
Multi-Agent Task Allocation using Cross-Entropy Temporal Logic
Optimization

Christopher Banks, Sean Wilson, Samuel Coogan and Magnus Egerstedt

Abstract— In this paper, we propose a graph-based search
method to optimally allocate tasks to a team of robots given a
global task specification. In particular, we define these agents
as discrete transition systems. In order to allocate tasks to
the team of robots, we decompose finite linear temporal logic
(LTL) specifications and consider agent specific cost functions.
We propose to use the stochastic optimization technique, cross
entropy, to optimize over this cost function. The multi-agent
task allocation cross-entropy (MTAC-E) algorithm is developed
to determine both when it is optimal to switch to a new agent
to complete a task and minimize the costs associated with
individual agent trajectories. The proposed algorithm is verified
in simulation and experimental results are included.

I. INTRODUCTION

Multi-agent task allocation facilitates the ability for groups
of robots to execute complex tasks over a limited time frame
[1], [2]. For example, autonomous surveillance, search and
rescue and environment monitoring all require the delegation
of multiple tasks for each agent [3]. In addition to this, multi-
agent systems enable redundancies in task allocation, fault
tolerance [4] and faster execution of time based tasks [5]
unlike task handling done by single agents. Naturally, the
question of how to allocate these tasks effectively arises.
Unfortunately, delegating tasks to individual agents to pro-
duce global behavior becomes difficult for human operators
as the swarm size increases [6]. One solution to this problem
is to design desired global task specifications for the entire
swarm and enable the collective to autonomously allocate
tasks among themselves to achieve the provided global speci-
fications. One way of providing global task specifications to a
team of robots is through a linear temporal logic formulation
[7].

Linear temporal logic (LTL) formulas provide formal,
mathematical guarantees for the performance of a system
and are relatively close to natural language syntax which
aids users in easier control of robotic systems that satisfy
these specifications. In [8], an optimal graph search algorithm
was developed to assign multiple agents tasks based on the
environment transition system and LTL specification given.
Often in works that utilize temporal logic for high-level task
specification for multiple agents, a product automaton of
all agents must be created which can be computationally
demanding [9].

This material is partially based upon work supported by the National
Science Foundation Graduate Research Fellowship under Grant No. DGE-
1650044 and in part through the grant ARL DCIST CRA W911NF-17-2-
0181.

All authors are affiliated with Georgia Institute of Technology,
Atlanta, GA 30332, USA, {cbanks34, sean.t.wilson,
sam.coogan, magnus}@gatech.edu

To avoid product automaton construction, tasks can be
decomposed, essentially assigning agents a subset of the
provided global specification. Algorithms that give finite time
horizon plans for each agent [10] decompose tasks in an
adaptive manner, yet, suffer from synchronization constraints
between agents. Approaches that use MILP for multi-agent
planning [11] are limited to linear constraints and utilize
fixed costs for agent transitions. Work in [12] utilizes a global
specification as well as individual specifications that the
agents must specify. This is in contrast to [13] where a global
specification is given and is decomposed for any number
of agents in the composition of the problem. However, like
previously mentioned work, solutions are limited to fixed,
assigned costs between actions for each agent.

In this paper, synchronization requirements are avoided
and we leverage the decomposition framework of [14] as a
viable alternative for developing multi-robot task allocation
and consider each agent when delegating tasks, switching
between agents based on an assigned cost function. We also
propose a framework for systems where action costs are not
explicitly known a priori (e.g. “the control input cost of
performing a rescue operation”) and instead are generated via
a cost function. To achieve this individual allocation strategy
from the high level objectives given by LTL, cross-entropy
optimization, an importance sampling technique, is used to
determine when to switch tasks between agents.

Generally, robot tasks should not be assigned to robots
uniformly as some robots may be better suited to perform
the task due to their proximity, voltage levels, previous
actions, or other factors. This can be considered as a set
of system cost constraints that must be conformed to over
time. Cross entropy optimization, as described in [15], is
a form of importance sampling that estimates rare-event
probabilities, which we leverage to design cost functions to
optimize over as “rare-event” distributions (i.e. characterized
as events that occur infrequently). In this paper, we develop a
novel algorithm designed to sample trajectories and converge
to a desired cost function to determine the best robot for
continued satisfaction of a goal specification. This algorithm
advances the state-of-the art by introducing a formulation
that allows users to design agent specific cost functions –
for a homogeneous team of robots with equivalent dynamics
– and dynamically allocate tasks over time while satisfying
a global specification in addition to constraints of the envi-
ronment or individual agent dynamics.

This paper proceeds in the following manner. We develop
the mathematical foundation for defining discrete transition
systems and finite LTL in Section II. A formal problem

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 1244 submitted to 2020 International Conference on
Robotics and Automation (ICRA). Received September 15, 2019.



formulation is given in Section III. We present the MTAC-E
algorithm in Section IV. Finally, we present a case study in
simulation and provide experimental results in Section V and
conclude in Section VI.

II. FINITE LTL FOR GLOBAL TASK SPECIFICATION

To encode global task specifications we use LTL, allowing
users to design global goals for swarm execution. In addition
to this, global goals enable scalability (i.e. goals are inde-
pendent of the swarm size) and reduce cognitive load on the
designer as they do not have to assign each agent a speci-
fication. This type of interaction modality is easily adapted
from temporal logic formula, in addition to providing formal
guarantees for global specification satisfaction.

In this section, we provide a brief background on finite
LTL, a class of LTL specifications well-suited for formally
representing planning problems [16] and interpreting finite
sequences [17]. For a more in-depth reading on finite LTL
we refer the reader to [18]. We also provide definitions for
generating the discrete transition system of an autonomous
agent, the transition system of a team of robots and the
decomposition framework, all of which will be utilized in
Section V. There, as an example, the robots will execute a
fire-fighting scenario in which each agent will be given tasks
(e.g. carry water, visit regions of interest, etc.) expressed
through a global LTL specification.

LTL specifications φ are defined as logic formalisms suited
for specifying linear time properties [19], [20]. In order to
create a formulation for decomposing, we consider finite
LTL specifications. Finite LTL specifications are insensitive
to infiniteness [18] and include classes of LTL like co-safe
LTL. These specifications are defined over finite sequences
of observations and the notation σ |= φ indicates that the
finite sequence σ satisfies φ. The sequences are generated
from the set of propositions, defined in the following.

Definition 1: Let Π = {π0, . . . , πk} be the finite set of
atomic propositions. Each proposition πi maps from system
state to true (>) or false (⊥) and enables us to define a
Boolean property of the state space (e.g. “Is the robot in
area G?”).
Any finite LTL specifications can be represented via a
constructed non-deterministic finite automaton (NFA) [14],
which we define below.

Definition 2: A non-deterministic finite automaton (NFA)
is given as the tuple F = (Q,Q0, β, δ, F ) such that:
• Q is a set of states
• Q0 is a set of initial states
• β is the set of Boolean formulas defined over the proposition

set (Π)
• δ is a set of transition conditions such that δ : Q×Q→ β
• F is a set of accepting final states

Given finite runs q = q(0) . . . q(T ) → Q a sequence σ –
defined as a sequence of propositions πi from Π – satisfies q
if it enables a transition from q(0), an initial state, to q(T ) ∈
F . These transistions, generated from δ(q, q′) = {βi}, map
onto a subset of the Boolean formulas, β, which evaluate to
true if the proposition, π(t), from σ satisfies it. Moreover,
the NFA can be constructed from a finite LTL formula φ

where a finite sequence σ |= φ if and only if σ successfully
produces a run q such that q(T ) ∈ F . Throughout this paper,
finite LTL will be referred to as LTL.

A. Defining Transition Systems

The framework for defining task decomposition [14] in-
volves creating several state transition systems for a robotic
system. From this discrete planning framework, we are
able to decompose a product automaton containing multiple
agents into independent tasks that can be handled by each
agent, while also satisfying a given goal specification. The
definition of the robot transition system, R, follows.

Definition 3: The robot transition system is defined as a
tuple R = (SR, SR,0, AR,ΠR,ΛR) such that:
• SR is a set of robot states
• SR,0 ⊂ SR is the set of initial robot states
• AR is a set of available robot actions
• ΠR is the set of robot propositions
• ΛR : SR → 2ΠR is a labeling function that assigns atomic

propositions to states.
The robot transition system captures the entire internal

state of the robot and transitions are based on the actions,
AR available to the robot at each state. We next define the
environment transition system E to capture the properties of
the regions of interest for the agents.

Definition 4: The environment transition system is defined
as a tuple E = (VE , EE ,ΠE ,ΛE) such that:
• VE is a set of environment vertices
• EE is a set of edges between vertices where EE ⊆ VE × VE
• ΠE is the set of environment propositions
• ΛE : SV → 2ΠE is a labeling function that assigns atomic

propositions to locations
The product automaton A is used to define the internal

state and external location of the agent throughout the
planning space.

Definition 5: The agent transition system is given
as a product transition system A = E ⊗ R =
(SA, SA,0, AA,ΠA,ΛA) such that:
• SA = VE ×SR are the combined location and internal states

of the agent
• SA,0 = {(v, s0) ∈ SA : s0 ∈ SR,0} is the set of initial agent

states
• AA ⊆ SA × SA are the actions available to the agent
• ΠA ⊆ ΠE ×ΠR is the set of agent propositions
• ΛA : SA → 2ΠA is a labeling function that assigns atomic

propositions to agent states

In this definition, the set of actions AA are available to
a robot based on both its internal state and location in the
environment. Additionally, the actions are restricted in that
only actions that are available at states which satisfy the
Boolean transition formula, ξ : AA → ψ, are included. More
formally,

AA = {a = ((v, s), (v′, s′)) ∈ SA × SA :

(v, v′) ∈ EE ∧ (s, s′) ∈ AR ∧ ΛA((v, s)) |= ξ(a)}
Now that we have the agent automata defined for all

agents, we can define the planning automaton P for the entire
system.

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 1244 submitted to 2020 International Conference on
Robotics and Automation (ICRA). Received September 15, 2019.



Definition 6: The planning automaton P is a product
automaton of the NFA and agent transition system where
P = F ⊗A = (SP , S0,P , AP) such that:
• SP = Q× SA is the set of states
• S0,P = {(q0, s) ∈ SP : q0 ∈ Q0 ∧ s ∈ SA,0} is the set of

initial states
• AP = {((q, s), (q′, s′)) ∈ SP × SP : (s, s′) ∈ AA ∧ β(s) |=
δ(q, q′)} is the set of actions

With the planning automaton P , only sequences, σ – with
propositions ΠA – that satisfy the LTL specification φ are
accepted.

B. Decomposition Set

Given a multi-agent system with N agents, each repre-
sented according to the automata Pi, defined previously, we
seek to decompose the global LTL specification φ such that
parts of it can be assigned to the set of agents based on their
cost functions. Moreover, using task decomposition, we wish
to generate independent sequences of action/state pairs from
Pi to satisfy φ where sequences are si = s0a0, . . . , ansn.
We give the following definition of finite LTL task decom-
position.

Definition 7: [14] Let Ti with i ∈ {1, . . . , n} be a set of
finite LTL task specifications and σi denote any sequence
such that σi |= Ti. These tasks are called a decomposition
of the finite LTL mission specification φ if and only if:

σj1 . . . σji . . . σjn |= φ (1)

for all permutations of ji ∈ {1, . . . , n} and all respective
sequences σi.
From this definition of decomposition we can create the
decomposition set D ⊆ Q of the NFA F developed from
φ. This set contains all states q for which the pair of tasks
T q1 , T

q
2 , where q is a state in the decomposition set D, define

a valid decomposition. For a proof of this property, we refer
the reader to [14].

We use this to avoid generating a large product automaton
of the transition system of agents and automaton representa-
tion of the finite LTL specification. This greatly reduces the
computational complexity usually encountered with systems
involving a large number of agents. We define team product
automata, T , with the following definition.

Definition 8: The team model automaton T is a union of
the N local product automatons Pi with i ∈ {1, . . . , N}
where the tuple is T = (ST , S0,T , AT , FT ) such that:
• ST = {(r, q, s) : r ∈ {1, . . . , N}, (q, s) ∈ Si

P} is the set of
states

• S0,T = {(r, q, s) ∈ ST : r = 1} is the set of initial states,
with r being a randomly assigned initial agent

• AT =
⋃

iA
i
P ∪ ζ is the set of actions, including the switch

transitions Z
• FT is the set of accepting final states
Switch transitions, Z, allow our algorithm to select a

new agent within the product automaton to complete the
satisfaction of the specification.

Definition 9: The switch transitions in T are given by
Z ⊂ ST ×ST . A transition ζ = ((rs, qs, ss), (rt, qt, st)) ∈ Z
if and only if [14]:
• rs 6= rt: the agents are different

• qs = qt: the progress of the NFA is preserved
• rt = rs + 1: A new agent is selected
• st = srt0,A: The new state is the initial state of a new agent
• qs ∈ D: the state is in the decomposition set of the NFA

III. PROBLEM FORMULATION

With discrete transititon systems defined for a homogenous
team of agents and a decomposition framework, we turn to
our problem formulation.

Problem: For a given set of homogenous agents, distribute
tasks among these agents considering discrete agent tran-
sition systems with unknown action costs. Distribute these
tasks while minimizing individual agent cost functions fi(·),
given by the operator before execution, for agents i, . . . , N .

We demonstrate this problem as a firefighting quadcopter
scenario in Section V. In this problem, we designate N
quadcopters, each defined by discrete product automata as
our set of homogeneous agents, with no action costs to
transition between states. The swarm of robots is given the
global task of surveying goal locations within the state space,
acquiring water and transporting it to the desired location
while obeying the constraints of the environment. We solve
this problem using the MTAC-E algorithm proposed below.

IV. MTAC-E ALGORITHM

Solution: We propose the Multi-Agent Task Allocation
Cross-Entropy (MTAC-E) Algorithm to delegate tasks to
a set of agents. Previously, we defined a decomposition
framework in Section II; given we have designed cost
functions for each agent in the problem, we need a way
to find optimal trajectories by minimizing these cost func-
tions. To find the associated minimized costs, we propose
using cross-entropy optimization. In this framework, we
use cost functions optimized via cross-entropy as opposed
to static actions costs defined at discrete state transitions.
This additional flexibility in problem design allows operators
to minimize over individual agent cost functions and use
generalized functions for entire agent trajectories when the
cost to perform an action is not known. We present a brief
overview of cross entropy and our algorithm in the following
sections.

A. Cross-Entropy Optimization

Cross-entropy optimization is a method of importance
sampling for probablistically rare events. The algorithm
design for using cross-entropy with motion planning [15]
can be generalized as the following:

1) Generate a set of sample trajectories (J) from a
distribution p(·, x) and calculate cost J (·) for each
trajectory

2) Update the distribution, p, using a subset of samples
(κ), until the sampling distribution converges to a
desired cost (λ) and delta function over the optimal
trajectory

The subset of sampled trajectories with the lowest cost (i.e.
κ ⊂ J) is defined such that |κ| = ρ|J |, where typically
10−1 ≤ ρ < 0.3. This subset is known as an “elite
set” and provides a new sampling space to generate the

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 1244 submitted to 2020 International Conference on
Robotics and Automation (ICRA). Received September 15, 2019.



distribution p. In this work, we sample trajectories according
to a multi-variate Gaussian distribution N (µ,Σ) such that
µ = [µ0, . . . , µn]T for n equally spaced points along the
set of sampled trajectory. The co-variance matrices, Σ =
[Σ0, . . . ,Σn]T form an np×p matrix with Σi initially set to
the identity matrix, I. Expectation-Maximization [21] is used
to update the means and co-variances for the newly sampled
trajectories. In the next section, we describe the multi-agent
task allocation cross-entropy (MTAC-E) algorithm.

B. Algorithm

The algorithm developed in this paper, provided in pseu-
docode format in Algorithm 1, can be described in four steps:
(1) given the initial state of the agent product automaton, find
the cost of transitioning to the next state using cross-entropy
and the cost function assigned to the agent, (2) if this state
is contained in the decomposition set, check all other agent
cost functions and, (3) if an agent has a lower cost, switch to
this agent for the remainder of the algorithm or until a new
switch is determined, (4) this process in continued until the
end state is found and corresponding trajectories are returned
to all agents for execution.

The algorithm receives as input the product automaton,
T , the decomposition set, D, an optimal cost for each agent
to minimize towards, λ, the elite set modifier, ρ, an initial
sampling distribution, p and the number of times to iterate
the sampling procedure, K. In Line 1, the initial state, pi, the
agent of pi ,αi, and the current sequence of states visited by
agent i, sequencesi, are initialized. We recall Definition 8 of
the team product automaton in this framework such that via
a standard BFS search, once the state p ∈ final states(T )
is found and a sequence is generated that reaches this state,
the LTL specification is satisfied.

The cross-entropy optimization technique in Line 7 is
utilized in the function cost to go. An initial probability
distribution is provided for each agent with initial means and
variances. Also, elite set modifiers (ρ), an optimal cost (λ),
and a bounding maximum iteration number (K) are supplied
as input. The function samples from the given distribution
and iterates until either the cost function has been met or
the maximum iterations has been exceeded and returns the
trajectories for each agent (ηi(t), . . . , ηn(t)).

For states in the decomposition set (D), a cost is calculated
from each in Line 9 and if one of the costs is less than the
current agent’s cost (costi) the agents are swapped and the
new agent j continues the remainder of the sequence until
the next potential switch transition occurs.

This algorithm will return a set of trajectories N with each
agents individual trajectory ηi(t).

C. Complexity

We give a brief overview of the complexity of the al-
gorithm and compare it to other methods for task alloca-
tion using temporal logic. Size analysis to search through
LTL automata for satisfying sequences is well-known [22].
Generally, a trajectory, η can be checked if it satisfies the

Algorithm 1: MTAC-E Algorithm
input : product automaton T , decomposition set D,

optimal cost λ, elite set modifier ρ, sampling
distribution p(µ0, v), iteration number K

output: set of trajectories N
1 pi := initial state(T )
2 αi → pi := agent i in initial state
3 sequencesi := sequence of states visited by agent i
4 p→ pi := set p to initial state
5 while p /∈ final states(T ) do
6 for q in neighbors(p) do
7 ηi(t), costi → cost to go(αi, q, sequencesi,

λ, p(·, v), K, ρ)
8 if q ∈ D then
9 ηj:n(t), costj:n → cost to go(αj:n, q,

sequencesj:n,λ, p(·, v), K, ρ)
10 end
11 if costj:n < costi then
12 αi → αj

13 p→ pj
14 sequencesj = sequencesj + sequencesj,p→q

15 end
16 else
17 sequencesi = sequencesi + sequencesi,p→q

18 end
19 end
20 end
21 N = {ηi(t), . . . , ηn(t)}
22 return N

automata Aφ in O(|η| · |Aφ|), denoting a bilinear complex-
ity in the length of the trajectory and in the size of the
automata. Leveraging task decomposition, the size of our
team automaton, T is much smaller than one created via a
product automata (i.e. Aprod = Pi⊗Pi+1, . . . ,PN−1⊗PN ),
where N is the number of agents. In our work, we check
trajectories for membership in an agent planning automaton,
Pi, which is equivalent to the number of NFA states F
times the number of agent states A or |Pi| = |F| · |SA|
unlike automata produced by constructing a product where
|Aprod| = |F| · |SA|N , thus |Pi| � |Aprod| . Due to the
checking of N agents in our framework, our algorithm has a
complexity of O(N ·(|η|·|Pi|)). Recall, that product automata
have states that grow exponentially with the number of agents
therefore, due to our algorithm being linear in the number of
agents, N , we show our algorithm is far more scalable than
other methods utilizing product automata for task allocation.
In addition to this, the runtime of the MTAC-E Algorithm,
while heavily dependent on cost function choice and size of
planning automaton, is ∼ 300 seconds for the task allocation
of three agents.

V. CASE STUDY: FIRE FIGHTING DRONES

We motivate the application of Algorithm 1 with a fire-
fighting UAVs scenario. For example, each agent may be
a fire-fighting autonomous aircraft capable of collecting
water, extinguishing fires and surveying goal locations. These
UAVs are given the following global goal: “eventually visit
LOC1 and LOC2 and always ensure visiting SMOKE
implies CARRY ING”. Using LTL, this specification can be

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 1244 submitted to 2020 International Conference on
Robotics and Automation (ICRA). Received September 15, 2019.



represented as φ = ♦LOC1 ∧ ♦LOC2 ∧�(SMOKE =⇒
CARRY ING).

Fig. 1. A transition system for a single agent which describes the internal
state of a robot (Ri). All robots start at the initial state ‘NO WATER’ and
a location-based transition is used to determine when to transition to the
‘CARRYING’ state. If a robot is in the environment state that satisfies the
‘WATER’ proposition, the robot can transition to the ‘CARRYING’ state.

According to our discrete planning framework, we define
the internal state of the robot using Definition 3 where our
robot is represented by a two state transition system with
a transition denoted by whether it has visited the water
location in the environment. A robot transitioning from the
‘NO WATER’ state to the ‘CARRYING’ state indicates the
‘WATER’ proposition was true in the environment during
that transition. In Fig. 1 we represent the discrete internal
transition system of robot i as (Ri).

The environment transition system, Fig. 2, is represented
by a set of nodes corresponding to states with adjacent
nodes in the graph representing neighbors for potential paths
through the state space. In simulation and experiment, we
represent each node as an ellipsoid in R3. Formally, these
ellipsoids have the following form:

Definition 10: The environment proposition set ΠE =
{Ei, . . . , En} is defined as:

Ej(r) =
(rx − xj)2

a2
+

(ry − yj)2

b2
+

(rz − zj)2

c2
(2)

Ej = {r ∈ R3 | Ej(r) ≤ 1} (3)

where(rx, ry, rz) is the pose of the quadcopter, (xj , yj , zj) is
the position of a region of interest (Ej) with index j and a, b,
and c are the x-radius, y-radius and z-radius of the regions,
respectively. We define these three constant radii (a, b, c) ∈
R>0 for the regions to represent the volume covered by each
ellipsoid in our experiments and note they are equivalent for
all ellipsoids.

Fig. 2. The environment transition system where each state indicates
a desired region of interest. The initial state of the environment is the
‘ROBOT’ state. In the fire fighting example, LOC 2, cannot be reached
unless the quadcopter passes through the SMOKE region.

Using this definition, discrete transitions are identified
when the relative position of a quadcopter transitions in-

side any of the regions of interest defined in the state
space. In our case study, the environment proposition set
is ΠE = {WATER,SMOKE,LOC1, LOC2}. By taking
the product we can generate the full agent automaton for
each agent i such that Ai = E ⊗ Ri shown in Fig. V.
Following the standard procedure for developing automata
for robotic systems we generate a NFA from the finite-LTL
specification and take the product with Ai for each agent to
get P , an automaton that only accepts runs that satisfy the
LTL specification and agent transition system.

Fig. 3. The full agent transition system for a quadcopter. Transitions to
the ‘CARRYING’ state can only be fulfilled once the agent has retrieved
water from the environment node.

A. Deriving the Control Input

Utilizing the differentially flat dynamics [23] of the quad-
copters, we represent the inputs and outputs of the system
as algebraic function of chosen flat outputs and their deriva-
tives. From this property, trajectories can be generated by
leveraging the nonlinear dynamics of the quadcopters. This
leads to the ability to plan smooth trajectories that are three-
times continuously differentiable functions, η(t) ∈ C3, in
the output space that can be converted back analytically into
feasible trajectories for the full state of the quadcopters. We
utlilize a virtual input u ∈ R3 from [24] that controls a chain
of integrator dynamics for the differentially flat outputs of
the system.

B. Simulation

We apply Algorithm 1 to the disjoint product of the n
agents P automaton, T = Pi∪· · ·∪Pn. In order to generate
trajectories from the given specifications we utilize a custom
sequence planner that uses pre-selected trajectories based on
a quadcopter’s position and speed relative to a labeled loca-
tion (e.g. an ellipsoid’s location and generate splines between
ellipsoids). After the initial trajectory for a given sequence is
plotted, we use cross-entropy optimization to minimize that
trajectory over the cost function J =

∫ T
0
η(τ) + u(τ)dτ .

The MTAC-E Algorithm samples trajectories from an
unknown distribution that minimizes the cost function, J ,
which is a function of the path length, η(t) and the control
input, u(t) =

...
r where r = [x, y, z]T ∈ R3, the position of

the center of mass of the robot.

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 1244 submitted to 2020 International Conference on
Robotics and Automation (ICRA). Received September 15, 2019.



Fig. 4. Three quadcopters during a simulated fire fighting mission.
The entire team is given the specification φ = ♦LOC1 ∧ ♦LOC2 ∧
�(SMOKE =⇒ CARRY ING). Each quadcopter is considered
during the iteration through the product automaton of the system, switches
to another quadcopter are considered when the cost is beneficial for the
team.

Results are shown in Fig. 4 where three quadcopters
are shown satisfying the LTL formula φ. The results se-
quences are quad0 = {WATER SMOKE LOC2},
quad1 = {SMOKE} and quad2 = {WATER LOC1}
which results in a satisfying sequence for the entire input
specification.

Fig. 5. The MTAC-E Algorithm iterates 12 times over a subset of trajec-
tories and produces the trajectory with the lowest cost after all iterations.
Here, we show the algorithm evaluating which quadcopter should transition
to LOC2. This calculation is formulated in our cost function where we
minimize the distance traveled and input to system. Each quadcopter
executes the MTAC-E optimization and after all quadcopters have completed
the algorithm, the quadcopter with the lowest cost is selected to complete
that task, in this example quad2 is choosen.

C. Experimental Results

The MTAC-E Algorithm is implemented on the Robotar-
ium at Georgia Tech where we use Crazyflie 2.0 quadcopters
[25]. The Robotarium uses a Vicon Tracking system which
records real-time position of robots with a 100 Hz update
rate. The algorithm was created in Python and sends control
inputs to a PID controller in C++. Commands are sent via
ROS messages to Crazyflies and a radio operating in the
2400 MHz range with a data rate of 2 Mbit/s sends these
commands to the quadcopters.

We use hoops with vertical stands to represent regions
of interest, characterized by ellipsoids, as pictured in Fig.

Fig. 6. In the experimental case study of the firefighting quadcopters, three
quadcopters are chosen to execute the global task specification. The entire
team is given the specification φ = ♦LOC1∧♦LOC2∧�(SMOKE =⇒
CARRY ING) and each are given a cost function to minimize. Regions
of interest are represented as ellipsoids and hoops on stands are used in the
experiment.

6, and mark them with Vicon tracking points to record the
center of the hoops and generate the proposition sets. In this
experiment, we utilize three quadcopters and deploy them
with the same LTL specification used in Section V-B. Based
on the cost constraint J , defined previously as functions of
position and control input, tasks are assigned to agents based
on proximity requirements to goal locations, control input
constraints and prior tasks executed. Resulting from this
problem, the quadcopters are allocated tasks in the follow-
ing sequences quad0 = {WATER LOC0 SMOKE},
quad1 = {SMOKE WATER LOC2 SMOKE},
and quad2 = {WATER SMOKE}. This experiment
demonstrates the practical use of quadcopters in a real world
scenario, delegating tasks to the agents in an optimal fashion
using the MTAC-E algorithm.

VI. CONCLUSION

In conclusion, we have developed a novel method for
multi-agent task allocation using cross-entropy motivated
by task switching for decomposed sequences of tasks. This
method allows users to design global specifications to multi-
agent systems where exact action costs for agents are not
known to the user a priori but a known distribution can
be approximated through a cost function. In addition, cost
functions can be defined for individual agents depending on
agent specific constraints. We show that this algorithm is
scalable and flexible in system and environment constraint
satisfaction through an operator chosen cost function. We
showcase the efficacy of the algorithm both in simulation
and in experiment under a scenario that demands satisfaction
of environmental constraints and system constraints while
optimizing a cost function designed to minimize individual
agent trajectories and inputs.

REFERENCES

[1] B. P. Gerkey and M. J. Matarić, “A formal analysis and taxonomy of
task allocation in multi-robot systems,” The International Journal of
Robotics Research, vol. 23, no. 9, pp. 939–954, 2004.

[2] G. A. Korsah, A. Stentz, and M. B. Dias, “A comprehensive taxonomy
for multi-robot task allocation,” The International Journal of Robotics
Research, vol. 32, no. 12, pp. 1495–1512, 2013.

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 1244 submitted to 2020 International Conference on
Robotics and Automation (ICRA). Received September 15, 2019.



[3] A. Khamis, A. Hussein, and A. Elmogy, “Multi-robot task allocation:
A review of the state-of-the-art,” in Cooperative Robots and Sensor
Networks 2015. Springer, 2015, pp. 31–51.

[4] M. Franceschelli, M. Egerstedt, and A. Giua, “Motion probes for
fault detection and recovery in networked control systems,” in 2008
American Control Conference. IEEE, 2008, pp. 4358–4363.

[5] L. Luo, N. Chakraborty, and K. Sycara, “Distributed algorithm design
for multi-robot task assignment with deadlines for tasks,” in 2013
IEEE International Conference on Robotics and Automation. IEEE,
2013, pp. 3007–3013.

[6] A. Kolling, P. Walker, N. Chakraborty, K. Sycara, and M. Lewis,
“Human interaction with robot swarms: A survey,” IEEE Transactions
on Human-Machine Systems, vol. 46, no. 1, pp. 9–26, 2016.

[7] S. G. Loizou and K. J. Kyriakopoulos, “Automatic synthesis of
multi-agent motion tasks based on ltl specifications,” in 2004 43rd
IEEE Conference on Decision and Control (CDC)(IEEE Cat. No.
04CH37601), vol. 1. IEEE, 2004, pp. 153–158.

[8] S. L. Smith, J. Tůmová, C. Belta, and D. Rus, “Optimal path planning
for surveillance with temporal-logic constraints,” The International
Journal of Robotics Research, vol. 30, no. 14, pp. 1695–1708, 2011.

[9] C. Baier and J.-P. Katoen, Principles of model checking. MIT press,
2008.

[10] J. Tůmová and D. V. Dimarogonas, “Multi-agent planning under lo-
cal LTL specifications and event-based synchronization,” Automatica,
vol. 70, pp. 239–248, 2016.

[11] S. G. Loizou and K. J. Kyriakopoulos, “Automated planning of motion
tasks for multi-robot systems,” in Proceedings of the 44th IEEE
Conference on Decision and Control. IEEE, 2005, pp. 78–83.

[12] J. Chen, S. Moarref, and H. Kress-Gazit, “Verifiable control of
robotic swarm from high-level specifications,” in Proceedings of the
17th International Conference on Autonomous Agents and MultiAgent
Systems. International Foundation for Autonomous Agents and
Multiagent Systems, 2018, pp. 568–576.

[13] P. Schillinger, M. Bürger, and D. V. Dimarogonas, “Improving multi-
robot behavior using learning-based receding horizon task allocation,”
in Robotics: Science and Systems (RSS), 2018.

[14] P. Schillinger, M. Burger, and D. V. Dimarogonas, “Decomposition

of finite LTL specifications for efficient multi-agent planning,” in
Distributed Autonomous Robotic Systems. Springer, 2018, pp. 253–
267.

[15] M. Kobilarov, “Cross-entropy motion planning,” The International
Journal of Robotics Research, vol. 31, no. 7, pp. 855–871, 2012.

[16] A. E. Gerevini, P. Haslum, D. Long, A. Saetti, and Y. Dimopoulos,
“Deterministic planning in the fifth international planning competition:
Pddl3 and experimental evaluation of the planners,” Artificial Intelli-
gence, vol. 173, no. 5-6, pp. 619–668, 2009.

[17] G. De Giacomo and M. Y. Vardi, “Linear temporal logic and linear
dynamic logic on finite traces,” in Twenty-Third International Joint
Conference on Artificial Intelligence, 2013.

[18] G. De Giacomo, R. De Masellis, and M. Montali, “Reasoning on LTL
on finite traces: Insensitivity to infiniteness,” in Twenty-Eighth AAAI
Conference on Artificial Intelligence, 2014.

[19] G. J. Holzmann, The SPIN model checker: Primer and reference
manual. Addison-Wesley Reading, 2004, vol. 1003.

[20] A. Bauer, M. Leucker, and C. Schallhart, “Runtime verification for
LTL and TLTL,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 20, no. 4, p. 14, 2011.

[21] C. M. Bishop, Pattern Recognition and Machine Learning (Informa-
tion Science and Statistics). Berlin, Heidelberg: Springer-Verlag,
2006.

[22] C. Baier and J.-P. Kateon, Principles of Model Checking. Cambridge,
Massachusetts: The MIT Press, 2008.

[23] D. Mellinger and V. Kumar, “Minimum snap trajectory generation
and control for quadrotors,” in Robotics and Automation (ICRA), 2011
IEEE International Conference on. IEEE, 2011, pp. 2520–2525.

[24] L. Wang, E. A. Theodorou, and M. Egerstedt, “Safe learning of
quadrotor dynamics using barrier certificates,” in 2018 IEEE Inter-
national Conference on Robotics and Automation (ICRA). IEEE,
2018, pp. 2460–2465.

[25] B. AB. (2018). [Online]. Available: https://www.bitcraze.io/

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 1244 submitted to 2020 International Conference on
Robotics and Automation (ICRA). Received September 15, 2019.


