struggles
with specifications whose robustness functions are nonconvex
functions of a signal while the MILP encoding is generally
applicable to formulas with affine predicates.

We next address the masking problem detailed as fol-
lows. Consider an STL formula ↭[0,10](x ≃ 0). If x =
[↗1, ↗1, ↗1, ↗10, ↗1, ↗1, ↗1, ↗1, . . . ], then the gradient of
ω with respect to x is [0 0 0 1 0 . . . ]. That is, a singular point
masks the contribution of the rest of the signal to robustness.
For gradient ascent, it is better to increase the entire signal
instead of only a single worst point in time, as eventually
all must be ≃ 0 per the STL formula. To handle this we
use a smooth approximation of robustness with an arithmetic-
geometric mean (AGM) [4]. The smooth approximation of
robustness is denoted ω̃.

We acknowledge a trade-off where unnecessary tightening
may occur for some specifications. For instance, consider the
STL formula ↫[0,3](x ≃ 0) with x = [↗1, ↗1, ↗0.9, ↗1].
While using standard robustness would result in increasing
only index 2, using AGM robustness will lead to small
increases in the other values as well. This is not a novel
phenomenon in our work, and other methods that use smooth
approximations of robustness have this apparent behavior as
well [4], [21]. This slight limitation is acceptable in light of
the potential computation speedup from mitigating masking.

We preserve the use of the unapproximated robustness for
our algorithm terminal condition as monitoring robustness is
fast, e.g. [2] reports sub-10 ms evaluation times. This avoids
extra tightening from the fact that AGM robustness is sound
but not complete. Our algorithm is given in Algorithm 1.

Algorithm 1 Iterative Shrinking of Confidence Intervals
Require: ε, [x], t
Ensure: ωω([x]⇐, t) ≃ 0

1: x⇐ ↖ x
2: while ω(x⇐, t) < 0 do
3: x⇐ ↖ x⇐ + ϱ↙xω̃(x⇐, t)
4: end while
5: x⇐ ↖ x
6: while ω(x⇐, t) < 0 do
7: x⇐ ↖ x⇐ ↗ ϱ↙xω̃(x⇐, t)
8: end while
9: if ωω([x]⇐, t) ≃ 0 then

10: return [x⇐, x⇐]
11: else
12: return False
13: end if

We provide one limited example where Algorithm 1 is
guaranteed to converge with minor additional engineering

effort—directed specifications [22].

Definition 3 (Directed Specification). Let ωω : Rn→↑ω↑ ↘
R be the robustness of STL specification ε. ε is directed if
↙xωω(x, t) ≃ 0 element-wise for all x → Rn.

Proposition 2. Let ε be a directed specification with con-
tinuous predicates. Suppose that there exists some x̂ such
that ω(x̂, t) ≃ 0. Then, adding the line x⇐ ↖ max{x⇐, x⇐}
element-wise will cause Algorithm 1 to successfully terminate.

Proof. If ε is directed, then increasing the value of x can never
decrease ω(x, t). Noting that ω is continuous, the gradient
algorithms give ωω(x⇐, t) ≃ 0 and ωω(x⇐, t) ≃ 0. We ensure
continuity of the interval [x] = [x, x] by updating x⇐ ↖
max{x⇐, x⇐} element-wise. Because ε is directed, if x⇐ ≃ x⇐,
then ω(x⇐, t) ∝ ω(x⇐, t).

If instead the bounds of [ω]ω([x], t) are not convex functions
of a signal or if Algorithm 1 fails, we may use an MILP
formulation from [12]. Let x be the signal if there were no
uncertainty. We may instead solve,

[x]⇐ ↖ argmax
e

⇔x + [e]⇔L2 (2)

s.t. ω(x + [e], t) ≃ 0, [e] ↓ [e]0

We pick [e]0 be a maximum interval uncertainty to keep
the problem bounded. This is far simpler than I-STL control
synthesis problems as there are no dynamics constraints and
is demonstrated in the UUV case study in Section V-B.

An advantage of our approach is that it informs the operator
where along a plan or signal it is critical to have precise
knowledge of state, or to achieve a desired state by a deadline.

Remark 3. The eventually operator ↫ may result in non-
uniqueness in solutions. Consider for example [x](t) ={
[↗1, 1], [↗1, 1], [↗1, 1]

}
with ε = ↫[0,2](x ≃ 0). Increas-

ing the lower bound of [x] at any point in time to [0, 1]
will yield ω ≃ 0. If traditional robustness is used in the
gradient ascent algorithm, then numeric idiosyncrasies or φ-
perturbations may result in any one of these three values
becoming [0, 1]. However, if AGM robustness is used, we will
have [x] = {[0, 1], [0, 1], [0, 1]}. The true best case may be
represented using a probability, that is, the probability that
any of these signals occur combined as disjunction. The point
is that disjunction results in non-uniqueness.

V. EXAMPLES

A. Monitoring an Interval-Valued Signal with I-STL
We demonstrate our approach first with an academic ex-

ample. Consider the following specification: the state x must
exceed 1 and dip below ↗1 every 8 seconds. In STL,

ε = ↭[0,10/”t]

(
↫[0,8/”t](x ≃ 1) ′ ↫[0,8/”t](x ∝ ↗1)

)
. (3)

The outer “always” comes from choosing how long to mon-
itor this specification for in time. We select ”t = 0.5s,
thus ⇔ε⇔ = 36. This specification requires that the state
periodically increases and decreases, introducing competing
components in its predicates.
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Fig. 1. Top left: unsafe nominal results where the lower bound of
robustness is negative for the 100% confidence interval. Top right:
20% confidence bounds with uniform tightening of the upper and lower
constraints by hand. The width is extremely narrow as mostly only the
upper bound needed to be changed to achieve positive robustness,
but for fixed confidence intervals the lower bound must be changed
commensurately. Bottom left: the results of executing Algorithm 1 with
nonsmooth traditional robustness. Bottom right: the results of executing
Algorithm 1 with AGM robustness. The results in the bottom two figures
are nearly identical, but the AGM version executed nearly 40% faster.
The tightening primarily occurred at three locations: t = 4.5, 6.5, 10.

TABLE I
EXECUTION TIME COMPARISON OF THE AGM AND NONSMOOTH

TRADITIONAL ROBUSTNESS VERSIONS OF THE ALGORITHM

Execution Time Robustness Interval Probability
Nonsmooth 13.9 s [.002, 1.232] .693

AGM 9.1 s [.001, 1.232] .693

We first use stlpy [12] to generate a nominal trajectory
from a double integrator system that satisfies this specification.
Then, we introduce a function to translate between interval
uncertainty width and probability of satisfaction, that is,

[f ](ϑ) := [↗.9ϑ3, .9ϑ3] (4)

[f ]↓(φ, φ) = min{ 3
√

φ/.9, 3
√

φ/.9} (5)

where ′ represents the left quasi-inverse. Thus, the 100%
confidence interval has an interval diameter of φ = 0.9. We
represent the interval state as [x] = [̊x↗φ, x̊+φ] where x̊ is the
nominal state. As an example, the I-STL interval robustness
for the 100% confidence interval is [ω] = [↗0.8902, 0.9098].

Next, we incorporate the package npinterval [13] with
PyTeLo [11] to implement I-STL for PyTeLo along with
the AGM robustness from [4]. We use JAX [23] to just-in-
time compile the gradient ascent and descent routines. JAX
performs automatic differentiation of both the AGM robustness
and traditional robustness of ε yielding significant computa-
tional speedup. Then, we execute our algorithm initializing
from 100% confidence intervals. Results for the traditional
robustness and AGM robustness are listed in Table I. The plots
of the final trajectories are given in Figure 1. A hand-tuned
result is given corresponding to a 20% confidence interval.

To illustrate the advantage of interval tightening over resolv-
ing, we increased all time scales in ε by a factor of five. Now,

⇔ε⇔ = 180. Given an interval signal whose interval robustness
contains zero, interval tightening over an interval signal took
357 s. Solving a control problem maximizing a fixed-width
uncertainty for a double integrator system using an approach
similar to [10] with Gurobi 12.0.1 took 2842 s.

B. Unmanned Underwater Vehicle with Limited GPS
Consider an unmanned underwater vehicle (UUV) that is ex-

ploring various regions, capturing image data and monitoring
the environment, inspired by [24]. For a given planned under-
water trajectory, we consider two sources of error: tracking er-
ror and pose estimation error. For the tracking error, we assume
a fixed worst-case tracking error achievable by some tracking
controller. The pose estimation error experiences linear drift
over time since the last GPS calibration. To recalibrate, the
UUV must resurface to collect a GPS reading. However, while
the UUV resurfaces, it is not executing its primary mission to
monitor the underwater environment. Thus, we plan resurface
events using our interval tightening algorithm.

We setup our problem as follows. The trajectory for the
UUV is planned using a double integrator system with energy
loss, ṗj = vj and v̇j = ↗ϱvj+uj , for j → {x, y} and ϱ = 0.1.
We are interested in exploring three regions labeled R1, R2,
and R3, visualized in Figure 2. Our mission is specified as
follows: eventually in the first 25 minutes, monitor each region
for 5 minute blocks. This is written in STL as

ε =↫[0,25]↭[0,5](p → R1) ′ ↫[0,25]↭[0,5](p → R2) (6)
′ ↫[0,25]↭[0,5](p → R3)

We use a discretization rate of 0.25 min. We assume a
fixed tracking error of 1 m and a state estimation error of(
0.03m

s

)
tGPS, where tGPS is the time since the last resurface.

First, we use a naı̈ve approach where a worst-case measure-
ment error is assumed that is too large, i.e., resurfacing occurs
periodically, but it is not planned for. That is, we start with a
nominal signal x and add a constant interval [e] = [↗12, 12]m
to it, yielding an initial interval robustness of [↗9.5, 14.5]. This
is used to initialize the interval tightening algorithm.

Next, we apply Algorithm 1 with the MILP formulation (2).
We note where the boxes were tightened, and use these points
to inform our resurfacing strategy. The reconstructed interval
trajectory from the points of resurfacing is given in the left
three panes of Figure 2, with an interval robustness of [0, 10].

Finally, for a comparison, we solve a control synthesis
problem from scratch accounting for uncertainty,

max ω([p], 0)

s.t.

[
p(k+1)
j

v(k+1)
j

]
=

[
1 ”t
0 1 ↗ ϱ

] [
p(k)j

v(k)j

]
+

[
0

”t

]
uj ,

k = 0, . . . , ⇔ε⇔, j → {x, y}
ω([p], 0) ≃ 0, [p] = p + [e]

(7)

with a periodic resurfacing strategy that defines the interval
error signal [e] for the optimization program (7). The results
are plotted in the rightmost pane of Figure 2. Both methods
resulted in 19 resurfaces, but our method took 0.9 s while
resolving the control synthesis problem took 1634 s. This
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Fig. 2. From left to right plotted px vs py : interval tightening results evolving over time 1/2 way through the run, 3/4 through, completed, and
comparison with a periodic resurfacing strategy with a resynthesized path plan. Yellow stars represent points of resurfacing with the uncertainty
boxes changing colors after each resurface. Resolving a control synthesis problem results in a periodic resurface strategy. The periodic comparison
resurfacing strategy does not take into account more difficult portions of the formula such as when transitions are made between regions. Unlike the
periodic resurface strategy, our method prescribes resurfacing only near boundary transitions, accepting large uncertainty inside individual regions.

highlights the computational advantages of avoiding resolving
the control synthesis optimization program and adapting the
resurfacing strategy to an existing solution. The number of
resurfaces is sensitive to parameters and the precise ε but
empirically the interval tightening method often requires fewer
resurfaces than a fixed periodic resurfacing strategy and never
vice-versa. Repeating the mission three times and employing
interval tightening results in 38 resurfaces and a solve time of
23.9 s while periodic resurfacing used 52 resurfaces1.

VI. CONCLUSION

This letter surveys risk of failure and identifies likely points
of failure in the context of satisfying I-STL formulas. Given a
signal, we consider approaches to determine from probabilistic
uncertainty bounds the probability that a signal satisfies an
I-STL formula. We then present an interval tightening algo-
rithm that identifies where if more precise information were
available satisfaction could be certified. This is demonstrated
in a UUV case study informing a resurfacing strategy. Future
work includes developing bounds on the probability of satis-
faction using random variables. By defining a partial order on
the space of random variables, one can treat the robustness
of an I-STL formula as a random variable and bound it with
two other random variables. An additional line of research
is investigating the interaction between spatial and temporal
robustness in the context of risk.
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