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ABSTRACT
This paper presents a task orchestration framework for multi-agent systems utilizing
linear temporal logic (LTL) and cross entropy optimization, a stochastic optimiza-
tion technique used for rare-event sampling. We define task orchestration as a com-
bination of task decomposition, allocation and planning for a quadcopter or team of
quadcopters given a high-level specification. Specifically, we consider tasks that are
complex and consist of environment constraints, system constraints, or both, that
must be satisfied. We first approach motion planning for the single agent case where
transition systems for the environment allow tasks to be developed as linear tempo-
ral logic (LTL) specifications. Trajectories are then generated via motion primitives
for a single quadcopter and optimized via cross entropy to ensure optimal satisfac-
tion of a cost function. We extend this work to the multi-agent case where a team
of homogeneous quadcopters are considered to satisfy an LTL specification. In order
to provide faster computations and initial cost-agnostic sampling, we formulate the
online version of multi-agent task allocation via cross entropy for tasks specified
in LTL specifications. The results of this framework are verified in simulation and
experimentally with a team of quadcopters.

KEYWORDS
cross-entropy optimization; multi-agent systems; linear temporal logic; motion
planning; task allocation

1. Introduction

Interaction with multi-agent systems often involves users requiring the satisfaction
of a set of complex tasks. These tasks are delegated to the multi-agent system for
a wide variety of reasons including: autonomous surveillance [1], search and rescue
tasks [2] and environmental monitoring [3]. Often these tasks are defined as individual
and environment constraints imposed on the system [4], [5]. These constraints must
then be satisfied by a single agent or a multi-agent system while a main objective
is reached according to an objective function or performance index. In this paper,
we formulate a system called task orchestration, defined as a composition of task
decomposition, allocation and planning to provide an end-to-end framework for a team
of quadcopters given constraints and an objective function. Specifically, users provide
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system constraints and objectives as linear temporal logic (LTL) specifications [6] and
tasks are decomposed using a task decomposition framework and allocated according
to an objective function for each agent in the multi-agent system. Finally, trajectories
associated with a set of assigned tasks are generated for each agent.

We experimentally validate the application of the task orchestration framework
through a fire-fighting quadcopters scenario. Consider a set of N quadcopters, capable
of carrying water, surveying various locations and identifying resources within a prede-
fined area. How does one dynamically allocate these quadcopters to di↵erent regions,
extinguish fires and monitor their internal states in an e�cient manner? Using the task
orchestration framework, users give a desired global goal for the team of quadcopters
to satisfy; the framework then dynamically allocates tasks to each agent based on input
cost and trajectory length, environment and agent constraints and plans trajectories
for each agent. Experimentally, we define desired regions as hoops in the work space
and generate an environment transition system to indicate how regions are connected.
The internal state of a quadcopter is represented as the robot transition system. With
these formulations, we consider LTL as the global specification syntax users provide
the task orchestration framework.

Formal logic specifications, like LTL, provide an e�cient and concise method for
specifying and verifying correct behavior in dynamical systems and are well suited to
human level interpretation and development due to its expressive syntax. High-level
motion planning and task allocation using LTL allows for a diverse set of problems
to be solved. In prior works, product automata consisting of environmental and agent
systems are composed and satisfying sequences of states are found for robotic systems,
defined as tasks, that satisfy that specification. These tasks are usually formulated as
either motion primitives consisting of Lyapunov-based controllers [7], potential vec-
tor fields [8] or through symbolic control approaches like state space partitioning [9].
A work that is similar to ours, in the single agent case, is [10] where the authors
proposed a sampling-based technique utilizing modified RRT* for agents to satisfy a
global linear temporal logic specification. However, this work like many others relies on
computationally expensive product automatons for large environments which are time
consuming to generate [11] and dynamical constraints for physical systems are not
considered. In addition, each transition between tasks in these transition systems is
often associated with action costs that are defined based on expert information about
the system dynamics and environment.

We address the issue of quadcopter high-level motion planning by creating motion
primitives based on hoop/direction pairs [12]. These motion primitives leverage hand-
picked control points around desired hoop locations in the state space and we compose
trajectories from them. To avoid discretizing the state space and provide optimal
trajectories we utilize cross-entropy optimization [13,14]. Cross-entropy optimization
provides a method for stochastic optimization of trajectories by estimating rare-event
probabilities (characterized as events that occur infrequently), which we associate with
a desired cost and cost function. An alternative optimal sampling-based technique
proposed in [15] leverages a probabilistically complete method of motion planning;
however, it is not applied to multiple goal satisfaction nor does it address how it
can be used for multiple agents. However, many prior works exist that utilize cross-
entropy optimization for multi-agent task allocation applications. It has been used in
solving problems like the max-cut problem [16], vehicle routing problem [17] and other
problems for which dynamic allocation of resources can be formulated as minimizing
according to a known desired cost and resources are drawn from a known distribution
in order to estimate an unknown distribution [18],[19].
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In addition to providing a framework for high-level motion planning in the single
agent case, we also reduce the time consuming and resource intensive process of prod-
uct automaton generation for the multi-agent case. We do this in two ways: we leverage
an LTL decomposition framework and introduce an online method for cross-entropy
optimization on trajectories sampled from multivariate distributions. The decomposi-
tion framework is from [20] and provides a theoretically sound method for decomposing
a global LTL specification for an arbitrary number of agents. This bounds the size of
the system product automaton to grow linearly with the number of agents as opposed
to exponentially, as in most other works. We expand this work by introducing cross-
entropy optimization which allows task delegation and switching to be based on the
cost function of an individual agent. This not only removes the need for an expert
dependent action cost assignment but also allows general agent cost constraints to be
defined within each agent that can leverage cross-entropy optimization for multi-agent
task allocation. In addition to this, the online multi-agent task allocation framework
we propose provides fast calculations of optimal agent assignments and greatly reduces
the task allocation computation time. One work that is close to ours is that of [21],
where the authors use adaptive cross-entropy for task assignment for UAV formations,
optimized over a global cost function. However, these authors do not consider path
planning in their problem formulation and only consider task allocation for simulated
vehicles.

Contributions

In this paper, we develop a framework for task orchestration in the single agent and
multi-agent case and present three contributions. In the first contribution, we develop
a hoop-sequencer algorithm that ensures a quadcopter flies to complete complex tasks
where explicit sequences may be di�cult to create. This is solved through the gener-
ation of LTL specifications and optimized via cross-entropy optimization.

The second contribution of this work presents a novel algorithm designed to sam-
ple trajectories and converge to a desired cost to determine the best robot from a
team of robots for continued satisfaction of a goal specification and objective func-
tion. This algorithm advances the state-of-the art by introducing a formulation that
allows users to design agent specific cost functions – for a homogeneous team of robots
with equivalent dynamics – and dynamically allocate tasks over time while satisfying
a global specification in addition to constraints of the environment or individual agent
dynamics.

Our third contribution improves on the multi-agent task allocation algorithm by
modifying our framework to consider online task allocation, providing fast updates
to desired trajectories allocated to a team of robots. To the best of the authors’
knowledge, this paper is the first to utilize cross-entropy optimization for both UAV
task allocation and planning via the use of multivariate sampling distributions while
leveraging high-level task assignments through linear temporal logic and presents ex-
perimental results validating the use of cross-entropy for UAV task allocation and
trajectory planning. This novel approach to task allocation provides online trajectory
sampling from a known distribution and iteratively updates based on the desired quan-
tile of the multivariate distribution associated with a desired trajectory. By providing
this online methodology we combine the reduction in product automata size from task
decomposition with an expert independent framework for choosing optimal costs and
a fast way to dynamically allocate tasks to a set of agents which scales linearly.
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This paper extends the work from [12] and [19] by significantly expanding the ca-
pabilities of the previously developed multi-agent task allocation algorithm via the
online cross-entropy optimization method developed in this paper. In particular, we
present a novel characterization of online cross-entropy over multivariate distributions
and develop a general, task orchestration framework that utilizes this stochastic opti-
mization methodology for online task assignments to individual agents in a multi-agent
system. We compare this online result to the prior o✏ine work, and empirically show
a significant decrease in overall cost and execution time. In addition to this, we vali-
date the online approach for task orchestration of multi-agent systems on a particular
fire-fighting quadcopters scenario.

The paper proceeds as follows. In Section 2 we review preliminaries and notation
used throughout the paper. In Section 3 we introduce the hoop-sequencer planner
and optimization framework for the planner. In Section 4 and 5 we introduce the
MTAC-E algorithm and provide a case study. In Section 6 we improve on the MTAC-
E framework and provide an online version of the stochastic optimization technique
followed by experimental results comparing the online and o✏ine versions. We provide
experimental results for the online MTAC-E framework in Section 7 followed by the
conclusion in Section 8.

2. Preliminaries

In this section we introduce the preliminaries that will be used throughout the paper.
First, we give a brief introduction of finite LTL, which we use as a method of

generating high-level specifications for discrete autonomous systems. We optimize our
frameworks throughout this paper with the stochastic optimization technique, cross-
entropy, allowing us to sample from a subset of nominal trajectories that satisfy an
optimal cost for a system of agents. Following this, we show how we utilize quadcopters
as a highly maneuverable and versatile robotic platform to use for task orchestration
frameworks and introduce quadcopter dynamics and the controller used throughout
this paper.

2.1. Finite LTL for Global Task Specification

In this section, we provide a brief background on finite LTL, a class of LTL specifi-
cations well-suited for formally representing planning problems [22] and interpreting
finite sequences [23]. LTL specifications � are defined as logic formalisms suited for
specifying linear time properties [24,25]. LTL specifications are defined over traces
and indicate repeated satisfaction of a set of propositions ⇧ defined in the following
definition.

Definition 2.1. Let ⇧ = {⇡0, . . . ,⇡k} be the finite set of atomic propositions. Each
proposition ⇡i maps from system state to true (>) or false (?) and enables us to define
a Boolean property of the state space (e.g. “Is the robot in area G?”).

In order to create a formulation for decomposing, we consider finite LTL specifi-
cations. Finite LTL specifications are insensitive to infiniteness [26]. This restriction
applied to LTL specifications means we can reduce LTL formulas to finite LTL formu-
las by including a unique end proposition into the set of all propositions (2⇡) for the
formula. In order for a formula to be insensitive to infiniteness the following can be
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shown: i) inclusion of this end proposition, ii) end must hold eventually, iii) end must
remain true for all time, and iv) when end is true, all other propositions are trivially
set to false. Specifications are defined over sequences of observations and the notation
� |= � indicates that the sequence � satisfies �. Finite LTL includes the co-safe LTL
[27] class where a sequence � contains “good” prefixes such that �f = w0, w1, . . . , wn

is a satisfying truncated finite sequence and an infinite sequence �! with propositions
in the set �! 2 2⇧ where every proposition in �! evaluates to true (>) for the spec-
ification. The entire satisfying sequence is then a composition of �f and �! where
� = �f�!. Another class of finite LTL specifications that is utilized contains a simi-
lar prefix-su�x structure for sequences except the sequence � is defined as � = �f�N

where �N is a N repeating sequence of propositions that satisfies the LTL specification
for the duration of the algorithm. Any finite LTL specification can be represented via
a non-deterministic finite automaton (NFA) [20], which we define below.

Definition 2.2. A non-deterministic finite automaton (NFA) is given as the tuple
F = (Q,Q0,�, �, F ) such that:

• Q is a set of states
• Q0 is a set of initial states
• � is the set of Boolean formulas defined over the proposition set (⇧)
• � is a set of transition conditions such that � : Q⇥Q! �

• F is a set of accepting final states.

Given finite runs q = q(0) . . . q(T ) 2 Q a sequence � – defined as a sequence of
propositions ⇡i from ⇧ – satisfies � if it enables a transition from q(0), an initial state,
to q(T ) 2 F . These transitions, generated from �(q, q0) = {�i}, map onto a subset of
the Boolean formulas, �, which evaluate to true if the proposition, ⇡(t), from � satisfies
it. Moreover, the NFA can be constructed from a finite LTL formula � where a finite
sequence � |= � if and only if � successfully produces a run q such that q(T ) 2 F .
Throughout this paper, finite LTL will be referred to as LTL.

2.2. Cross Entropy

Cross-entropy optimization is a method of importance sampling for probabilistically
rare events. The algorithm design for using cross-entropy with motion planning [13]
can be generalized as the following:

(1) Generate a set of sample trajectories (X ) from a distribution p(·, x) and calculate
cost J (·) for each trajectory

(2) Update the distribution, p, using a subset of samples (), until the sampling
distribution converges to a desired cost (�) and delta function over the optimal
trajectory

The subset of sampled trajectories with the lowest cost (i.e.  ⇢ J) is defined such
that || = ⇢|J |, where typically 0.1  ⇢ < 0.3. This subset is known as an elite set
and provides a new sampling space to generate the distribution p. In this work, we
sample trajectories according to a multivariate Gaussian distribution N (µ,⌃) such
that µ = [µ0, . . . , µn]T for n equally spaced points along the set of sampled trajectory.
The covariance matrices, ⌃ = [⌃0, . . . ,⌃n]T form an nm⇥m matrix with ⌃i initially
set to the identity matrix, I. Expectation-Maximization [28] is used to update the
means and covariances for the newly sampled trajectories.
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2.3. Quadcopter Dynamics

We present here the dynamics considered for a quadcopter (shown in Fig. 1) and how
trajectories are generated via spline interpolation to achieve proposition satisfaction.
The rotation matrix, R(✏), that translates between the world frame (Fw) and body

Figure 1. A quadcopter with respect to the world frame (Fw), intermediate frame (Fc) and body frame (Fb).
Four motors (!1:4) produce torques and thrust for the system.

frame (Fb) is given by

R(✏) =
h
c✓c s�s✓c �c�s c�s✓c +s�s 

c✓s s�s✓s +c�c c�s✓s �s�c 

�s✓ s�c✓ c�c✓

i
(1)

where s✓ and c✓ stand for sin(✓) and cos(✓), respectively. The angles ✓, , and � are
the angles between the axes of the quadcopter in the body frame and the axes of the
world frame. The input (µ) to the system consists of µ = [fz,!T

bw
]T with fz as the

thrust and !bw = [!x,!y,!z]T as the body rotational rates of the quadcopter. We
use the non-linear quadcopter model from [29] to describe the dynamics that generate
trajectories for quadcopters:

r̈ = gzw +
1

m
R(✏)zwfz (2)

✏̇ = �(✏)!bw =

"
1 s�t✓ c�t✓

0 c� �s�

0 s�sc✓ c�sc✓

#
!bw, (3)

where zw = [0 0 1]T is the z-direction vector for force in Fw and sc✓ and t✓ are sec(✓)
and tan(✓), respectively. The position of the center of mass (r) in the world frame (Fw)
is r = [rx, ry, rz]T ; m, and g are the mass and acceleration of gravity, respectively. We
represent the Euler angles as ✏ = [�, ✓, ]T , and �(✏) is the transformation matrix
from body rotational rates in Fb to Euler angles in Fw. These dynamics give the
9-dimensional state (⇠) of the quadcopters where ⇠ = [rT , ṙT , ✓,�, ]T and input (µ).

Utilizing the di↵erentially flat dynamics [30] of the quadcopters, we plan trajectories
in the flat output space and their derivatives. From this property, trajectories can be
generated by leveraging the nonlinear dynamics of the quadcopters. This leads to
the ability to plan smooth trajectories that are three-times continuously di↵erentiable
functions, ⌘(t) 2 C

3, in the output space that can be converted back analytically into
feasible trajectories for the full state of the quadcopters.
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For a multi-agent system M = {1, . . . , N}, we control the dynamics of agent i

through the following chain of integrators:

ṗi =

2

664

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

3

775

4⇥4

⌦ I3⇥3 · pi +

2

664

0
0
0
1

3

775 · u (4)

with virtual input u 2 R3 and state p = [rT , ṙT , r̈T ,
...
r T ]T 2 R12 where r = [x, y, z]T .

We control this linear system using feedback control with

u = �hK, p� ⌘(t)i (5)

given a desired K 2 R1⇥4, state p = [r, ṙ, r̈,
...
r ]T , and desired trajectory ⌘(t) =

[rd, ṙd, r̈d,
...
r d]T and drive the linear system to the desired trajectory and derive the

feedforward control inputs µff = [fz,ff ,!T

bw,ff
]T from di↵erential flatness and generate

feedback control inputs µfb = [fz,fb,!T

bw,fb
]T from a PID control loop [12] to control

an individual quadcopter with control input µ = µff + µfb.

3. Specification Based Planning of a Quadcopter

Given a quadcopter with dynamics described in Section 2.3, in prior work, we devel-
oped a fully autonomous planner capable of navigating through suspended hoops [12].
Using this planner we define a hoop in R3, with the following definition:

Definition 3.1. We define a hoop set H={H0,H1, . . . ,Hn} according to:

Ej(r) =
(rx � xj)2

a2
+

(ry � yj)2

b2
+

(rz � zj)2

c2
(6)

Hi = {r 2 R3
| Ej(r)  1} (7)

where(rx, ry, rz) is the pose of the quadcopter, (xj , yj , zj) is the position of a region
of interest (Ej) with index j and a, b, and c are the x-radius, y-radius and z-radius of
the regions, respectively. We define these three constant radii (a, b, c) 2 R>0 for the
regions to represent the volume covered by each ellipsoid in our experiments and note
they are equivalent for all ellipsoids.

Additionally, each hoop contains five control points (two avoid points, front, rear,
and center) in R3, as illustrated in Fig. 2. We leverage these control points as an-
chor points defining locations of interest near hoops and use them to develop motion
primitives between hoops. These motion primitives are pre-defined trajectories and
are chosen based on a quadcopters position and direction according to the desired
sequence of hoops. A motion plan, formulated as an LTL specification, is provided to
the hoop-sequencer planner.

3.1. Finding Satisfying Sequences Given an LTL Specification

We consider the scenario of users providing high-level system requirements in the
form of LTL specifications through the following problem formulation.
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(a) A top-down view of the orientation of control points
for a hoop where the straight line depicted represents a
hoop as seen from above. The five labeled dots represent
the five control points (two avoid points, rear, center, and
front) for each hoop.

(b) A front view of the hoop, depicted as a circle in
the above image, with the five control points (two avoid
points, rear, center and front). Note, the center and rear
control points are occluded in this view.

Figure 2. The orientation of the control points around an example hoop. We define five control points as
points in R3 at desired positions around hoops which are used as anchor points for trajectories generated
between them.

8



Problem 3.1. Given a quadcopter and a set of hoops labeled by propositions, design a
trajectory that satisfies a given LTL specification. For example, consider the following
specification: “always ensure flying through hoop0 implies hoop2 is flown through before
hoop1 and eventually reach hoop1”. This specification can be represented by the LTL
formula � = ⇤(⌃hoop0 ! ¬hoop1 [ hoop2 ^ ⌃hoop1).

In this section, we define transitions between LTL propositions and continuous space
and develop a hoop-sequencer planner to accommodate LTL specifications.

Hoops (hoopi) are defined as atomic propositions according to Definition 2.1 such
that the proposition set is ⇧ = {hoop0, hoop1, . . . , hoopn}. We check that propositions
hoopi are satisfied by mapping the hoop set (Hi) in Definition 7, to the propositions
through the labeling function k, where k(r) = {hoopi 2 ⇧ : r 2 Hi}. In other words,
we map the position of a quadcopter (r 2 R3) to a set of corresponding hoop propo-
sitions. For example, k(r) = {hoop0} i↵ r belongs to H0. For continuous quadcopter
trajectories ⌘c(t), we use a slight overload of notation for the following definition.

Definition 3.2. Let us define the labeling function k over a continuous trajectory
where k(⌘c) = {hoopi1 , hoopi2 , hoopi3 , . . . , hoopij} is the sequence of hoops visited by
a quadcopter and hoopi 2 ⇧ and j indicates the j

th hoop in the sequence.

This labeling function generates a sequence of propositions from the continuous
trajectory ⌘c(t) for t � 0. For example, a sequence could have the form k(⌘c) =
{hoop0, hoop1, hoop0}. If the continuous trajectory ⌘c(t) is created such that all propo-
sitions (hoopi) generated from the trajectory satisfy an LTL formula ⇣, then we have
successfully found a trajectory that satisfies a given LTL formula. Therefore, the tra-
jectory ⌘c satisfies the LTL formula ⇣ i↵ k(⌘c) |= ⇣.

After defining discrete propositions in continuous space, we can plan trajectories in
the discrete space and map the trajectories back into the continuous domain using our
hoop-sequencer planner. From the LTL specifications, we generate a NFA as a directed
graph. A search through this graph for a run q = q0q1 . . . qN results in a satisfying run
if qN 2 F , or qN is in the set of accepting final states of the NFA. Associated with run
q is a sequence of propositions (⇡ 2 ⇧) such that a word � = ⇡0,⇡1, · · · 2 ⇧ is accepted
if there is an accepting run for �. Once a satisfying run has been found, the satisfying
word (i.e., a sequence of hoops) has been found and we apply our hoop-sequencer
planner to find a continuous trajectory.

3.2. LTL Hoop-Sequencer Planner

Solution 3.1. In this section, we describe our hoop-sequencer trajectory planner in
Algorithm 1. The algorithm receives as input the current pose of the robot (r), a set of
n hoops (H) (each defined by the control points previously mentioned), the input LTL
specification (�), and the previous control points visited by the quadcopter (c1:m).
These control points are used to generate four distinct curves based on the distance of
the current pose and future control points along with the direction of the quadcopter
and generates segments (segment) via spline interpolation that joins control points
together.

We first define the current (pos curr) and previous (pos prev) pose which are found
based on the order of the input sequence. In line 3, the past direction (dirpast) of the
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last control point transition is recovered from the list of previous control points. We
introduce a function LTL TO SEQUENCE in line 4 which receives an LTL specification,
generates an equivalent NFA and searches for a satisfying sequence. In order to deter-
mine which direction (front or rear) the quadcopter must fly through the hoop, we use
the Euclidean distance between each proposed hoop to find the closest control point
between two consecutive hoops in the sequence. The corresponding directions are ap-
pended to the hoops in the sequence and the planner executes as before. From the
LTL specification � = ⇤(⌃hoop0 ! ¬hoop1 [ hoop2 ^ ⌃hoop1), we get the sequence:
⌃prop = G = (hoop1)(hoop2)N in prefix-su�x form. We note that ⌃prop is used to
denote the accepting word for the NFA generated from our sample LTL specification
and N indicates the hoop, or set of hoops, that can be visited N times during the
execution of the algorithm. The resulting trajectory is shown in Fig. 4.

In lines 6 - 8 we define the next control point (pos next) and the distance vector
(distcurr,next) to the next control point. In line 6, the function NEXT CONTROL POINT
uses the current sequence to determine which control point on a labeled hoop is next.
The function DIRECTION in Line 8 gets the direction that the quadcopter is heading.
This will inform our algorithm which type of trajectory, out of four pre-determined
curves, will be chosen for a particular path segment. Starting at Line 9, hoops that
are in the state space but not in the input sequence (G) are avoided using the AVOID
function. The AVOID function receives as input the current position, a hoop from the
list of hoops and the desired next position. If a hoop is between these two points,
the function will choose the closest avoid control point of a particular hoop without
crossing through that hoop and that resulting segment from the avoid control point
to the current position will be added to the total trajectory ⌘(t).

(a) S CURVE: an arc pro-
duced when distx >

distyz and quadcopter
is not changing direc-
tion

(b) STRAIGHT: a
straight line curve
generated in the x-
direction when distyz

is zero

(c) U TURN: curve
produced when quad-
copter is changing
direction

(d) TURN: curve pro-
duced when distx �
distyz and quadcopter
is not changing direc-
tion

Figure 3. Trajectory segments that are generated in the hoop-sequencer planner.

Characterizing a Trajectory Segment: For the four types of trajectories that
can be generated, all are parameterized by time and are described by our algorithm
in lines 15 - 25. We describe each function in detail here.

STRAIGHT: If distyz = 0, The function STRAIGHT in line 15 generates a trajectory
segment length ||⌘s(t)|| = |r

c
x� r

w
x | where r

c
x is the x� component of the current pose

and r
w
x indicates the x� component of the previous pose.

U TURN: A trajectory the length of two quarter arcs joined by a straight segment is
returned by the U TURN function in Line 19 where ||⌘s(t)|| = (distyz�distx)+(distx ·

⇡

2 ).
S CURVE: In line 21, the length of the trajectory segment is created by first defining

a right triangle leg (rt), such that rt = �

q
dist2x � dist2yz. Then, ✓ and the hypotenuse

(h) of the triangle are defined as ✓ = atan2(distyz, distx) and h = rt

sin ✓ , respectively.
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Algorithm 1: Hoop-Sequencer Planner
input : pose of quadcopter r, hoops H, LTL formula �, control points prev c1:m

output: trajectory ⌘(t)
1 pos curr  r

2 pos prev  cm

3 dirpast  DIRECTION(pos curr, pos prev)
4 G = LTL TO SEQUENCE(�)
5 for i 0 to len(G) do
6 pos next NEXT CONTROL POINT(Gi)
7 distcurr,next  DISTANCE(pos curr, pos next)
8 dircurr,next  DIRECTION(pos curr, pos next)
9 for hoop in H do

10 if pos next != hoop then
11 segment  AVOID(pos curr, hoop, pos next)
12 end
13 end
14 if dist

yz
curr,next == 0 then

15 segment STRAIGHT(pos curr, pos prev)
16 end
17 if dircurr,next == dirpast then
18 if dist

x
curr,next  dist

yz
curr,next then

19 segment U TURN(distcurr,next)
20 else
21 segment S CURVE(distcurr,next)
22 end
23 else
24 segment TURN(distcurr,next)
25 end
26 pos prev  pos curr

27 pos curr  RETURN CONTROL POINT(segment)
28 ⌘(t) = ⌘(t) + segment

29 end
30 return ⌘(t)
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Figure 4. A satisfying run from the LTL specification � = ⇤(⌃hoop0 ! ¬hoop1 [ hoop2 ^ ⌃fhoop1). We
show the prefix portion of the trajectory in black and the su�x portion in red. The su�x portion indicates the
set of hoops that can be visited infinitely often.

The total length of the trajectory results in ||ns(t)|| = 2(2h✓) which generates two
equal length tangent arcs or an “s-curve” in function S CURVE.

TURN: If the direction is not the same as last, the trajectory length becomes a
straight segment followed by a half-circle that changes the direction of the quadcopter
such that ||⌘s(t)|| = distx + (disty ·

⇡

2 ), the function TURN generates this segment.
In Fig. 3 we show each type of trajectory segment that our planner can generate.

The path lengths are then transformed into time segments via ts = ||⌘s(t)||
v

, where
v is the desired speed. These time segments (ts) along with the waypoints (w1:m)
given by the input sequence are used to generate smooth trajectories (⌘(t)) via spline
interpolation.

3.3. Optimizing Sequences Using Cross-Entropy

Although the hoop-sequencer planner is able to generate trajectories from user pro-
vided LTL specifications, the path is generally not optimal. This is due to the fact
that the motion primitives used to generate trajectories are only constrained to sat-
isfy continuity requirements. By constraining our trajectories with a cost function, we
can generate trajectories that not only satisfy the primary objective of the user but
secondary objectives of the system (e.g. minimize fuel cost, average velocity, etc.). We
draw from the following scenario to motivate our problem:

Problem 3.2. Given a hoop-sequencer planner for quadcopters, utilize the cross-
entropy method to return trajectories that satisfy the sequence as well as minimize
cost. Use this method to guarantee an optimal trajectory with respect to a cost function
J (r, u), parameterized by the robot pose, r, and its control input u.

Solution 3.2. We use the cross-entropy method as a stochastic optimization tech-
nique for choosing trajectories according to our cost function, which we define to
minimize the total length of the trajectory, i.e., J (r, u) = ||⌘(·)||.

Optimizing the Hoop-Sequencer Planner: From the augmented hoop-
sequencer planner, we apply cross-entropy optimization to reduce the cost of the sam-
pled trajectories once they are generated. Our algorithm is adapted from [18] with
modifications on sampling initial means. We sample from the hoop-sequencer planner
to generate initial means to ensure that only the subset of the state space relevant to
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our hoop sequence is sampled.

1 input : LTL formula �, hoop propositions i! n Hi:n, number of trajectories T ,
optimal cost ⌃, elite set modifier ⇢, sampling distribution p(µ0, v), iteration
number N

output: best path ⌘(t)
2 n := initial iteration number
3 µ0 = Hoop-Sequencer Planner(r, Hi:n, �, w1:m)
4 best cost := 1
5 while best cost > ⌃ and n < N do
6 for i in T do
7 path samples! p(·, v)
8 ⌘(t) ! PATH(path samples)
9 path check ! LTL PARSER(�, ⌘(t),Hi:n)

10 if path check==True then
11 sorted trajectories! ⌘1(t) < ⌘2(t) · · · < ⌘p(t)
12 best cost = sorted trajectories0

13 elite set = ⇢ ⇤ sorted trajectories

14 p(·, v)! UPDATE(sorted trajectories)

15 return ⌘(t)

Path samples are sampled from a multivariate Gaussian distribution. The means
(µ0) are initialized to be n equidistant samples from the augmented hoop-sequencer
planner. As a result, we get path samples from line 7. Line 8 defines a PATH function
that receives as input samples from the distribution p(µ0, v) and generates a trajectory
via spline interpolation. This trajectory is then checked in line 9 where it is monitored
for inclusion in the hoop set (H). The trajectory is then parsed in the syntax of
the accepting set of hoops and checked for whether it satisfies the string received
initially from the augmented planner generated from the LTL formula (�). If this
check returns True the trajectory is returned, otherwise a new trajectory is sampled.
Trajectories are collected and sorted from best cost to worst cost and an elite set is
chosen corresponding to a subset of trajectories (T ). We then update the probability
distribution using the elite subset of trajectories.

Example 1. Using the cross-entropy hoop-sequencer planner, we optimize over the
LTL formula � = ⇤(⌃hoop0 ! ¬hoop1 [ hoop2 ^ ⌃hoop1) provided in Section 3.1.
In Fig. 6, we show the optimized trajectory of the LTL formula with the constraint
that each trajectory segment (prefix and su�x) length should be less than 5 meters or
J (r, u)  5. In Fig. 5 we show the sampled paths over an iteration of the algorithm.

4. Multi-Agent Task Allocation via Cross Entropy

In the previous section, we presented a planner capable of utilizing LTL to delegate
high-level user specifications to a quadcopter. Through the introduction of motion
primitives we simplify the path planning problem and introduce cross-entropy to opti-
mize trajectory costs over a desired cost function. However, for large LTL specifications
using a single agent may become infeasible. By using multiple agents, we can scale up
the number of tasks a group of robots can perform and reduce the total time required
to complete the tasks. Therefore, in this section we propose to use LTL as global task
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Figure 5. Here we show a series of trajectories generated from Algorithm 1. The prefix portion of the
trajectory, represented in blue, satisfied the cost function J = ||⌘(t)|| initially therefore, only one sample
was needed. Several samples of the su�x portion, in red, of the trajectory were sampled before a satisfying
trajectory was found.

Figure 6. A simulation snapshot of the LTL cross-entropy hoop-sequencer planner after a satisfying run.
The optimized trajectory of is shown here where each trajectory segment must satisfy the cost constraint
J (r, u)  5.
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specifications, allowing users to design global goals for multi-agent team execution. In
addition to this, global goals enable scalability (i.e. goals are independent of the team
size) and reduce cognitive load [31] on the designer as they do not have to assign each
agent a specification. This type of interaction modality is easily adapted from tempo-
ral logic formula, in addition to providing formal guarantees for global specification
satisfaction. In this section, we will give a brief overview of the transition systems used
followed by an LTL decomposition framework that will allow for the decomposition of
LTL specifications to a set of N agents.

4.1. Defining Transition Systems

We adopt the framework for defining task decomposition from [20], which involves
creating several state transition systems for a robotic system. From this discrete plan-
ning framework, we are able to decompose a product automaton containing multiple
agents into independent tasks that can be handled by each agent, while also satisfying
a given goal specification. The definition of the robot transition system, R, follows.

Definition 4.1. The robot transition system is defined as a tuple R =
(SR, SR,0, AR,⇧R,⇤R) such that:

• SR is a set of robot states
• SR,0 ⇢ SR is the set of initial robot states
• AR is a set of available robot actions
• ⇧R is the set of robot propositions
• ⇤R : SR ! 2⇧R is a labeling function that assigns atomic propositions to states.

The robot transition system captures the entire internal state of a robot and
transitions are based on the actions, AR, available to the robot at each state.
For example, consider a simple robot transition system with two states S =
{charging, not charging}. We can define a sequence of state action pairs s = s0, a0, s1

to transition from the non-charging state (s0) to the charging state (s1) via action a0,
and vice versa. We next define the environment transition system E to capture the
properties of the regions of interest for the agents.

Definition 4.2. The environment transition system is defined as a tuple E =
(VE , EE ,⇧E ,⇤E) such that:

• VE is a set of environment vertices
• EE is a set of edges between vertices where EE ✓ VE ⇥ VE
• ⇧E is the set of environment propositions
• ⇤E : VE ! 2⇧E is a labeling function that assigns atomic propositions to loca-
tions.

The product transition system A is used to define the internal state and external
location of the agent throughout the planning space.

Definition 4.3. The agent transition system is given as a product transition system
A = E ⌦R = (SA, SA,0, AA,⇧A,⇤A) such that:

• SA = VE ⇥ SR is the set of combined location and internal states of the agent
• SA,0 = {(v, s0) 2 SA : s0 2 SR,0} is the set of initial agent states
• AA ✓ SA ⇥ SA is the set of actions available to the agent
• ⇧A ✓ ⇧E ⇥⇧R is the set of agent propositions
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• ⇤A : SA ! 2⇧A is a labeling function that assigns atomic propositions to agent
states.

In this definition, the set of actions AA are available to a robot based on both its
internal state and location in the environment. Additionally, the actions are restricted
in that only actions that are available at states which satisfy some Boolean transition
formula, ⇠ : AA !  , are included. More formally,

AA := {a = ((v, s), (v0, s0)) 2 SA ⇥ SA :

(v, v0) 2 EE ^ (s, s0) 2 AR ^ ⇤A((v, s)) |= ⇠(a)}

Now that we have the agent automata defined for all agents, we can define the
planning automaton P for the entire system.

Definition 4.4. The planning automaton P is a product automaton of an NFA F ,
generated from LTL specification �, and agent transition system A where P = F⌦A =
(SP , S0,P , AP) such that:

• SP = Q⇥ SA is the set of states
• S0,P = {(q0, s) 2 SP : q0 2 Q0 ^ s 2 SA,0} is the set of initial states
• AP = {((q, s), (q0, s0)) 2 SP ⇥ SP : (s, s0) 2 AA ^ �(s) |= �(q, q0)} is the set of
actions.

With the planning automaton P, only sequences, � – with propositions ⇧A – that
satisfy the LTL specification � are accepted.

4.2. Decomposition Set

Given a multi-agent system with N agents, according to the set of automata P i,...,N , we
seek to decompose the global LTL specification � such that parts of it can be assigned
to the set of agents based on their cost functions. Moreover, using task decomposition,
we wish to generate independent sequences of action/state pairs from P

i to satisfy �
where sequences are si = s0a0, . . . , ansn. We give the following definition of finite LTL
task decomposition.

Definition 4.5. [20] Let Ti with i 2 {1, . . . , n} be a set of finite LTL task specifications
and �i denote any sequence such that �i |= Ti. These tasks are called a decomposition
of the finite LTL mission specification � if and only if:

�j1 . . .�ji . . .�jn |= � (8)

for all permutations of ji 2 {1, . . . , n} and all respective sequences �i.

From this definition of decomposition we can create the decomposition set D ✓ Q of
the NFA F developed from �. This set contains all states q for which the pair of tasks
T

q

1 , T
q

2 , where q is a state in the decomposition set D, define a valid decomposition.
For a proof of this property, we refer the reader to [20].

We use this decomposition property to avoid generating a large product automaton
of the transition system of agents and automaton representation of the finite LTL
specification. This greatly reduces the computational complexity usually encountered
with systems involving a large number of agents. We define team product automata,
T , with the following definition.
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Definition 4.6. The team model automaton T is a union of the N local planning
automata P

i with i 2 {1, . . . , N} where the tuple is T = (ST , S0,T , AT , FT ) such that:

• ST = {(r, q, s) : r 2 {1, . . . , N}, (q, s) 2 S
i

P} is the set of states
• S0,T = {(r, q, s) 2 ST : r = 1} is the set of initial states, with r being a randomly
assigned initial agent

• AT =
S

i
A

i

P [ ⇣ is the set of actions, including the switch transitions Z
• FT is the set of accepting final states

Switch transitions, Z, allow our algorithm to select a new agent within the product
automaton to complete the satisfaction of the specification.

Definition 4.7. The switch transitions in T are given by Z ⇢ ST ⇥ ST . A transition
⇣ = ((rs, qs, ss), (rt, qt, st)) 2 Z if and only if [20]:

• rs 6= rt: the agents are di↵erent
• qs = qt: the progress of the NFA is preserved
• rt = rs + 1: A new agent is selected
• st = s

rt

0,A: The new state is the initial state of a new agent
• qs 2 D: the state is in the decomposition set of the NFA.

With discrete transition systems defined for a homogeneous team of agents, a de-
composition framework, and a method to generate trajectories for a single agent we
turn to the following problem formulation.

Problem 4.1. For a given set of homogeneous agents, distribute tasks among these
agents considering discrete agent transition systems with unknown action costs. Dis-
tribute these tasks while minimizing individual agent cost functions fi(·), given by the
operator before execution, for agents i, . . . , N .

We demonstrate this problem as a fire-fighting quadcopter scenario in Section 5.3. In
this problem, we designate N quadcopters, each defined by discrete product automata
as our set of homogeneous agents, with no action costs to transition between states.
The team of robots is given the global task of surveying goal locations within the state
space, acquiring water and transporting it to the desired location while obeying the
constraints of the environment. We solve this problem using the MTAC-E algorithm
proposed below.

5. MTAC-E Algorithm

Solution 5.1. We propose the Multi-Agent Task Allocation Cross-Entropy (MTAC-
E) Algorithm to delegate tasks to a set of agents. Previously, we defined a decomposi-
tion framework in Section 4.2; given we have designed cost functions for each agent in
the problem, we need a way to find optimal trajectories by minimizing nominal tra-
jectories via these cost functions. To find the associated minimized costs, we propose
using cross-entropy optimization. In this framework, we use agent trajectory costs op-
timized via cross-entropy as opposed to static actions costs defined at discrete state
transitions.

This additional flexibility in problem design allows operators to minimize over indi-
vidual agent cost functions and use generalized functions for entire agent trajectories
when the cost to perform an action is unknown. Next, we present the multi-agent task
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allocation cross-entropy (MTAC-E) algorithm followed by a complexity analysis of the
algorithm and the case study mentioned in the problem statement.

5.1. Algorithm

The algorithm developed in this paper, provided in pseudocode format in Algorithm 2,
can be described in four steps: (1) given the initial state of the agent product automa-
ton, find the cost of transitioning to the next state using cross-entropy and the cost
function assigned to the agent, (2) if this state is contained in the decomposition set,
check all other agent cost functions and, (3) if an agent has a lower total cost, switch to
this agent for the remainder of the algorithm or until a new switch is determined, (4)
this process in continued until the end state is found and corresponding trajectories
are returned to all agents for execution.

The algorithm receives as input the team product automaton, T , the decomposition
set, D, an optimal cost for each agent to minimize towards, �, the elite set modifier,
⇢, an initial sampling distribution, p and the number of times to iterate the sampling
procedure, K. In Line 1, the initial state, pi, the agent of pi, ↵i, and the current
sequence of states visited by agent i, sequencesi, are initialized. We recall Definition
4.6 of the team product automaton in this framework such that via a standard breadth-
first search, once the state p 2 final states(T ) is found and a sequence is generated
that reaches this state, the LTL specification is satisfied.

The cross-entropy optimization technique in Line 7 is utilized in the function
cost to go. An initial probability distribution is provided for each agent with ini-
tial means and variances. Also, elite set modifiers (⇢), an optimal cost (�), and a
bounding maximum iteration number (K) are supplied as input. The function sam-
ples from the given distribution and iterates until either the cost function has been
met or the maximum iterations has been exceeded and returns the trajectories for
each agent (⌘i(t), . . . , ⌘n(t)).

For states in the decomposition set (D), a cost is calculated from each in Line 9 and
if one of the costs is less than the current agent’s cost (costi) the agents are swapped
and the new agent j continues the remainder of the sequence until the next switch
transition occurs. By switching the agents at decomposition states, this algorithm
optimizes the individual task function of each agent via cross-entropy and optimally
allocates tasks to minimize the total cost of an individual agent. This algorithm will
return a set of trajectories N with each agents individual trajectory ⌘i(t).

5.2. Complexity

We give a brief overview of the complexity of the algorithm and compare it to other
methods for task allocation using temporal logic. Size analysis to search through LTL
automata for satisfying sequences is well-known [6]. Generally, a trajectory, ⌘ can be
checked if it satisfies the automata A� in O(|⌘| · |A�|), denoting a bilinear complex-
ity in the length of the trajectory and in the size of the automata. Leveraging task
decomposition, the size of our team automaton, T is smaller than one created via a
product automata (i.e. Aprod = Pi ⌦ Pi+1, . . . ,PN�1 ⌦ PN ), where N is the number
of agents. In our work, we check trajectories for membership in an agent planning
automaton, Pi, which is equivalent to the number of NFA states F times the number
of agent states A or |Pi| = |F| · |SA| unlike automata produced by constructing a
product where |Aprod| = |F| · |SA|

N , thus |Pi| ⌧ |Aprod| . Due to the checking of
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Algorithm 2: MTAC-E Algorithm
input : product automaton T , decomposition set D, optimal cost �, elite set modifier

⇢, sampling distribution p(µ0, v), iteration number K
output: set of trajectories N

1 pi := initial state(T )
2 ↵i ! pi := agent i in initial state
3 sequencesi := sequence of states visited by agent i
4 p! pi := set p to initial state
5 while p /2 final states(T ) do
6 for q in neighbors(p) do
7 ⌘i(t), costi ! cost to go(↵i, q, sequencesi, �, p(·, v), K, ⇢)
8 if q 2 D then
9 ⌘j:n(t), costj:n ! cost to go(↵j:n, q, sequencesj:n,�, p(·, v), K, ⇢)

10 end
11 if costj:n < costi then
12 ↵i ! ↵j

13 p! pj

14 sequencesj = sequencesj + sequencesj,p!q

15 end
16 else
17 sequencesi = sequencesi + sequencesi,p!q

18 end
19 end
20 end
21 N = {⌘1(t), . . . , ⌘n(t)}
22 return N

N agents in our framework, our algorithm can check trajectories with complexity of
O(N · (|⌘| · |Pi|)). Recall, that product automata have states that grow exponentially
with the number of agents therefore, due to our algorithm being linear in the number
of agents, N , we show our algorithm is far more scalable than other methods utilizing
product automata for task allocation. In addition to this, the runtime of the MTAC-
E Algorithm, while heavily dependent on cost function choice and size of planning
automaton, is ⇠ 300 seconds for the task allocation of three agents.

5.3. Case Study: Fire Fighting Quadcopters (Introduction)

We motivate the application of Algorithm 2 with a firefighting quadcopters scenario.
This scenario naturally fits within a discrete planning framework for a multi-agent
system due to multiple environment constraints that need to be satisfied within a
defined area (e.g. verifying safe regions, checking for water sources, etc.). In addition
to this, agents may have internal constraints that need to be satisfied that can be
developed as the internal transition system of an agent. The MTAC-E algorithm given
a global goal, a finite automata describing the operational environment and individual
internal state for a team of agents, optimally plans trajectories for a set of agents given
the following problem definition.

Example 2. For example, each agent may be a fire-fighting autonomous aircraft
capable of collecting water, extinguishing fires and surveying goal locations. These
agents are given the following global goal: “eventually visit LOC1 and LOC2 and
always ensure visiting SMOKE implies CARRY ING”. Using LTL, this specification
can be represented as � = ⌃LOC1 ^ ⌃LOC2 ^⇤(SMOKE =) CARRY ING).
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Figure 7. A transition system for a single agent which describes the internal state of a robot (Ri). All robots
start at the initial state ‘NO WATER’ and a location-based transition is used to determine when to transition
to the ‘CARRYING’ state. If a robot is in the environment state that satisfies the ‘WATER’ proposition, the
robot can transition to the ‘CARRYING’ state.

According to our discrete planning framework, we define the internal state of the
robot using Definition 4.1 where our robot is represented by a two state transition
system with a transition denoted by whether it has visited the water location in the
environment. A robot transitioning from the ‘NO WATER’ state to the ‘CARRYING’
state indicates the ‘WATER’ proposition was true in the environment during that
transition. In Fig. 7 we represent the discrete internal transition system of robot i as
(Ri).

The environment transition system, Fig. 8, is represented by a set of nodes corre-
sponding to states with adjacent nodes in the graph representing neighbors for poten-
tial paths through the state space. In simulation and experiment, we represent each
node as an ellipsoid in R3, defined in Section 2.

Figure 8. The environment transition system where each state indicates a desired region of interest. The
initial state of the environment is the ‘ROBOT’ state. In the fire fighting example, LOC 2, cannot be reached
unless the quadcopter passes through the SMOKE region.

Using this definition, discrete transitions are identified when the relative po-
sition of a quadcopter transitions inside any of the regions of interest defined
in the state space. In our case study, the environment proposition set is ⇧E =
{WATER,SMOKE,LOC1, LOC2}. By taking the product we can generate the full
agent automaton for each agent i such that Ai = E⌦Ri shown in Fig. 9. Following the
standard procedure for developing automata for robotic systems we generate a NFA
from the finite-LTL specification and take the product with Ai for each agent to get
P , an automaton that only accepts runs that satisfy the LTL specification and agent
transition system.

5.4. Simulation

We apply Algorithm 2 to the disjoint product of the n agents P automaton, T =
Pi [ · · · [ Pn. In order to generate trajectories from the given specifications we utilize
a custom sequence planner that uses pre-selected trajectories based on a quadcopter’s
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Figure 9. The full agent transition system for a quadcopter. Transitions to the ‘CARRYING’ state can only
be fulfilled once the agent has retrieved water from the environment node.

position and speed relative to a labeled location (e.g. an ellipsoid’s location and gen-
erate splines between ellipsoids). After the initial trajectory for a given sequence is
plotted, we use cross-entropy optimization to minimize that trajectory over the cost
function J =

R
T

0 ||⌘(⌧)||+ ||u(⌧)||d⌧ .
The MTAC-E Algorithm samples trajectories from an unknown distribution that

minimizes the cost function, J , which is a function of the path length, ⌘(t), and the
control input, u(t) =

...
r , where r = [x, y, z]T 2 R3, the position of the center of mass

of the robot. We set � = 0, indicating a desired optimal cost for each agent of minimal
trajectory length and cost. In general, a trade-o↵ is made between picking a reasonable
� and algorithm run-time, which is why limiting the number of iterations is desirable.

Figure 10. Three quadcopters during a simulated fire fighting mission. The entire team is given the speci-
fication � = ⌃LOC1 ^ ⌃LOC2 ^ ⇤(SMOKE =) CARRY ING). Each quadcopter is considered during the
iteration through the product automaton of the system, switches to another quadcopter are considered when
the cost is beneficial for the team.

Results are shown in Fig. 10 where three quadcopters are shown satisfying the
LTL formula �. The resulting sequences are quad0 = {WATER SMOKE LOC2},
quad1 = {SMOKE} and quad2 = {WATER LOC1} which results in a satisfying
sequence for the entire input specification. The returned sequences are one of many
satisfying sequences returned by a search over the team automaton, T , and additional
constraints in the graph can modify which sequences are returned. In Fig. 11, the cost
per quadcopter over 12 iterations is shown for satisfying a single proposition (LOC2).
In this example, the MTAC-E algorithm selects quad2 as the quadcopter to transition
to LOC2.
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Figure 11. The MTAC-E Algorithm iterates 12 times over a subset of trajectories and produces the trajectory
with the lowest cost after all iterations. Here, we show the algorithm evaluating which quadcopter should
transition to LOC2. This calculation is formulated in our cost function where we minimize the distance traveled
and input to system. Each quadcopter executes the MTAC-E optimization and after all quadcopters have
completed the algorithm, the quadcopter with the lowest cost is selected to complete that task, in this example
quad2 is choosen.

6. Online MTAC-E

The MTAC-E algorithm developed in Section 4 allowed the use of a stochastic op-
timization technique for task allocation of a multi-agent system. In addition to this,
we utilize cost functions to assign agents a task based on the individual constraints
of an agent and its environment. However, this algorithm was developed in an o✏ine
manner, meaning it must run to completion before tasks can be delegated to a set
of agents. This is time consuming and detrimental for time critical task assignment
scenarios. The o✏ine algorithm also considers optimal costs defined a-priori by an
expert individual. This assumption makes it di�cult for users to utilize this algorithm
without prior information of the desired cost function, agent and environment that a
multi-agent system will operate in. We solve both these issues by developing an on-
line method of cross-entropy, modified to operate over multi-dimensional probability
distributions. This method allows fast generation of trajectories in real-time and an
expert independent method of optimal cost generation.

In order to apply an online version of the MTAC-E algorithm, we consider the
trajectory Xt sampled at time t. The trajectory Xt = (X1t, . . . ,Xnt) is a vector of i.i.d.
random variables Xit drawn from known multivariate Gaussian distributions N (µ,⌃).
Similar to [32], we consider a sample, XNe

, elite if at position ⇢ · |X|, with ⇢ > 0 and
|X| the cardinality of the set of trajectories drawn at time t, it belongs to the subset
of ordered trajectories {X0 < X1 < · · · < X⇢·|X|}. At each time step, this sample is
chosen based on if its corresponding cost f(XNe

) � �t where �t is the elite threshold.
The threshold (�t) either increases, decreases or stays constant according to four cases
depending on where the new sample and the dropout sample belong in the set of N
trajectories:

(1) New sample (X[Ne+1]) and dropout sample (X[Ne]) are elite, this is a rare event
with probability ⇢ and as such has a small probability of occurring. In this event,
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the threshold, � and threshold position stays the same and does not change.
(2) New sample is elite but dropout sample is not elite. In this case, the threshold

value will increase by the di↵erence in cost between the new sample and the
sample at the end of the elite set such that �t+1 = � + f(X[Ne+1]) � f(X[Ne]).
This increase in � is attributed to “expanding” the search of trajectories with
similar costs to gain membership to the elite set.

(3) New sample and dropout are not elite. The threshold will stay the same.
(4) New sample is not elite and dropout sample is elite. In this case, the threshold

value will decrease since the thresholding may be too high for samples to be
considered elite. Thus, the threshold is lowered to �t+1 = � + f(X[Ne�1]) �
f(X[Ne]).

Let �t = E(f(X[Ne+1]) � f(X[Ne])|Gt) be the update step for the threshold where
Gt is the �-algebra of all known random outcomes up to time t and f(X[Ne]) as the
trajectory cost measured at the elite set threshold. Given that the sample positions
within the set of trajectories are distributed uniformly,

E(�t+1|Gt, new sample is elite)

= �t + P (case 1) · E(f(X[Ne+1])� f(X[Ne])|Gt) + P (case 2) · 0

= �t + (1� ⇢) ·�t.

Likewise, for the non-elite sample case

E(�t+1|Gt, new sample is not elite)

= �t + P (case 3) · 0 + P (case 4) · E(f(X[Ne�1])� f(X[Ne])|Gt)

= �t � ⇢ ·�t.

The update step is equivalent to the product of the average di↵erence between samples
and the di↵erence between Xt evaluated at the ⇢th probability and 1 sample above it.
In order to create an update step for trajectories sampled from a Gaussian distribution,
we develop a Gaussian approximation for multivariate distributions. Prior works that
utilize online cross entropy for task allocation used an update step based on uniform
or univariate Gaussian distributions, relying on one dimensional samples. Our work
extends this by formulating an update step for multivariate Gaussian distributions in
the following section.

6.1. Developing the Update Step

The update step for samples from multivariate distributions will be a n⇥m matrix cor-
responding to n samples from Xt, with each sample a m-dimensional vector. Consider
a continuous update step that measures samples from normal distributions according
to the desired ⇢th percentile. From the inversion principle [33]:

Fact 6.1. Let � be the cumulative distribution function on Rn with the inverse ��1

defined as

��1(p) = inf{x 2 Rn : �(x)  p, 0 < p < 1}. (9)

(1) If U is a uniform [0, 1] random variable then ��1(U) has distribution �.
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(a) t=2.5 (b) t=5 (c) t=7.5 (d) t=10

Figure 12. Samples drawn from the inverse distribution F�1 are shown in the above plot. Sample means µ

are measured and shifted by the quantity given by the product of the covariance of N (µ,⌃) and the standard
normal inverse function ��1 evaluated at the ⇢th quantile. In these plots, sample means are measured via the
straight line distance between a quadcopter and the desired hoop, the covariance matrix is ⌃ = 0.05 · I and
⇢ = 0.05. At each iteration, new samples are drawn from the quantile F�1, here we show samples, corresponding
to points drawn at the ⇢th quantile, drawn at di↵erent times during the runtime of the sampling algorithm.
The final iteration at t=10 contains the trajectory the quadcopter follows.

(2) If X has distribution �, then �(X) is distributed uniformly on [0, 1].

Proof. The first statement can be verified through
P (��1(U)  x) = P (inf{y 2 Rn : �(y)  U}  x) = P (U  �(x)) = �(x).

The second statement is a result of the following relationship
P (�(X)  u) = P (X  ��1(u)) = �(��1(u)) = u

The normal distribution we sample from is not a standard distribution, therefore
our inverse function ��1 is

F�1(⇢) = µ+ ⌃ · ��1(⇢) (10)

where ⇢ is the desired percentile of N (µ,⌃) and ⌃ is the covariance matrix. In
[34], the average of two samples from a normal distribution is 2�/

p
⇡, extending to

the multivariate distribution case, we form �t = E|X1 � X2| · �F�1(⇢) as the di↵erence
between the quantile functions for a particular sample weighted by the expectation of
two samples from a normal distribution with known parameters such that

�F�1(⇢) =
1

2
F�1(1� ⇢+

1

N
)� F�1(1� ⇢) (11)

�t =
1
p
⇡
· ⌃[F�1(1� ⇢+

1

N
)� F�1(1� ⇢)]. (12)

This formulation of �t is a matrix and a scalar form is desirable for doing compu-
tations on �, another scalar. We propose the following definition to achieve a scalar
approximation of delta, �et.

Fact 6.2. Let �t be the multivariate update step for threshold cost, �. The scalar
approximation of �t is formulated as

�et = min
i

mX

j=1

|�ij | 2 R (13)

minimizing the sum of quantile di↵erences and returning the smallest di↵erence be-
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tween quantile samples.

Using �et we update the desired threshold �t in real-time as samples are acquired.
However, the quantile function �(x) is not easily acquired. In the next subsection, we
define how to sample from a hyperellipsoid to generate uniformly sampled points from
the ⇢th quantile of �(x).

6.2. Generating Quantile Function for Multivariate Gaussian

We begin by defining our problem as finding the contour line of a hyperellipsoid derived
from the parameters of N (µ,⌃).

Fact 6.3. Let Y be a sample from the surface of the hyperellipsoids with the following
form

(Y ��!µ )T⌃�1(Y ��!µ )  c
2

Where c is the desired distance of Y from mean �!µ . A semi-axis of the hyperellipsoid
is �i = ±c

p
�ivi and contains 100(1-⇢)% of the sampling distribution and c

2 = �
2
⇢,↵,

the chi-squared distribution for ↵ degrees of freedom measured at its ⇢th value.

Proof. The eigendecomposition of the covariance matrix is ⌃ = V DV
T , with V as

the eigenvector matrix and D as the diagonal matrix of eigenvalues �i. We find the
square root of ⌃ = V S

1/2
V

T . ⌃ = ⇤⇤T where ⇤ = V D
1/2. The matrix ⇤ scaled by a

factor c results in ⇤⇤ = c⇤ and likewise ⌃⇤ = c
2⇤⇤T = c

2
V D

1/2
D

1/2
V

T = c
2⌃ which

determines the contour of the distribution considered by the sampled vector Y.

With our desired distance value, c, we project points sampled from a uniform hy-
perspheroid, R, onto the covariance ⌃, shifted by the mean vector, µ. The points from
hyperspheroid, R are sampled using the following algorithm [35] and we develop the
following algorithm for sampling from quantile functions of multivariate distributions:

We provide a brief description of Algorithm 3 here. We begin with sampling the
chi-squared distribution for a desired number of samples m at percentile ⇢ with ↵

degrees of freedom at line 1. Followed by this, we find the square root of the received
value and store it as c. We find the eigendecomposition of the covariance and its
corresponding square root followed by the definition of ⇤ at line 4. Afterwards we
follow the developments from [35] to sample from a hyperellipsoid. In line 6 we take
the square root of the sum of squares of samples from a normal distribution sampled
m times. The matrix Xnz⇥m results in points uniformly distributed on a hypersphere.
Because we wish to access the values of this hypersphere stretched by c⌃ and centered
on mean z, we apply the linear equation in line 10 to find points sampled from the
⇢
th quantile, as shown in Fig. 12 over 5 selected means. This proposed method allows

us to sample from a desired percentile of our sampling distribution for multivariate
Gaussians. Desired trajectories corresponding to elite samples can be drawn from this
sampling function and we use this sampling function to generate �t at each iteration.
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Algorithm 3: Quantile Sampling
Input : desired value of quantile function ⇢, covariance matrix ⌃, mean

vector
!
µ , degrees of freedom ↵, number of samples m

Output: point sampled from ⇢
th quantile,Y

1 c
2
! X

2
⇢,↵

2 c!

q
X 2
⇢,↵

3 ⌃1/2 = V D
1/2

V
T

4 ⇤ = c⌃1/2

5 Xnz⇥m ⇠ N (0, 1) :

6 rss =
qP

i=m

i=0 (X2
nz⇥i

)

7 Kx = 1nz⇥1 ⌦ rss

8 Xnz⇥m = Xnz⇥m/Kx

9 z =
!
µ · 11⇥↵

10 Y = X
T
nz⇥m · ⇤+ z

T

6.3. Online Cross Entropy

In Algorithm 4 from lines 1 - 5 we check if the run is the first run of the algorithm, if
true, initial means µt are generated based on the current position of the quadcopter
(r) and position of the hoop (H). In addition to this we generate covariances (⌃),
a randomly generated value for the desired cost (�) and �t is generated from the
Quantile Sampling function where we assume that the samples are generated from a
distribution with N trajectories. If the run is not the initial run, we use the previous
µ,�, and �t. Following this, we perform the matrix operation from Equation 13 on
�t. We sample a trajectory Xt from a normal distribution by interpolating between
path samples drawn from the distribution using the means and covariances previously
acquired. If the cost function f(Xt) and the trajectory satisfy the constraint in line
14 then �t is increased. Otherwise, � is decreased conditional on the case that the
trajectory goes through the hoop but does not satisfy the cost constraint. Finally, �t

is updated and we return the pose in Xt that corresponds to time t.

6.4. Update �t Threshold

Our value for incrementing the desired threshold, �, can also be modified with an
exponential factor � = ae

�bt with a, b > 0. The delta threshold is updated at each
time step t such that �et+1 = (1 � �)�et + �|f(xt) � f(xt+1)|. Using this update
formulation, initially, �et weights information from the costs between samples as more
important than prior �et values. This is beneficial for us since our samples are drawn
uniformly from a quantile function whose initial samples may not be reliable but allows
a su�cient search of the cost function space of nearby samples. In Fig. 13 we show
how varying values of a and b a↵ect the convergence of �et. In this figure, we plot the
change in �et as the quadcopter runs the online cross entropy algorithm to converge
to a desired hoop in 10 seconds. Initial �et update values can vary due to dependence
on f(Xt), so instead we focus on the convergence rate of each plot. We can see that
for a = 0.1 and b = 0.01 as time progresses, �et quickly converges to a value close to
zero as �et moves from reliance on relative di↵erence in measured cost to previous �et
values. On the other extreme, for a = 0.001 and b = 0.0001, �et does not move far
from its initial value and stays near the value it eventually converges to during the run
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Algorithm 4: Online Cross Entropy
Input : robot position r, desired hoop H, desired value of quantile function

⇢, previous cost f(x)t�1, previous time tt�1, previous lambda �t�1

previous delta �t�1, previous means µt�1, previous covariances⌃t�1,
previous samples Xt�1, number of total trajectories N

Output: updated desired state pt, means µt, covariances ⌃t, path samples Xt,
lambda �t, cost f(x)t, delta �t

1 if initial run is True then
2 µt ! generate means(r,H)
3 ⌃t ! generate initial covariances()
4 �t ! random generator()
5 �t !

⌃p
⇡
· Quantile Sampling(1� ⇢+ 1

N , µt,⌃t) -

Quantile Sampling(1� ⇢, µt,⌃t)
6 end
7 else
8 µt ! µt�1

9 �t ! �t�1

10 �t !
⌃p
⇡
· Quantile Sampling(1� ⇢+ 1

N
, µt,⌃t) -

Quantile Sampling(1� ⇢, µt,⌃t)
11 end
12 �et ! �t

13 Xt ⇠ N (µ,⌃)
14 if f(X )t � �t�1 and goes through hoop(Xt) is True then
15 �t ! �t + (1� ⇢) ·�et
16 µt,⌃t ! MLE(Xt, . . . ,Xt�1)
17 end
18 else if goes through hoop(Xt) is True then
19 �t ! �t � ⇢ ·�et
20 end
21 �t ! (1� �)�et�1 + ��et|(f(Xt)� f(Xt�1)|
22 pt ! Xt(t)
23 return pt, µt, ⌃t, �t, f(x)t, �t
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Figure 13. The time evolution of �et for varying values of a and b. From the figure, a greater value of a and
b indicate a greater dependence on the absolute error in sample trajectory costs f(X ) initially. This causes
a greater change in magnitude of the step size of �et than in smaller values of a and b and may reduce the
sensitivity of the algorithm to desirable values of �et. We observe through empirical tests that values near
a = 0.01 and b = 0.001 provide a reasonable trade-o↵ between utilizing the trajectory costs and prior step size
�t for updating �et.

time. For all experiments, we chose a = 0.01 and b = 0.001 due to the values allowing
for initial cost consideration, followed by slow convergence to values closer to expected
quantile di↵erences.

6.5. Online MTAC-E Algorithm

The Online MTAC-E algorithm presented in Algorithm 5 proceeds in the following
section. The current robot poses for n robots is given, the time t, and the desired LTL
specification (�) to be satisfied. If the algorithm is in its first iteration we generate the
sequence of propositions that satisfy the specification, otherwise we store this desired
sequence for future iterations. Then for each node, in lines 5 - 14 a series of checks are
done to verify if the node has been satisfied or if all the nodes have been satisfied. In
addition to this, we track if each agent has had a chance to be assigned a proposition,
when all agents have an assignment, the desired states are sent to each robot. If
the robots are in the decomposition set D we consider the switch condition where
each agents current state, desired trajectory to node q, and the cost function fi(x, u)
associated with a particular agent to assign the node to the agent with the lowest cost.
If the node is not in the decomposition set, the online cross entropy algorithm executes
for a single agent. Due to the node not being in the decomposition set, once an agent
is assigned to the set D̄ = {q 2 D̄|qi 6= q0 ^ (qi, qi+1) 2 ED} it may not transition to
the decomposition set for the remainder of the run. The set of states p are returned
for each robot agent where each state is the chain of integrators state referred to in
Section 2. We have now formally generated an online method for task allocation using
the stochastic optimization technique, cross entropy, for quadcopters. However, now
we verify the algorithm against the o✏ine version followed by experimental results.
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Algorithm 5: Online MTAC-E Algorithm
Input : current robot poses ri,...,n time t, LTL spec �
Output: new poses ri,...,n, flag for specification satisfaction satisfied ltl

1 satisfied ltl is False
2 if first iteration then
3 satisfying run! generate satisfying run(�)
4 end
5 for q in satisfying run do
6 if q is satisfied then
7 continue
8 end
9 if all q satisfied OR all agents assigned then

10 if all nodes satisfied then
11 satisfied ltl is True
12 end
13 break
14 end
15 if q 2 D then
16 ri,...,n�1 ! switch condition(ri,...,n�1, fi,...,n�1(x, u), t)
17 end
18 else
19 rj ! online cross entropy(...)
20 end
21 end
22 return ri,...,n, satisfied ltl
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6.6. Comparison to O✏ine MTAC-E

In this section we compare the e�ciency defined as the individual agent costs and
run time performance of the online MTAC-E with the o✏ine version. In Fig. 14, we
compare the sum of agent costs for a predefined number of agents ranging from 1- 5.
For each run, we assign the agents to satisfy the LTL specification . From the figure,
we see that the online method is more e�cient at overall task assignment as total agent
costs are greatly reduced compared to the o✏ine version. This is due to the fact that
we must initially set an estimate for optimal costs for the o✏ine MTAC-E while the
online version can use a random estimate for optimal costs and iterate towards a local
minima that is more e�cient. In addition to this, a higher estimate of optimal costs
needs to be given for the o✏ine version in order for faster execution time otherwise the
completion time of the program could be significantly long. However, we note there
is an increase in the sum of agent costs since in the online MTAC-E algorithm, each
time an agent is considered for a new task, the cost is added to the total trajectory
cost for that agent.

Figure 14. We compare the total trajectory costs for separate runs of the online and o✏ine MTAC-E al-
gorithm. We can see that the total costs associated with di↵erent numbers of agents is reduced for agents in
the online case. This is due to a measurement of a known quantile function of a distribution and an optimal
trajectory cost that is randomly initiated and updated at each sample step. This reduces the need of an expert
to determine optimal costs for a particular domain.

Run time comparisons are done on a laptop with a 2.6 GHz Intel i7-4720HQ pro-
cessor using the time module in Python. Each run is done in simulation and execution
times are measured against complete satisfaction of the given LTL specification. We
see from Fig. 15 a 3x - 5x factor of reduction of runtime for agents 1-5 indicating a
faster algorithm for multi-agent task allocation.

From simulation results, we see the online MTAC-E algorithm is not only more
e�cient at minimizing the total costs for a multi-agent system but also in reducing
individual agent costs and the overall run time associated with allocating tasks to a
multi-agent system. We also verify our online algorithm experimentally in Section 7.
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Figure 15. We compare the time to completion for both the online and o✏ine MTAC-E algorithm. For all
runs of the online MTAC-E with various numbers of agents considered, a lower total run-time is achieved.

7. Case Study: Fire Fighting Drones (Experiment)

Experiments are validated on the Robotarium at Georgia Tech [36] using the Crazyflie
2.1 quadcopters. Control inputs are calculated from continuously di↵erentiable splines
generated online from desired waypoints using the di↵erential flatness property of
quadcopters described in Section 2.3. Quadcopter positions are tracked with a Vicon
camera system with a tracking frequency of 100 Hz and the controller generates control
inputs at a frequency of 50 Hz.

We recreate the simulated scenario of fire-fighting quadcopters by indicating desired
regions of interest with hoops, characterized by ellipsoids, pictured in Fig. 16b 1. These
hoops are covered with Vicon tracking markers, allowing us to record the corresponding
center of the hoops and from the centers form the proposition sets. The regions of
interest are satisfied if a quadcopter flies within 0.2 meters of the hoop. We give initial
starting positions of

p1 =

2

4
1
�0.5
0.8

3

5
T

, p2 =

2

4
1
0
0.8

3

5
T

, p3 =

2

4
1
0.5
0.8

3

5
T

for three quadcopters and the desired global LTL specification � = ⌃LOC1^⌃LOC2^

⇤(SMOKE =) CARRY ING). We plot the real trajectories of the quadcopters in
Fig. 16a and given the initial positions, control inputs and global LTL specification
we utilize the online MTAC-E algorithm to generate trajectories in real-time for each
quadcopter. The assignments shown in the figure are dynamically allocated tasks given
to each robot based on the individual cost function associated with each agent and
environment constraints. These assignments are not strictly assigned and could change
given new information (e.g. more samples from the online cross entropy algorithm) or
a di↵erent cost function. We run the algorithm on a desktop with an Intel Core i7-

1Experiment Video: Online Multi-Agent Task Allocation via Cross Entropy
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(a) The real trajectories of each quadcopter superim-
posed over the simulation environment. The locations
of the hoops are the same as those in the experimental
run.

(b) The quadcopters are flown in the Robotarium where
hoops are used to validate the experiment. Each hoop
has tracking markers to locate the center of mass of each
hoop, used to calculate control points and the desired
ellipsoids used to characterize the hoops. Quadcopters
are also tracked with the Vicon system.

Figure 16. The trajectories of the quadcopters and a visualization of the experimental run are shown in the
figure above.
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7700K processor with 16 GB of RAM. The total run time of the experiment is 127
seconds and terminates when the entire desired sequence of hoops is satisfied for a
specified LTL specification. Through this experiment, we show the implementation of
the online MTAC-E algorithm on quadcopters which validates our task orchestration
framework by decomposing a specification, delegating tasks and generating trajectories
in real-time for a set of quadcopters.

8. Conclusion

In conclusion, we have generated a framework for generating sequences of hoops from
user defined LTL specifications. Followed by a method for multi-agent task allocation
utilizing this framework in addition to a stochastic optimization technique for assign-
ing decomposed assignments to agents with unknown action costs and a known cost
function. We extend the multi-agent task allocation methodology to generate desired
trajectories online via hyperellipsoid sampling and estimation of minimal quantile dis-
tribution di↵erences. This allowed us to create a faster and more e�cient method of
trajectory sampling for multi-agent task allocation given an LTL specification that
contained system and environmental constraints. To the authors knowledge, this is
one of the first papers to develop online task allocation for quadcopters using cross
entropy optimization and validate the algorithm experimentally on hardware. In addi-
tion to this we propose a formulation for the update step using the quantile functions
of multivariate Gaussian distributions. We verify this in experiment and simulation as
a task orchestration framework for decomposing and delegating tasks and generating
trajectories for a multi-agent system to satisfy high-level user specifications given these
constraints.
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