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Abstract—This tutorial provides an overview of recent
developments in contraction theory, highlighting theoretical
advances, practical applications, and emerging extensions.
We explore topics including time-varying convex optimization
through equilibrium tracking, biologically plausible optimiza-
tion in neural networks, and the analysis of interconnected
and sampled-data systems. Additional focus is given to linear
differential inclusions, reachability analysis, and the integration
of contraction theory with robust, control-oriented machine
learning.

INTRODUCTION

Contraction theory is a powerful mathematical framework
for analyzing convergence, robustness, and modularity in
dynamical systems, optimization algorithms, and learning
methods. This modern framework offers a unified approach
to studying systems with exponential and incremental stabil-
ity, as well as robustness to disturbances and uncertainty.

The study of contraction theory traces back to the ground-
breaking work by Banach [11]. While fixed point theory
has been extensively developed (see, e.g., [S5], [65], [117]),
applications of contraction theory to dynamical systems
remain more recent and comparatively less explored. Key
contributions include the classic works on stability and
convergence by Demidovi¢ [35], Krasovskii [68], Desoer
and Haneda [36], the pioneering efforts of Lohmiller and
Slotine [71], [72], and subsequent advances such as [32],
[45], [75], [87], [94]. Important applications include the
analysis of coupled oscillators and network [6], [38], [53],
[106]. Recent surveys and theses provide broader context and
perspectives [3], [5], [S51], [93], [105], [114].

This tutorial introduces the core concepts and tools of
contraction theory and surveys recent developments in the-
ory, computation, and applications. We highlight its use
in control, online and biologically plausible optimization,
verification, reachability analysis, and machine learning, with
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an emphasis on computational efficiency, modular design,
and robustness.

Here is a synopsis of the content and contributions in
each of the following sections. First, Section I presents
recent results on time-varying convex optimization using
contraction theory to analyze and design dynamical systems
that track changing optimal solutions. Under assumptions
of strong contractivity and Lipschitz dependence on time-
varying parameters, the analysis provides explicit bounds on
tracking error and residuals. When the parameter derivative
is known, a feedforward correction improves performance,
achieving exponential convergence. The section also extends
contractivity results to standard optimization problems, in-
cluding monotone inclusions, equality-constrained problems,
and composite minimization.

Section II studies how contraction theory supports the
analysis and design of biologically plausible neural networks
that solve composite convex optimization problems. For con-
creteness, firing-rate networks are considered, with a focus
on a specific application relevant in a broad range of domains
— positive sparse reconstruction, modeled through proximal
gradient dynamics. These dynamics lead to a positive system
called the positive firing rate competitive network (PFCN),
whose equilibria solve the original optimization problem.
The PFCN is shown to be weakly contracting and locally
strongly contracting under certain conditions (e.g., RIP of
the dictionary), ensuring convergence to a sparse solution.

Section III studies the stability of systems combin-
ing continuous-time dynamics with discrete-time updates
through sampling and zero-order hold. Using contraction
theory, this section analyzes systems where control inputs
are computed via finite-iteration optimization algorithms, a
common setting in online and model predictive control. The
results show that global exponential stability can be ensured
under certain Lipschitz and contractivity conditions, either
by verifying contraction of a reduced continuous-time model
or by applying a small-gain condition. Explicit bounds are
provided to guide the selection of sampling time and iteration
count.

Section IV analyzes the contractivity properties of linear
differential inclusions (LDIs), showing how contraction can
be verified by bounding the Jacobian over a set of states.
The section introduces a refined LDI tailored to convergence
toward a known trajectory, based on a mixed Jacobian
construction that partially fixes the state to obtain tighter
bounds. This approach enables more accurate contraction
analysis, particularly in reachability and tracking contexts.
The method is computationally efficient via interval analysis



and is illustrated on a robot arm model, where it yields sig-
nificantly tighter reachable set overapproximations compared
to existing techniques.

Finally, Section V presents contraction-based methods for
ensuring robustness and stability in machine learning models
used for control. The section outlines how direct parame-
terizations can enable scalable training of models—such as
Lipschitz and bi-Lipschitz neural networks—by embedding
stability constraints into unconstrained optimization. These
methods apply to both static (feedforward) and dynamic
(recurrent) networks, and allow learning models that are cer-
tifiably stable, contractive, or invertible. Applications include
robust control policies, observer design, neural Lyapunov
functions, and training dynamics with guaranteed conver-
gence and robustness properties.

I. TIME-VARYING CONVEX OPTIMIZATION: A
CONTRACTION AND EQUILIBRIUM TRACKING APPROACH

This first topic is a summary of the recent results on
time-varying convex optimization and contracting dynamics
in [31]. While time-invariant contracting dynamics is exten-
sively studied, the behavior of time-varying systems is much
less understood.

A. Introduction

Mathematical optimization is fundamental in various sci-
entific and engineering disciplines, traditionally approached
via numerical iterative methods. A complementary viewpoint
treats optimization algorithms as continuous-time dynamical
systems, analyzing their properties such as stability and
robustness. This perspective, originating from early works by
Arrow, Hurwicz, and Uzawa [10], has gained renewed inter-
est due to applications in online optimization [14], reservoir
computing [102], and neuromorphic computing [95].

The recent paper [31] addresses dynamical systems de-
signed for time-varying convex optimization problems. Such
problems require algorithms capable of accurately tracking
changing optimal solutions while remaining robust to prac-
tical uncertainties such as noise and delays. These critical
properties can be simultaneously ensured by establishing that
the dynamical system is strongly infinitesimally contract-
ing [18], [71], guaranteeing exponential convergence, robust-
ness, and incremental stability. Previous studies have exten-
sively analyzed optimization algorithms’ stability [26], [28],
[37], [89], [109], yet few explicitly address contractivity, with
exceptions including primal-dual dynamics [27], [84]. For
time-varying optimization, Newton-type methods have been
explored in discrete-time [97], [99] and continuous-time [42],
with recent reviews available in [29], [98].

B. Contributions

Consider the dynamical system
@(t) = F(x(t),0(t)), (0) = o, (D)

where the vector field ' : R x R¢ — R™ depends explicitly
on a time-varying parameter trajectory 6 : R>og — © C R%.
The parameter curve 6(¢) is assumed to be continuously

differentiable. To analyze this system’s behavior, we intro-
duce the notion of a time-varying equilibrium trajectory
t — 2*(6(t)), defined implicitly by F(z*(6(t)),0(t)) = 0,
for all £ > 0.

We impose two critical assumptions on the vector field F:

Assumption 1 (Contraction property): There exists a
norm || - || on R™ and a constant ¢ > 0 such that, for every
fixed parameter § € O, the map = — F(x,0) is strongly
infinitesimally contracting with rate c, that is

F(Z‘Q, 9))T($1 - 1‘2)

for all x1, x5 € R™.

(F(21,0) — —cllor — 2|?

Assumption 2 (Lipschitz parameter-dependence): The
vector field F' is Lipschitz continuous with respect to the
parameter 6 with constant £y > 0, uniformly over all states
x € R™. Specifically, there exists a norm || - ||o on the
parameter space O such that:

| F(x,01) — F(z,02)|| < lo|0h — O2]|o,

for all z € R", 6,,05 € O.

These assumptions ensure that (i) for each fixed parameter
0, the system admits a unique equilibrium 2*(6) satisfying
F(z*(9),0) = 0,, and (ii) the equilibrium map 6 — z*(0)
is itself Lipschitz continuous with constant ¢y/c. Hence,
the time-varying equilibrium trajectory *(6(-)) inherits this
Lipschitz continuity, providing a natural reference for track-
ing performance. Under these assumptions, the following
theorem provides quantitative bounds for how trajectories
of the original system track the time-varying equilibrium
trajectory, see also Figure 1.
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Fig. 1: Each solution z(t) to the contracting dynamics (1) asymptot-

ically approaches or remains inside a tube around the time-varying
equilibrium trajectory z*(6(t)).

Theorem 1 (Equilibrium tracking): Let the dynamics
z(t) = F(x(t),6(t)) satisfy Assumptions 1 and 2. Then, for
all ¢ > 0, the trajectory tracking error satisfies the integral
inequality:

Jz(t) — 2*(0(2))]| < e |x(0) — 2*(6(0))]|
7

t
+ 2 e D07 |ledr.  (2)
¢ Jo

Additionally, the residual of the vector field satisfies:
17 ((t), 00)]| < e[| F(2(0), 6(0))]|

t
4l / <=1 i(r)odr. ()
0



In the long-term limit, assuming the parameter rate ||6(t)]|e
remains bounded, the following asymptotic bounds hold:

) N Ly .. :
limsup [(t) - 2" (6(0))]| < 5 limsup [9(0)o
—00

t—o0

and

. Ly .. ;
lim sup [ F'(z (1), 0(t))]| < fh{nsup 16(t)]e-
—00

t—o0

This theorem provides explicit and practical insights,
establishing that the asymptotic tracking error is directly
proportional to the maximum rate of change of the parameter
trajectory, inversely scaled by the square of the contraction
rate c. Thus, increasing the contraction rate improves the
system’s ability to track the moving equilibrium.

Next, consider the scenario where the dynamics F' are
continuously differentiable, and the time derivative O(t) is
known or measurable. In this situation, one can design
modified dynamics incorporating a feedforward prediction
term that exploits the knowledge of f(t) to improve tracking
performance:

(t) = F(x(t),0(t))
— (Do F(x(1), 0(1))) " Do F (x(t), 0(£)0(1). (4

Theorem 2 (Exact tracking with feedforward prediction):
Assuming that F' is continuously differentiable and
contracting 1, the contracting dynamics with feedfoward
prediction (4) ensure that both the residual and tracking
error exponentially decay to zero. Specifically, for all ¢ > 0:

[F(x(t),001))] < e ||F(2(0),6(0))], (5)

and
|z(t) — 2*(6()) < %e‘“IIF(JU(O)ﬁ(O))W (6)

If the vector field F' is additionally Lipschitz continuous in
the state variable x with constant /., uniformly in 6, then
the following stronger bound holds:

[ (t) — 2" (0@)] < %e*“\\x(O) — 27 (6(0))]-

The second theorem significantly strengthens the result by
guaranteeing exponential convergence to zero tracking error,
given accurate knowledge of the parameter’s rate of change.
This insight is valuable in applications where precise tracking
of time-varying equilibria is critical. This theorem general-
izes previous Euclidean-norm results [42], [97], [99], [119].
Taken together, these two theorems provide comprehensive
guidance for the analysis and design of robust, contraction-
based dynamical systems capable of accurately tracking
time-varying equilibria, with clear and explicit relationships
between key system parameters and performance metrics.

Additionally, the paper [31] studies canonical optimization
frameworks: (i) monotone inclusions, establishing strong
contractivity for forward-backward splitting dynamics, thus
enhancing earlier exponential stability findings [47], [58]; (ii)

linear equality-constrained optimization, rigorously analyz-
ing primal-dual dynamics contractivity, improving upon ex-
isting studies [27], [84], [89]; and (iii) composite minimiza-
tion, extending proximal augmented Lagrangian methods’
results to demonstrate enhanced contractivity properties, im-
proving upon previous exponential convergence results [37],
[89].

Followup works include the application and extension of
these ideas to control barrier functions in [77]-[79] and
related broad perspectives in [30].

II. CONTRACTION IN NEURAL NETWORKS AND
BIOLOGICALLY PLAUSIBLE OPTIMIZATION

This topic, a summary of recent results from [20]-[23],
focuses on network-level aspects of contraction theory. Em-
phasis is on the role of contraction in the analysis and design
of biologically plausible neural networks computing the
optimal solution of composite convex optimization problems.

A. Introduction

The design and analysis of neural circuits is central to
several scientific and engineering domains, such as machine
learning, control, neuroscience, signal processing. In this
context, two key design/analysis steps are: Step (i) transcrib-
ing optimization problems into a neural dynamics of the form

i’F(t) = —xp(t)—l—\Il(WxF(t)—i—uF(t)). (7)

In this firing-rate dynamics (FNN) zr € R” is the state of
n neurons, ¥ is the activation function, W is the synaptic
matrix, up is an external stimulus [33]; Step (ii) charac-
terizing convergence of (7) to an equilibrium that is also
the optimal solution of the problem. We are interested in
FNNs since these dynamics might hold an advantage over
Hopfield models in terms of biological plausibility: if ¥ is
non-negative, the FNN is a positive system and the state
can be interpreted as a vector of firing rates. Thus, FNNs
offer a more natural interpretation of negative (positive)
synaptic connections as inhibitory (excitatory). Here, as an
example, these two steps are illustrated on positive sparse
reconstruction (SR) problems. Given an input u € R™ (e.g.,
an m-pixel picture), the positive SR problem consists in
reconstructing v with a linear combination of a sparse vector
y € R, and a dictionary ® € R™*™ composed of n (unit-

norm) vectors. This problem can be formulated as:

o1 2
yrerlﬂé§0§||u—<1>yu2+>\”y”1- (8)

Definition 3 (k-sparse vector, RIP [19]): Let k < n be
natural numbers. A vector x € R” is k-sparse if it has at
most k non-zero entries. A matrix & € R™*"" satisfies the
restricted isometry property (RIP) of order k if there exist
a constant § € [0,1), such that for all k-sparse z € R",
(1= 8)]l=ll3 < [Pz < (1 +0)]=[l3.



B. Contributions

Step (i): consider the composite convex optimization problem
i 9
min f(z,u) +g(2), 9)

where: (i) u € R™; (i) f : R" xR™ — R is a convex, closed
and proper (CCP) differentiable function for each wu; (iii) g :
R™ — R := ]—00, +oc[ is CCP. Next, we leverage proximal
operators [17], [86]. The proximal operator of g : R” — R
with parameter 7 > 0, prox,, : R" — R™, is prox, () =

arg ming(z)+ 55 [lo — 3 Ve € R I g(a) = S i),

z€R"™
with g; : R — R being CCP, then prox,, ,(z) exists, is unique
and is given by
(proxwg(x))i = prox,,, (z;), i€ {l,...,n}.

That is, if g(x) is CCP and separable, the i-th component
of prox,(x) is the proximal operator of g;(x;). In this
setting [31], [58], the continuous-time proximal gradient
dynamics associated to (9) is defined as

(z =V f(z,u)),

with v > 0. Consider now the positive SR problem in (8)
and note that this can be formulated as

T = —x + prox,, (10)

iy Sl = ®yl3+ Myl + sz, (), (D
where tgn @ R™ — [0, +00] is the zero-infinity indicator
function on R, defined as gn (2) = 0 if = € RY,
and LRQO(Z‘) = 400 otherwisef As shown in [23], the
function S1(y) := [lyl1 + Fime ,(y) is CCP and separable;
also, its proximal operator is the shifted ReLU. That is,
proxyg, () = ReLU(xz — A1,), for all = € R™. Therefore,
the proximal gradient dynamics associated to (11) is [23]

i(t) = —2(t) + ReLU((I, — @' @)z (t) + @ " u(t) — A1,),
(12)
with y(¢) = «(¢) and 1,, the n-dimensional vector of ones.

We term (12) as Positive Firing Rate Competitive Network
(PFCN) and give the following result.
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Fig. 2: An illustration of the PFCN network in equation (12).

Lemma 4: [PFCN properties [23]] The PFCN is a positive
system and the vector 2* € R™ is an optimal solution of (8)
if and only if it is an equilibrium of (12).

Hence, (12) is a positive system and therefore it is a
FNN. Moreover, an optimal solution of (8) must also be an
equilibrium of (12). We also give the following:

Definition 5 (Active and inactive neuron): Given a neural

state ¥ € R™, an input v € R™, and a parameter A > 0,
the i-th neuron is active if ReLU(((I,, — ® " ®)a* + & u —
)\17,,)i) = 0, inactive otherwise.
Next, we need to characterize convergence of (12) to a sparse
equilibrium vector and contraction is central to this Step (ii).
In particular, one can show that: (i) the PFCN is weakly
contracting, i.e., non-expansive, in the positive orthant; (ii)
an equilibrium of (12), say z*, with n, active neurons is
locally asymptotically stable and contracting if the dictionary
is RIP of order n, and § € [0,1). These two properties, yield
a convergence result informally stated as follows:

Informal statement 1 (PFCN Convergence): The trajec-
tories of (12) are bounded. If the dictionary ® is RIP, then:

(1) the PFCN converges to an equilibrium point that is also
the optimal solution of the positive SR problem (11);
(i1) convergence is linear-exponential, in the sense that
the trajectory’s distance from the equilibrium point
initially decays at worst linearly, and then, after a
transient, exponentially.
This result, formally stated in [23], not only gives conver-
gence bounds (further sharpened in [21]) that depend on
explicit biologically meaningful parameters, but can also be
exploited in other settings, with different regularizers and
constraints [22]. A possible extension of the result includes
learning the synaptic weights. In this context, as recently
shown in [20] contraction can be a valuable tool to study
convergence of these neural-synaptic dynamics.

III. CONTRACTION-THEORETIC ANALYSIS
OF SAMPLED-DATA SYSTEMS

In this section, we provide a summary of recent sta-
bility results for the interconnection of continuous-time
and discrete-time systems through sampling and zero-order
hold [24]. The results leverage tools from contraction theory.

A. Introduction

We are interested in sampled-data systems of the form:

z(t) = F(z(t), 2(t)) (13a)
2z = G™(x(kT), zx—1), (13b)
z(t) =z, t € [KT, (k+1)T) (13c)

where £ € X C R™ and z € Z C R? are the states of the
continuous and discrete-time systems, respectively, ¢ € R
denotes time, k € Z>( is the index for the updates of z(t),
and T > 0 is a given time interval. We define G"(z, z) as the
n-time composition of a map z — G(z, z), for fixed x; that
is, GY(z,2) = G(x,2),...,G"(x,2) = G(z,G" (x,2)),
for any n € Z~o. We assume that F' : X x Z — & and
G: X x Z — Z are continuous in their arguments.

The mathematical model in (13) is motivated by
optimization-based control methods—which includes model
predictive control (MPC) as a prime example [39], [81]—
where the control input is implicitly determined as the
solution to an optimization problem that encodes both per-
formance objectives and system constraints. System (13) is



T a0 = Fa), =) (t) = Fa(t), 2(1)
z,c=c"<x<kT>,Zk_1>~[ T, (1) = = (2 (1)

x, z) is defined
(,2)). (Right)
= G(x, 2" (x))

Fig. 3: (Left) Interconnected system (13). Here, G™(
as G'(z,2) = G(z,2),...,G"(z,2) = G(z,G"*
Reduced model, where z*(x) is defined by z*(z)
for any z.

particularly useful for modeling online and sampled-data
implementations: in this case, G(x, z) represents the mapping
of an algorithm used to solve the optimization problem;
here, “online” refers to the scenario where only a finite
number n of iterations are performed, rather than solving
the optimization problem to full convergence.

For the particular case of online MPC, existing stability
analysis focus on cases where the dynamics of x(¢) and z(t)
are both in continuous-time [116] or in discrete-time [70].
Recently, the discrete-time setting has been extended to
more general online control frameworks in [62]. These
results leverage dissipativity [116] or small-gain-type argu-
ments [61].

The study of (13) inspired by the foundational works
on two-time-scale continuous-time systems using singular
perturbation theory [66] and contraction theory [34]. In (13),
T and n can be seen as parameters that induce a time-
scale separation between the (fast) dynamics of (13a) and
the (slower) updates of z(t), executed within intervals of
length T and with a limited number of iterations n. When
considering the case n = +oo, T" > 0, (13) encompasses
classical sampled-data control systems [59], [82].

B. Contributions

To lay the foundations for our results, we first introduce
the working assumptions adopted in this section.

Assumption 3 (Lipschitz dynamics (13a)): The map = —
F(z, z) is Lipschitz with constant ¢z, >0 uniformly over Z.

Assumption 4 (Contractive dynamics (13b)): The  map
z + G(z, z) is uniformly Lipschitz with constant cg € (0,1)
with respect to || - || z.

Assumption 5 (Lipschitz interconnection): The map z +—

F(z,z) is uniformly Lipschitz (over x € X’) with respect
to || - ||x and || - ||z with constant /f, > 0. Similarly, the
map z — G(z, z) is uniformly Lipschitz (over z € Z) with
constant {¢ 5 > 0.
We note that, under Assumption 3, the one-sided Lipschitz
constant of F, denoted by osL.(F) is finite. Due to the
Banach Contraction Theorem, Assumption 4 implies that for
any x € X, there exists a unique fixed point z*(x) for
the map G(z,2); i.e., 2*(z) = G(z, z*(x)). Moreover, for
any fixed z, one has that lim,,, . G"(z,2) = z*(z) and,
additionally, the map x — z*(z) is Lipschitz.

Mirroring two-time-scale continuous-time dynamical
models [66], we formalize the notion of a reduced model

(RM) associated with (13); we defined the RM as:
i (t) = R(@ (1)) == F(z(t),

with z,(0) € X. The RM represents the limiting dynamics
under two idealized assumptions: (i) n — +00, so that z*(z)
is computed for any x; and, (ii) T — 0%, so that z*(z) is
applied continuously in time. Before proceeding, we connect
our model to optimization-based methods.

Remark 6: In our model, z*(z) represents the unique
optimal solution of a convex optimization problem defining
the control law for the system (13a). The sub-system (13b)
accounts for practical settings where the state x(¢) may be
measured at given intervals {kT,k € Z>}, and the solution
z*(z) is approximated by executing only a finite number n
of algorithmic iterations, including the case where n = 1.

We now state the main stability results for (13). Without
loss of generality, the results are stated for the case where
F(0,0) = 0, G(0,0) = 0, and 2*(0) = 0. The result
leverages the notion of weighted norm |||, [, in R?

2" (z, (1)), t>0 (14

which is defined as |||, ;) = (1 ]21]P + n2|x2\1))%, where
n, N2 > 0.

Theorem 7 (Stability from RM contractivity): Consider
the interconnected system (13), and let Assumptions 3, 4,
and 5 hold with norms || - ||x and || - ||z. Let & > osL,(F),
& # 0. Assume that ¢ > 0 is such that osL,(R) < —(.
Then, for any n € Zs there exists a T'(n) > 0 and a
weighted vector norm || - |z, so that

H it "ﬂ o]

with « > 0 and k > 0, for any 0 < T' < T'(n). In particular,
such a T'(n) is given by:

< ge~

2,[n]

V>0,
2,[n]

1 (1 —cg)
T(n)= glog (M + 1)

where Ca(n) := cg(1 — cg)lG,olF,. and

(16)

Cl ::€F,ZEG@ <£F’;1; + EF,ZEG@
1-— CG 1-— CG
Detailed expressions for o and x are provided in [24].
When the RM is strongly infinitesimally contracting, The-
orem 7 asserts that, for any n € Z-(, global exponential
stability (GES) of the interconnected system (13) can be
guaranteed so long as T' < T'(n). We note that T'(n) depends
solely on Lipschitz constants of the maps F' and G, and on
the contractivity rate ¢ of the RM.
In the following, we provide an extension of classical
small-gain and network contraction theorems.
Theorem 8 (Stability from small gain): Consider the in-
terconnected system (13), and let Assumptions 3, 4, and 5
hold with norms | - ||x and | - || z. If

_OSLi(F)(l - CG) > €F7ZKG,w7 (17)

then for any n € Z,4 and for any 7" > 0, there exists a
norm [|[[|z]|x, ||z]|z] " |l2,(;) on R™=*™= 5 > 0, such that the
interconnected system (13) renders the origin GES.



Details on the transient bound can be found in [24]. We
note that Theorem 8 does not impose any conditions on 7T’
and n. However, Theorem 8 requires conditions for stability
that are stricter than the ones in Theorem 7, as highlighted
in the following.

Theorem 9 (Small gain implies contractivity of the RM):

Let Assumption 3, 5 and 4 be satisfied with norms || - ||
and || - ||z. If (17) holds, then the RM (14) is strongly
infinitesimally contracting with respect to the norm || - || ».

The results and conditions provided above are summarized
in the following implication diagram for the system (13).

Implication diagram for system (13)

osLa(F) < 0,¢c6 < 1
—osLa (F)(1—cg) > £p.-0c.. (13) is GES

! !

osLz(R) <0 Vné€Zso3dT(n)>0:
ce <1 VT <T(n) (13) is GES

VnéeEZsgand VI >0:

When considering optimization-based control methods,
Theorem 7 and Theorem 8 suggest two different approaches
to designing the controllers. In particular, Theorem 7 offers
practical guidance for selecting the sampling time 7'. The
case where n = 1 yields a significant contribution in MPC,
as it establishes conditions that guarantee stability for single-
iteration suboptimal MPC implementations.

IV. A LINEAR DIFFERENTIAL INCLUSIONS PERSPECTIVE
ToOowARDS CONTRACTION

In this section, we first recall a connection between
contraction theory and a linear differential inclusion (LDI)
characterizing the error dynamics between pairs of trajec-
tories. We then summarize results in [56] showing that an
alternative, generally tighter, LDI can be constructed when
studying the error dynamics to a particular known trajectory,
a setting common in, e.g., trajectory tracking and reachability
analysis. This new LDI remains amenable to familiar analysis
tools from contraction theory.

A. LDIs and Contraction Theory
An LDI is given by [16, p.52]

z € Qx, x(ty) = o, (18)

where @ C R™ ™ is a set of matrices. Any t — x(t)
satisfying (18) is called a trajectory of the LDI. A proof of
the following proposition based on the mean value theorem
is given in [16, Section 4.3.1, p.55].

Proposition 10: Let F' : R® — R” be differentiable and
X C R"™ be convex. If J C R®*" gsatisfies %(X) c J,
where 2E(X) = {2E(3): 2 € X}, then

F(z) — F(z') eco(T)(z — ) (19)

for every x, 2’ € X, where €0 denotes closed convex hull.

Consider now the system @ = F(x) where F': R™ — R"™ is
differentiable, and let X C R™ be a convex set. If g—f(X ) C
J, then Proposition 10 leads to the LDI

é(t) = F(x(t)) — F(2'(t)) € @(T)e(t)

for any two trajectories ¢ — x(t), t — z’(t) of the system
and e(t) = z(t) — 2/(¢). By continuity and convexity of
the log norm p, and by application of Coppel’s inequalities
(e.g., [18, Theorem 2.3]), we recover the familiar contraction
result:

) < —eVIied = [et)] < e “le(0)].

We highlight two possible advantages of the LDI perspec-
tive on contraction analysis. The first is that this perspective
makes clear that any computational or analytical approach for
studying a general LDI is applicable for contraction analysis.
For example, if J is in one of several common forms such
as a polytope, then the semi-definite programming based
quadratic stability analysis of LDIs in, e.g., [16, Ch. 4 and
5] offers a computationally efficient way to analyze the
contraction properties of the system, where we especially
recall the equivalence

po,pi/2(M) < —c <= M"P+PM =< —2cP

where (15 p1/2 is the log norm associated to the weighted
Euclidean norm ||z|[y p1/2 = VT Pz for positive definite
P. Further, it is apparent that we may use any computational
method for obtaining J that satisfies %(X ) € J. Of
particular note, interval analysis offers an automated way for
obtaining J as an interval set given an interval X and the
symbolic form of g—i. This observation leads to our second
main advantage, developed next.

B. An Alternative LDI for Contraction to a Known Trajec-
tory

A key contribution of [56] is the introduction of a certain
mixed Jacobian operator inspired by similar ideas in the
literature on interval analysis [60]. We consider here a
simplified instantiation of this operator applied to interval
sets.

Lemma 11: Let F': R™ — R"™ be differentiable and X =
X1 x---x X,, CR"™ be an interval with each X; C R, and
consider some fixed 2’ € X. If M C R™*™ is an interval
set of matrices satisfying

OF;
al'j

then F(z) — F(2') € M(x — ).

The proof of this lemma applies the mean value theorem n
times on a path connecting x to z’ composed of n straight
lines, each varying only one coordinate at a time. If, in
Proposition 10, we restrict to interval sets X and J and
compare to Lemma 11, the key difference is that, when
considering the j-th column of the Jacobian %—i(x), the
last j 4+ 1 through n arguments are fixed to x; 41 through
a}, rather than the entire intervals X j+1 through X;,. Ob-

taining interval matrices satisfying (20) given differentiable

(Xla---7Xj>x;‘+17-~- .T/)gMij,

rrn

(20)



F' is automatic using interval analysis toolboxes such as
immrax [57], which also includes automatic differentiation
capabilities.

Now, consider the time-varying system

z=F(t,x), xz(to) = zo, (21

where F' : R x R" — R" is continuous with continuous
partial derivatives with respect to x.

Proposition 12: Let ||-|| be a norm with induced logarith-
mic norm g, and let X = X3 x---x X, C R"” be an interval
set. Consider the dynamical system (21). Let ¢t — z'(¢) € X
be a known trajectory defined on [tg,00). For each ¢, let
M(t) € R™™ be a set of matrices satisfying

OF;
al’j
If for some ¢ € R,

(X17 e an7x;'+1(t)7 R 7xfn(t)) g M(t)’bj

u(M) < —c for all M € M(t) and all ¢ > ¢,
then, for any trajectory ¢ — x(t) € X defined on [tg, 00),
() = &' ()] < e (ko) — 2/ (to);
for every t > tg.

C. Example

A common application of contraction analysis is to com-
pute simulation-guided overapproximating reachable sets by
computing a nominal trajectory x’(t), bounding the log norm
in a region around z’(t), and expanding/contracting norm
balls using the log norm rate [40], [74]. Specifically, [40]
bounds the log norm by constructing an interval Jacobian
matrix that overapproximates the set of linearizations of the
dynamics. Using Lemma 11, since 2/(t) is fixed, we replace
the interval Jacobian with an interval mixed Jacobian for
immediate benefit via Proposition 12.

For example, consider the robot arm model [8]

G =z1, q2= 22,
21 = W(—?mQQZ’lZQ - kdlzl + k’pl (u1 - ql)),
Zo = qozi + i(—deZQ + kp, (U2 — q2)),

withu; =2, ug =1, m=M=1,L=+3,k, =2,k,, =
1, ka, = 2, kq, = 1. The method from [40] results in Figure
4, left. We repeat the analysis using the tighter LDI from
Proposition 12, obtaining significantly tighter approximations
of the reachable set, as shown in Figure 4, right.

V. CONTRACTION APPROACHES TO ROBUST AND
CONTROL-ORIENTED MACHINE LEARNING

Learning-based control is one domain in which contrac-
tion and incremental stability properties have a particularly
strong motivation. In classical stability analysis and control
methods, the objective is often to characterize or achieve the
stability of a particular known equilibrium or trajectory. In
learning some training data may be known but the objective
is to find a model or policy that certifiably generalizes well

[J],r =0.04

[ te[0,2], ¢=0.269 1.5
te (2.4, c=1930

[M],r =0.04

te0,2], c=0.088

te 2,4, c=—0.027
t € [4,6], c = —0.251
t€[6,8]. c = —0.340
te|

€ [8,10], c = —0.424

X
0.9 0.9
1.5 1.6 17 18 19 2.0 2.1 1.5 1.6 1.7 1.8 1.9 2.0 2.1
T L

Fig. 4: Ellipsoidal reachable set overapproximations for a robot
arm model obtained by uniformly bounding the log norm of the
Jacobian linearization of the dynamics in a neighborhood of a
nominal trajectory (left) and using the tighter mixed Jacobian LDI
from Proposition 12 (right).

to previously unseen conditions. In real problems, these may
be quite different to the training data.

The remarkable recent achievements applying neural net-
works to prediction and control—along with their well-
known lack of robustness [101]—call for a theory of stability
and robustness that is amenable this nonlinear model family.
In this section we argue that contraction and incremental
robustness conditions can meet this need, in that they are:

« compatible with classical system analysis tools such as
small gain, passivity, IQC, and Lyapunov methods, and

« compatible with modern approaches to learning large-
scale models and policies such as auto-differentiation
and unconstrained first-order optimization.

A. Direct Parameterization and Unconstrained Optimization

We suppose that some data-set available, denoted D, some
nonlinear model class parameterized by a vector § € RP,
where models may be static functions or dynamic systems,
and some loss function [(#, D) which is to be optimized.
This formulation can include classical supervised learning
and system identification problems, as well as reinforcement
learning problems in which the model is a control policy, D
consists of environmental conditions, and the loss incorpo-
rates simulation of the closed-loop system.

In all such cases, D consists of representative scenarios,
and is not assumed to be exhaustive. We consider the case in
which certified stability and/or robustness properties of the
model related are needed. In many cases it is possible to use
robust and nonlinear control theory to construct a subset of
parameter space © C R? on which the desired property is
certified, leading to the constrained optimization problem:

min (0, D).

(4SO (22)

Unfortunately, the constraint § € © often takes the form
of a set of parameterized linear matrix inequalities (LMIs).
Standard constrained optimization methods require either
repeated projection onto © or computation of barrier terms,
and while LMIs are tractable at moderate scale they are
prohibitive for the kinds of large models used in applications.



An alternative approach is to construct a new parameter-
ization consisting of a differentiable mapping 0 = m(o),
where ¢ € RY with N > p in general, such that m(¢) € ©
for all ¢ € RV, If m is surjective, i.e. the image of m(RY) =
© then we refer to this as a direct parameterization. Then
(22) can be replaced with the unconstrained optimization:

min I(m(¢), D), (23)

$ERN
to which scalable methods such as stochastic gradient descent
and its variants can be directly applied.
a) Lipschitz Neural Networks: The first task we con-
sider is to learn static (feedforward) neural networks

Yy = f(.’E) = WLO'(WLfla'(- .- U(W(){L‘ + bo)) + bLfl) + br,
with a bound on their Lipschitz constant:
1f(z1) = f(z2) || < vllwr — @al|, Vi, 20 € R®

which in the systems theory context can be considered an
incremental /2 gain condition.

In [43], incremental IQC methods were used to show that
f is y-Lipschitz if JAg, ... Ap_1 (positive diagonal) s.t.

v W
Wy 2/ W

H = =0

~Wry 2Ap W]
—Wy vI
(24
where Wk = AWy, WL = Wr. While offering the tightest-
known bounds, verification of this condition is not scalable to
models with more than a few thousand neurons, and difficult
to apply directly to convolutional models.

In [112] a direct parameterization of condition (24) was
constructed. The basic idea is a square-root parameterization:
H = PPT, so H is positive-definite by construction.
However, H in (24) has a particular structure: it is block-
tridiagonal and the diagonal blocks are themselves diagonal
matrices. The breakthrough in [112] was a method to pa-
rameterize P so that H has the desired structure, arrived at
via a version of the Cayley transform, and such that and the
neural network weights W, can be recovered for inference.

Lipschitz bounded neural networks have numerous appli-
cations [9], [54], [112], but in particular we can highlight
their utility in parameterizing control policies for reinforce-
ment learning can enforce closed-loop contraction via the in-
cremental small-gain theorem, and robustness to adversarial
attacks and measurement errors [92], see e.g. [13] in which
Lipschitz convolutional policies were trained for Atari Pong
and achieved significantly improved robustness.

B. Contracting and Lipschitz Dynamic Models

In [91] this approach was extended to dynamic (recurrent)
models. A recurrent equilibrium network (REN) is a feed-
back interconnection of an LTI GG and activation functions

x4y = Az + Biw + Bou+ b,
v=Ciz + Dijjw + Disu + by,
y = Cox + Doyw + Dogu + by

=G, w=o()

(25)
Using similar methods, RENs can be parameterized to be
contracting and Lipschitz or more generally satisfy incre-
mental dissipativity properties. Indeed, contraction can be
thought of as a form of Lipschitzness of the mapping from
initial conditions to solutions.

Contracting RENs have been used for physics-informed
learning of nonlinear observers, parameterization of stabiliz-
ing feedback controllers [46], [91], [110], and data-driven
learning of optimization algorithms [76].

C. Bi-Lipschitz Networks and Neural Lyapunov Functions

One interesting extension is the parameterization of bi-
Lipschitz models [111]. The starting point is to construct and
directly-parameterize neural networks that are both Lipschitz
and strongly input-output monotone:

(f(z1) = f(@2), 1 — 22) > allz1 — 22

which implies that f is invertible and bi-Lipschitz, i.e.

plley — w2l < || f(21) — f(22)|| S vl|og — 22|

for some v > v > 0. From this building block, more flexible
bi-Lipschitz bijections can be constructed by composition
with orthogonal affine layers O;, which can also be directly-
parameterized via the Cayley transform [104]:

y=G(x):=0ky10fkoOkgo---0 f100(x)

The concept of a bi-Lipschitz invertible model was recently
extended to contracting and Lipschitz dynamic models with
contracting and Lipschitz inverses [118], providing an incre-
mental notion of robustly-invertible systems generalizing the
concept of a minimum-phase linear system.

Bi-Lipschitz and invertible neural networks have many
potential applications [111], including learning Koopman
embeddings for contracting systems [41], [115]. One control-
oriented example is the construction of neural Lyapunov
functions [25], i.e. V(z) = ||G(x)|>. By construction, such
functions are positive-definite and satisfy V(z*) = 0 at a
unique point z* = G~1(0).

This construction is further motivated by the fact that all
Lyapunov functions of an asymptotically stable system have
level sets that are homeomorphisms of the unit ball [113].
Furthermore, the bi-Lispchitz condition leads to

pille —a*|? < V(z) < v¥le —2*|?, VzeR"

which is a widely-used condition for verifying exponential
stability. Having parameterized a rich family of Lyapunov
functions, one can parameterize stable neural dynamics via
smooth descent directions of V' [25]:

i = [J(x) - R@)]VV (),

where J(z) = —J(z)",R(x) = R(x)" > eI which is
globally exponentially stable at x* with converge rate of e.



This formulation can be extended to passive and negative-
imaginary systems [25], [96] for learning stable physical
interaction policies.

CONCLUDING REMARKS ON OTHER RECENT AND
ONGOING WORK

We note that this document provides only a partial
overview of the many recent developments in contraction
theory. To acknowledge the broader scope of ongoing work,
we include below a (necessarily incomplete) list of recent
other contributions in contraction theory and its applications:
[4], [15], [83] on contractivity of stochastic differential
equations, [103] on contractivity of functional differential
equations, [44], [51], [52], [69] on numerical computation
and verification of contraction metrics, [73] on adaptive
control via contraction metrics, [88] on regular pairings
for non-quadratic analysis, [2] on structural contraction of
biological interaction networks, [67] on Riemannian con-
traction in supervised learning, [7], [48]-[50], [90] on LMI
conditions for stability, contraction, and synchronization of
systems in Luré form, [63], [64] on contractivity of virtually
positive systems and discrete-time stochastic systems, [12],
[85] on k-contractivity, [108] on self-triggered stabilization,
[107] on the incremental input-to-state properties of hybrid
integrator-gain systems, and [1] on contractive dynamical
imitation learning. Finally, a special mention goes to the
recent authoritative text [100] on logarithmic norms for
matrices, nonlinear maps and linear differential operators.

VI. CONCLUDING REMARKS ON FUTURE RESEARCH

Several promising directions emerge for the development
of contraction-theoretic methods. A first priority is to sharpen
estimates of contraction rates for important example systems
and, in the case of locally contractive systems, to characterize
domains of contraction. Such results are particularly relevant
to optimization algorithms and to equilibrium-tracking prob-
lems in discrete-time, multi-agent, and stochastic settings.
Extending these ideas to sampled-data systems, including
continuous—discrete interconnections and systems with de-
lays, is a natural and timely research challenge with connec-
tions to recent work on model predictive control [24].

A second theme concerns the development of computa-
tional and data-driven tools. Robust codebases and standard-
ized benchmarks—along the lines of community efforts such
as the OpenAl Gym—would accelerate progress by enabling
systematic evaluation of algorithms and by promoting best
practices from the machine learning community. This di-
rection includes exploring the trade-off between physically
motivated metrics and computationally favorable ones that
yield sharper contraction rates, as well as building scalable
LMI-based methods (e.g., adopting strategies in [90]) for
certifying local contractivity.

Third, there is strong interest in extending contraction the-
ory to broader mathematical settings, while retaining compu-
tational tractability. This includes contraction in probability
space, with potential implications for imitation learning, as
well as computationally-tractable generalizations to classes

of manifolds. Such extensions could further connect con-
traction theory with questions of static and dynamic regret,
expanding the treatments in [80], and open new possibilities
for the analysis and control of learning and adaptive systems.
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