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Abstract— Capacity drop is an empirically observed phe-
nomenon in vehicular traffic flow on freeways whereby, after a
critical density is reached, a state of congestion sets in, but the
freeway does not become decongested again until the density
drops well below the critical density. This introduces a hysteresis
effect so that it is easier to enter the congested state than to leave
it. However, many existing first-order models of traffic flow,
particularly those used for control design, ignore capacity drop,
leading to suboptimal controllers. In this paper, we consider
a cell transmission model of traffic flow that incorporates
capacity drop to study the problem of optimal freeway ramp
metering. We show that, if capacity drop is ignored in the
control design, then the resulting controller, obtained via a
convex program, may be significantly suboptimal. We then
propose an alternative model predictive controller that accounts
for capacity drop via a mixed integer linear program and show
that, for sufficiently large rollout horizon, this controller is
optimal. We also compare these approaches to a heuristic hand-
crafted controller that is viewed as a modification of an integral
feedback controller to account for capacity drop. This heuristic
controller outperforms the controller that ignores capacity drop
but underperforms compared to the proposed alternative model
predictive controller. These results suggest that it is generally
important to include capacity drop in the controller design
process, and we demonstrate this insight on several case studies.

I. INTRODUCTION

Many transportation networks today are utilized close to
or over their capacity. Different types of actuators such as
ramp metering and variable speed limits are therefore used to
avoid congestion effects, since those congestion effects will
lead to an under-utilization of the transportation network’s
capacity.

This loss of capacity is due to the fact that when the
traffic density increases after a certain point, the traffic
flow decreases. This phenomena is empirically observed,
and incorporated in many of the models for traffic, such
as the LWR-model [1], [2] and the cell transmission model
(CTM) [3].

While the classical LWR and CTM models assume that the
decrease in flow capacity happens gradually with an increase
of traffic density, recent work suggests that this drop in
flow capacity happens abruptly [4]–[6], and several different
ways to model this phenomena have been suggested [7].
This abrupt drop in flow capacity is commonly referred
to as a capacity drop. Usually, there is a hysteresis effect
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associated with the capacity drop, as suggested in, e.g., [8],
[9]. When the capacity drop occurs, the traffic saturation
enters a congested state, and to leave the congested state—
a state with a significantly lower throughput—the traffic
density needs to be driven to a lower level than before the
capacity drop. The consequence of this effect is that it is
much easier to steer the system into the congested state, e.g.,
through non-robust ramp metering, than to steer the system
out of it.

Though they can be interpreted as separate phenomena,
capacity drop and hysteresis are linked so closely that it
is assumed the existence of either implies the existence of
the other. Thus, this paper uses the terms capacity drop and
hysteresis to refer to the same overall behavior. For a full
hybrid dynamic description of how to model the capacity
drop, we refer the reader to [10].

The focus of this paper is to qualify the importance of
taking the hysteresis effect into account when designing
ramp metering controllers. While previous simulation studies
in [11] suggest that it may not be necessary for the controller
to take the capacity drop phenomenon into account, our
theoretical results quantify when taking the hysteresis effect
into account will improve the performance. Under such
settings, our results show that incorporating the capacity drop
phenomenon in the controller design yields a considerable
performance gain during high-demand scenarios. It is worth
noting that the need for appropriate control action is the
highest during those scenarios.

To illustrate this effect, we implement a model predictive
controller (MPC) that takes the capacity drop into account.
While MPCs are common for both ramp metering and
variable speed limit control on highways [12]–[14], and the
control actions can be computed efficiently through convex
relaxations [15], these controllers are often developed for
non-hysteretic dynamics, and hence they completely neglect
capacity drop. In this paper, we show that naively applying an
MPC without modelling the hysteretic effect can, depending
on the magnitude of the capacity drop, lead to a significant
loss of throughput on the freeway. Due to page constraints,
we omit full proofs of the propositions, and refer the reader
to the extended version of this paper1.

The outline of the paper is as follows: In the next section,
Section II, we introduce basic notation and present the
model for traffic flow on a highway with capacity drop.
In Section III, we propose several controllers for ramp-
metering, two of which account for capacity drop, and one

1https://arxiv.org/abs/2106.10347
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Fig. 1. Example of a freeway segment with three cells.

that ignores it, to be used for comparison. In Section IV
we make formal statements about how much performance
one can lose by not taking the capacity drop into account
when synthesizing controllers. These results also answer the
question of when it is important to incorporate the capacity
drop in the controller. Additionally, we outline a method
for calculating a sufficient horizon for a model predictive
controller that accounts for capacity drop. In Section V, we
show how each of the proposed control strategies perform in
several different case studies. The paper is concluded with
suggestions for future work.

II. MODEL AND PROBLEM FORMULATION

Freeway networks are often modelled with a first or-
der model such as Daganzo’s Cell Transmission Model
(CTM) [3]. In this section, we recall the standard CTM
model for traffic flow on a freeway and then modify the
model to account for the capacity drop phenomenon by
introducing an additional binary state variable that indicates
the congestion state of a cell.

A. Cell Transmission Model

We consider a length of freeway divided into N cells,
as exemplified in Fig. 1, numbered 1 to N such that traffic
flows from cell i to cell i + 1. In addition, cells may have
an attached onramp from which cars can enter the cell
from outside the system. There does not necessarily exist
an onramp for every cell, and existing ones are numbered
with the same index as the cell they are attached to (i.e.
onramp 3 is attached to cell 3, regardless if it is the third
onramp in the system).

The density of traffic in each cell is denoted by xi ≥ 0 and
the density of traffic in each onramp is denoted by ri ≥ 0.
Cells each have an associated supply function

si(xi) = −wi(xi − xjam
i ) , (1)

where wi > 0 denotes the shock-wave speed and xjam
i > 0

denotes the jam density of the cell, which gives the maximum
possible inflow to the cell when the density of cars in the cell
is equal to xi. Cells also each have an associated demand
function

di(xi) = vixi , (2)

where vi > 0 denotes the free-flow speed of the cell, which
gives the maximum possible outflow from the cell when the
density of cars in the cell is equal to xi.

Thus far, the formulation has matched that of a standard
CTM. To incorporate capacity drop into the system, we must
now introduce new parameters into the model. Each cell

xi

φi

vixi −wi(xi − xjam
i )

xjam
i

xi xi

Fig. 2. The supply and demand functions for a cell i. The outflow from
the cell is limited by the demand function while the inflow to the cell is
limited by the supply function.

has two associated densities, xi and xi, such that xi ≥
xi > 0 which are the densities at which the cell becomes
congested and decongested, respectively. Fig. 2 summarizes
the parameters associated with each cell. While cell i is
decongested, it is able to accept any amount of inflow from
cell i−1. When cell i becomes congested, the inflow capacity
of cell i becomes limited by its supply, thus limiting the
respective outflow of cell i − 1. We denote the congestion
state of each cell using the binary variable σi, which is
defined formally later in this section. This is the core addition
to the standard CTM that allows us to model capacity drop
in the system.

Let φi > 0 denote the outflow from a cell; φi will
be defined in terms of previously defined quantities subse-
quently. To capture offramps, each cell has an associated
fixed βi ∈ [0, 1] which denotes the ratio of cars that progress
onto the next cell as opposed to leaving the system through
an offramp. Therefore βi = 1 is equivalent to a cell having
no offramp. The inflow of cars into a cell i from the previous
cell i− 1 is then βi−1φi−1. Additionally, cell 1 can receive
upstream inflow from outside the system, which we denote
as λ0.

Onramps do not have the same variables and functions
associated to them as cells. Instead, onramps are assigned
a maximum outflow capacity ci representing the maximum
possible flow of cars from the onramp to its associated cell,
and a control signal ui ∈ [0, 1] representing the controlled
rate of cars that enter the onramp’s associated cell such that
the actual rate of cars that enter is uici assuming enough
cars exist on the onramp. If there is no onramp attached to
cell i, the corresponding ci is simply set to 0. Each onramp
also has an associated inflow λi which denotes the flow of
cars into the onramp from outside the system.

We assume the system is sampled over K total timesteps
with sampling time interval h, where h is set such that the
CFL condition [16] of the system is fulfilled, i.e. the sample
time is not long enough to allow cars to traverse more than
one cell during a timestep. Thus, to reference the density xi
or ri of a cell or onramp at a specific timestep k ∈ [0,K], we
utilize the notation xi(k) or ri(k). Likewise, we use σi(k)
to denote a cell’s congestion state at timestep k, φi(k) to
denote outflow from a cell at timestep k, λi(k) to denote the
inflow of cars into the system at timestep k, and ui(k) to
denote the control signal sent to an onramp at timestep k.



B. Modelling Capacity Drop

In this subsection, we formally define the factors that
allow us to model the capacity drop phenomenon in the
system through a hysteresis effect as suggested in [10].
The previously mentioned congestion state σi of a cell at
timestep k follows the dynamics

σi(k) =


1 if xi(k) ≥ xi ,
0 if xi(k) ≤ xi ,
σi(k − 1) otherwise.

(3)

If xi(0) > xi and xi(0) < xi, σi(0) is assumed to be 0.
The outflow φi(k) of cell i at timestep k is calculated

depending on the congestion state of the downstream cell
and given by

φi(k) =


min{di(xi(k)), βi

−1si+1(xi+1(k))}
if σi+1(k) = 1 ,

di(xi(k)) if σi+1(k) = 0 .

(4)

It should be noted that when the downstream cell is in a
congested state, the supply function will always limit the
outflow of the cell.

The new density of each cell at time k + 1 is calculated
as

xi(k + 1) = xi(k) + ∆xi(k) ,

∆xi(k) = h(βi−1φi−1(k)−φi(k)) + min[ri(k), ui(k)ci] ,
(5)

and the new density of each onramp at time k+1 is calculated
as

ri(k + 1) = ri(k) + λi(k)−min[ri(k), ui(k)ci] . (6)

As cell 1 can receive cars from outside the system,
the update equation ∆x1(k) = h(βi−1φi−1(k) − φi(k)) +
min[ri(k), ui(k)ci] + λ0(k).

Thus, with the system fully defined, the problem that
must be solved is the formulation of a controller that
optimizes throughput of the system over K timesteps.
More formally, we define the problem as the formula-
tion of a controller that maximizes the objective function∑K−1
k=0

∑N
i=1 h(1− βi)φi(k).

For modeling purposes, we note that this is equivalent to
minimizing the number of cars present within the system
over all time, or more formally, minimizing the objective
function

K−1∑
k=0

N∑
i=1

xi(k) + ri(k) .

In later sections we will show the effect that accounting for
capacity drop, which we have integrated into this system, can
have on performance. The proposed controllers are assessed
as model predictive controllers so that they are formulated
over a T -step horizon, the first control input of the rollout is
applied, then the next control input is computed via a new
T -step horizon rollout.

III. FREEWAY CONTROLLER FORMULATION

With model in hand, we now discuss three possible control
strategies for the freeway network2. First, we introduce a con-
troller that makes the assumption to ignore capacity drop in
favor of producing a convex relaxation of the problem [17].
We then formulate a controller that accounts for capacity
drop by implementing the system dynamics directly into a
mixed integer program, of which there are many different
solvers available. Finally, we introduce a controller that is
hand-crafted to account for capacity drop to serve as a point
of comparison.

A. Relaxed Approximate MPC

One control solution for ramp metering on a freeway is
to ignore the capacity drop phenomenon and assume that
outflow is always limited by both supply and demand [17].
This allows for a convex relaxation of the problem to be
formulated and used in a model predictive controller [15].
To illustrate this behavior, we mirror the steps taken by [17]
to create a convex relaxation given as

minimize
x(k),φ(k),u(k)

T−1∑
k=0

N∑
i=1

xi(k) + ri(k)

subject to (1), (2), (5), (6) ∀i ∈ [1, N ]

φi(k) ≤ di(xi(k)) ∀i ∈ [1, N ]

βiφi(k) ≤ si+1(xi+1(k)) ∀i ∈ [1, N − 1]

φi(k) ≥ 0 ∀i ∈ [1, N ]

xi(0), ri(0) given ∀i ∈ [1, N ] .

We thus refer to this formulation as the Relaxed Approximate
MPC (RAMPC). Thanks to its convexity, this controller can
calculate a quick solution using most modern solvers.

B. Exact Hysteretic MPC

Given the model formulation from Section II, we introduce
a controller that directly implements this system behavior,
including capacity drop, into its calculations. Thus, the
control problem is formulated as

minimize
x(k),φ(k),u(k)

T−1∑
k=0

N∑
i=1

xi(k) + ri(k)

subject to (1), (2), (3), (4), (5), (6) ∀i ∈ [1, N ] .

This captures the system model exactly as formulated,
modeling capacity drop, and thus we refer to this controller
as the Exact Hysteretic MPC (EHMPC).

This results in a mixed integer linear program, which can
be implemented in several modern solvers. In this instance,
it was implemented in the Gurobi solver [18].

2For the full implementations of each controller, we refer the reader to the
following GitHub repository: https://github.com/gtfactslab/
Cao_CCTA2021



C. A Heuristic Controller

Given the complexity of the Exact Hysteretic MPC, it is
natural to ask if a hand-crafted controller constructed using
domain-specific knowledge is capable of accommodating
the capacity drop phenomenon and achieving optimal or
near-optimal performance with less computational overhead
than the Exact Hysteretic MPC. Here, we describe such
a controller, referred to as the Heuristic Controller (HC).
While the full formulation cannot be included due to page
limitations, a general overview of the controller’s behavior
is provided.

The Heuristic Controller uses the parameters of the system
to calculate what it believes to be the optimal densities
for each cell. At each timestep, it calculates what the state
of the system will be during the next timestep, then adds
or withholds cars from their respective onramps to drive
the attached cells to their calculated optimal density. This
controller is suboptimal, as the calculations are manually
tuned, but the controller is able to account for capacity drop
by factoring in the congestion state of each cell into its
optimal density calculations (i.e. if a cell is congested and
the optimal densities require that it not be, it will withhold
cars from each onramp attached to a cell that comes before
it in an attempt to decongest the cell).

This controller is not considered a major contribution in
itself, hence the omission of the full formulation. Rather, it
is provided to serve as another point of comparison to the
naive approach and illustrate that suboptimally accounting
for capacity drop can still result in performance gains.

With the controllers formulated, we can now discuss the
theoretical gains to be had in accounting for capacity drop
as well as some considerations to be made when running the
controllers. We will see that ignoring capacity drop induces
suboptimality when the control actions are applied to the
actual system. Later sections will test each controller in
simulations and compare their performance.

IV. THEORETICAL RESULTS

Given the three control strategies defined above, we now
consider the potential gain in implementing capacity drop
and conditions for which accounting for capacity drop is
beneficial. We also derive a sufficient horizon length for a
hysteretic controller to produce the optimal control action. In
addition, we discuss the generalizability of the calculation to
different supply and demand functions. Due to the complex
nature of accounting for capacity drop, we discuss these
findings for a two-cell system i ∈ [1, 2], which is the simplest
system that can exhibit capacity drop. We then consider
larger networks in the case studies below.

A. Potential Gain in a Two-Cell System

Consider a two-cell freeway network, N = 2. We start
by defining a condition for which moving cell 2 from a
congested to a decongested state would increase throughput.

We will in this section restrict ourselves to study the
specific case when the exogenous inflows are, for a period
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Fig. 3. Example of how the outflow evolves with time for a two cell system
controlled by both the Relaxed Approximate MPC (dashed) and Exact
Hysteretic MPC (solid). The Exact Hysteretic MPC needs to go through
three different stages to improve its objective of increased throughput. (a)
denotes Decongestion, (b) denotes Recovery, and (c) denotes Steady-State.

of time, more than what can potentially flow out from the
highway, i.e., cases where more cars flow into the onramps
than can exit them every time step, λi ≥ ci for all i. While
this situation would cause infinite back spill on the onramps
in the long run, we want to be able to fully compare the
performance of both controllers without being affected by
system limitations.

Proposition 1. Consider a freeway system with dynam-
ics (1)–(5) with N = 2 and λ2 = 0, r2(0) = 0, and suppose
that λ0 is such that

λ0 + c1 > hd1(x∗1) , (7)

where x∗1 = v2x2/(β1v1) and

β1λ0 < hd2(x2) . (8)

Let

xc =
w2x

jam
2

v2 + w2
.

If xc < x2, then provided that the rollout horizon is
sufficiently long, the Exact Hysteretic MPC enables higher
throughput than the Relaxed Approximate MPC.

Proposition 1 states that in certain cases, the hysteretic
MPC will yield a better performance if the rollout horizon
is large enough. In the next section, we discuss a method
for deriving a sufficient rollout horizon to guarantee a
performance increase.

B. Sufficient Horizon Requirements

If the system fulfills the conditions set by Proposition 1,
i.e., (7) and (8) are fulfilled and x2 > xc, the optimal control
strategy will decongest the system before returning to a state
of higher throughput. As this temporarily results in a lower
throughput, the rollout horizon for a hysteretic controller
must be large enough to capture the long-term benefit of
decongestion. The different stages of this process are shown
in Fig. 3. Thus, in this subsection we present a theorem
for deriving a sufficient rollout horizon needed to cover the
worst-case scenario, assuming an average upstream inflow
λ0 .



Theorem 1. If the conditions for Proposition 1 hold then a
rollout horizon of TD + TR + TS or greater, where

TD =

⌈
β1x1(0) + (xc − x2)

hv2x2 − β1λ0

⌉
,

TR = argmin
k
{x2 − x2 ≤ −hv2x2

+

k∑
i=1

[h(β1v1x1(TD + i)− v2x2(TD + i))]},

TS =⌈
(TD + TR)Econvex − (TDEdecon + TRErecov)

Ehyst − Econvex

⌉
where d·e denotes the ceiling operator, and where

x1(n) = x1(n− 1) + c1 − hv1x1(n− 1) + λ0(n− 1),

Edecon = h

(
(1− β1)v1

x1(0)

2
+ v2

xc − x2
2

)
,

Erecov = h

(
(1− β1)v1

1

2

v2
β1v1

x2 + v2
x2 − x2

2

)
,

is sufficient for the Exact Hysteretic MPC to achieve optimal
throughput.

C. Supply and Demand Generalizability

The formulation of TD, TR, and TS in Section IV-
B assume the forms for the supply and demand functions
outlined in (1) and (2). These formulations, however, can be
generalized to any valid supply and demand functions that
fulfill the conditions for a valid CTM. In particular, only the
demand function is used in the formulation. Thus, so long
as the demand functions di(x) are monotonically increasing
and are such that di(0) = 0, the horizon calculations can be
generalized. The formulation for TD takes the form

TD =

⌈
β1xc + (xc − x2)

hd2(x2)− λ0

⌉
,

and TR is now the smallest integer value that satisfies

x2 − x2 ≤ − hd2(x2) +

TR∑
i=1

[h(β1d1(x1(TD + i))

− d2(x2(TD + i)))]

where

x1(k) = x1(k − 1) + c1 + λ0(k − 1)− hd1(x1(k − 1)) .

TS can be calculated using the relevant outflows at the
target densities. Care should be taken when calculating the
average outflows in each of the other periods if the supply
and demand functions are in non-affine forms.

Thus, we have provided theoretical conditions which, if
fulfilled, result in a hysteretic controller outperforming one
that ignores capacity drop. We have also provided a method
for determining a sufficient rollout horizon such that the hys-
teretic controller is able to produce the optimal output. These
theoretical results provide explicit horizon computations for
a two-cell system, which we focus on in order to illustrate the
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Fig. 4. Controller performance on each system.

effects of accounting for capacity drop locally. Nonetheless,
the fundamental insight of Theorem 1 that the EHMPC will
outperform the RAMPC given a sufficiently large horizon
applies to general networks, as demonstrated in the following
case studies.

V. CASE STUDIES

We have proven that there is significant outflow to be
gained under certain conditions for a two-cell system. In
this section, we provide empirical results for each controller
on systems with more than two cells and illustrate the
differences in behavior of each controller. The full set of
simulation parameters for each system is found in Table I.

Fig. 4 displays the results of running each controller on
a three-cell system and an eight-cell system, respectively,
in order to illustrate performance gains between controllers.
These systems begin in a congested state and remain con-
gested, resulting in a suboptimal throughput rate without
a controller. For the three-cell system the RAMPC was
initialized with a rollout horizon of 51, and the EHMPC
was initialized with a rollout horizon of 21 and a control
memory (i.e. the number of control actions to execute before
recalculating) of 5 actions. For the eight-cell system the
EHMPC was initialized with a rollout horizon of 11 and no
control memory, making it a true model predictive controller,
and the RAMPC was initialized with the same rollout horizon
as the three-cell system.

The Relaxed Approximate controller performs better than
no controller in both systems by somewhat restricting the
inflow of cars into the cells. Without accounting for hystere-
sis, however, this controller keeps the systems in congested
states. This is because the RAMPC formulation does not
differentiate between the congested and uncongested states
and therefore does not recognize the benefit in driving the
system to the uncongested state. The Heuristic Controller
decongests the systems in both cases, though it takes longer
than needed.

The Exact Hysteretic MPC recognizes the need for de-
congestion and severely limits the inflow from each onramp
in order to push each system into its decongested state as
quickly as possible, before returning it to steady-state. This



TABLE I
SIMULATION PARAMETERS USED FOR EACH SYSTEM.

Parameter Three-Cell System Eight-Cell System
sample time h 1/120 hrs 1/120 hrs
number of timesteps K 81 83
number of cells N 3 8
cells with onramps cells 1, 2 cells 1, 3, 5, 7
onramp max flow ci 60 60
onramp inflow λ1...N 80∀k ∈ [0,K) 80∀k ∈ [0,K)
upstream inflow λ0 40 0
xi 110 110
xi 70 70
free flow speed vi 60 60
shockwave speed wi 20 20
jam density xjam

i 320 320
beta terms β1, β2 = 0.9 β1, ..., β7 = 0.9

β3 = 1.0 β8 = 1.0
initial density xi(0) x1(0) = 0, 150

x2(0), x3(0) = 150

All parameters are consistent across every cell unless otherwise noted.

TABLE II
TIME TO SIMULATION COMPLETION (SECONDS)

Controller Three-Cell Eight-Cell
RAMPC 76 85
EHMPC 445 6190

HC < 1 < 1

steady-state is also at a much higher output when compared
to the other control methods, as the controller’s awareness of
the system’s hysteretic behavior allows it to take advantage
of the greater free flow that can be found at higher densities.
Even the Heuristic Controller’s suboptimal steady-state flow
still outperforms the Relaxed Approximate controller. Thus,
we show that accounting for hysteresis, even imperfectly,
produces a nonneglible improvement on the outflow of the
system.

While the more complex eight-cell system produces in-
teresting behaviors during decongestion and recovery, the
EHMPC and the Heuristic Controller eventually achieve a
higher steady-state output than the RAMPC. However, it
is worth noting the increase in overall computation times
between each controller, recorded in Table II. As the calcula-
tions performed in the EHMPC are more complex, the com-
putation time increases between the two systems, whereas
the computation time for the RAMPC increases only slightly.
However, the Heuristic Controller outperforms the RAMPC
in both outflow and computation time, thus illustrating that
there is still a significant advantage to accounting for capacity
drop, even if done so heuristically.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have shown theoretically and with case
studies that explicitly incorporating the capacity drop phe-
nomenon when designing ramp metering strategies, partic-
ularly those based on model predictive control, leads to
improved system performance. In particular, optimal control
is achieved with a model predictive controller formulated as a
mixed integer program with sufficiently long rollout horizon.
Future directions of research include obtaining optimal or
near-optimal controllers that account for capacity drop but

avoid the computational complexity inherent in a large-scale
mixed integer formulation. One approach might be to obtain
distributed implementations similar to those that have been
proposed in [19], [20].
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