
Estimating High Probability Reachable Sets using Gaussian Processes

Michael E. Cao, Matthieu Bloch, and Samuel Coogan

Abstract— We present a method for computing reachable sets
and forward invariant sets for systems with dynamics that
include unknown components. Our main assumption is that,
given any hyperrectangle of states, lower and upper bounds for
the unknown components that hold with high probability are
available. We then show that this assumption is well-suited when
the unknown terms are modeled as state-dependent Gaussian
processes. Under this assumption, we leverage the theory of
mixed monotone systems and propose an efficient method for
computing a hyperrectangular set that over-approximates the
reachable set of the system with high probability. We then
show a related approach that leads to sufficient conditions for
identifying sets that are forward invariant for the dynamics with
high probability. These theoretical results lead to practical algo-
rithms for efficient computation of high probability reachable
sets and invariant sets. A major advantage of our approach
is that it leads to tractable computations for systems up to
moderately high dimension that are subject to low dimensional
uncertainty modeled as Gaussian Processes, a class of systems
that appears often in practice. We demonstrate our results on
an example of a six-dimensional model of a multirotor aerial
vehicle.

I. INTRODUCTION

To determine if a dynamical system satisfies a safety
constraint or achieves certain control objectives, it is often
required to compute reachable sets or forward invariant
sets for the dynamics. However, such calculations often
suffer from the curse of dimensionality. In addition, the true
dynamics of the system may not be fully known, whether
due to inaccuracies in the model itself or external distur-
bances. Recently, mixed monotone systems theory has been
shown to be an effective tool for efficiently computing over-
approximations of reachable and forward invariant sets for
relatively high dimensional systems [1], with applications to
control of practical systems with around ten state dimensions
[2], [3]. Further, mixed monotone systems theory can inte-
grate unknown disturbances into this over-approximation [4].
In this paper, we extend these ideas by applying Gaussian
Process (GP) theory to efficiently calculate high-confidence
bounds on unknown components of the dynamics in order to
compute, with high probability, reachable sets and invariant
sets. As these bounds tighten due to, e.g., measurements
of the GP, we show how improved set estimates can be
achieved.
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A system is mixed monotone if there exists a decomposi-
tion function that separates the vector field of the system
into solely increasing and solely decreasing components
[1], [5]–[7]. Given an n–dimensional system that is mixed
monotone with respect to some decomposition function, a
2n–dimensional embedding system, which is monotone with
respect to a particular southeast order, is constructed from
said decomposition function. This allows for the application
of tools from monotone systems theory to the embedding
system dynamics, which yields conclusions on the reachabil-
ity and safety properties of the original system. In particular,
if the original system is subjected to a p–dimensional dis-
turbance input, the resulting embedding system is subject to
a 2p–dimensional disturbance input; considering the worst-
case inputs of these disturbances allows for the computation
of forward invariant sets of the original system by calculating
equilibria of the embedding system [4].

These prior works did not consider disturbances arising
from unknown but state-dependent uncertainty in the dynam-
ics, although this is a common scenario in practice. To that
end, GPs have been used to model unknown functions to
great effect in statistics and machine learning [8], as they are
able to model distributions over any continuous domain and
provide confidence estimates over a given range of function
values, even with few observations. We can consequently
take advantage of these confidence estimates to form our
high-confidence bounds on the disturbance, allowing these
bounds to be updated as more observations are gathered.

The idea of applying learning in controls is not new; [9]
provides a method for online tuning of controller parameters
using GPs while fulfilling safety criteria, [10] describes
a method for incorporating Reinforcement Learning using
GPs into classical model reference adaptive control, [11],
[12] explore the coverage control problem for estimating
unknown spatial fields using GPs, and [13] derives a uniform
error bound for GPs that is used to calculate safety bounds
for unknown dynamical systems. In service of providing high
probability safety guarantees, [14] uses Bayesian learning to
obtain a distribution over the system dynamics, [15] presents
a model predictive control formulation that incorporates GPs,
and [16] implements reinforcement learning to model uncer-
tainties within control barrier function and control Lyapunov
function constraints.

In this paper, we present a method for computing reachable
sets and forward invariant sets for systems whose dynamics
include unknown components, building off of the previous
literature regarding mixed monotone systems. We accomplish
this by assuming high probability bounds on the unknown
components of the system and show that, when GPs are



used to model the unknown components, this assumption
is particularly appropriate. We show that these bounds lead
to the identification of high probability reachable and for-
ward invariant sets, which leads to algorithms for efficient
computation of such sets.

The approach proposed in this paper is particularly appro-
priate for systems with low dimensional uncertainty modeled
using GPs that appears as unknown components in the
dynamics of a higher dimensional system, a scenario that
often occurs in practice. For this class of systems, bounds on
the low dimensional uncertainty can be efficiently evaluated
using update laws for GPs and direct sampling, while the
theory of mixed monotone systems accommodates the higher
dimensional dynamics, leading to tractable computations. In
addition, in contrast to much of the prior work using GPs in
control systems, we do not assume the dynamics are affine
in the unknown components, and our approach is suitable for
systems modeled in continuous time, though these results are
also applicable to discrete-time systems.

This paper is organized as follows. In Section II, we
introduce key notation. In Section III, we formally define
the assumptions made and the problems to be solved. Subse-
quently, in Section IV we illustrate the key theoretical results
that solve the previously defined problems, before detailing
the theory that allows us to leverage GPs in Section V.
Section VI showcases a demonstration on a model of a
multirotor aerial vehicle subject to unknown wind forces,
and the paper concludes with a discussion in Section VII.

II. NOTATION

Let (x, y) denote the vector concatenation of x, y ∈ Rn,
i.e., (x, y) := [xT yT ]T ∈ R2n. Additionally, � denotes the
componentwise vector order, i.e. x � y if and only if xi ≤ yi
for all i ∈ {1, ..., n} where vector components are indexed
via subscript.

Given x, y ∈ Rn such that x � y, we denote the
hyperrectangle defined by the endpoints x and y using the
notation [x, y] := {z ∈ Rn | x � z and z � y}. Also,
given a = (x, y) ∈ R2n with x � y, [[a]] denotes the
hyperrectangle formed by the first and last n components
of a, i.e., [[a]] := [x, y].

Finally, let �SE denote the southeast order on Rn defined
by (x, x′) �SE (y, y′) if and only if x � y and y′ � x′. In
particular, observe that when x � x′ and y � y′,

(x, x′) �SE (y, y′) ⇐⇒ [y, y′] ⊆ [x, x′]. (1)

III. PROBLEM FORMULATION

Consider the dynamical system

ẋ = f(x,w) (2)

where x ∈ Rn is the system state and w ∈ Rp is an unknown,
state-dependent component of the dynamics so that wi =
gi(x) where gi is unknown. For example, gi might account
for higher order nonlinearities not explicitly captured in the
model.

We make the following two fundamental assumptions
throughout.

Assumption 1. Each wi, i ∈ {1, . . . , p} in (2) is state-
dependent so that wi = gi(x) for some unknown, Lipschitz
continuous gi.

Further, there exist known, Lipschitz continuous functions
γ
i
(x, x̂) and γi(x, x̂) for all i ∈ {1, . . . , p} such that with

probability at least 1− ε

γ
i
(x, x) ≤ gi(x) ≤ γi(x, x) ∀x ∈ [x, x] (3)

for all x, x ∈ Rn with x � x. Without loss of generality,
we assume γ

i
and γi satisfy the natural inclusion property

that for all x1 � x2 � x2 � x1 it holds that γ
i
(x1, x1) ≤

γ
i
(x2, x2) ≤ γi(x2, x2) ≤ γi(x1, x1).

In Section V, we present a method for computing functions
γ
i
(x, x̂) and γi(x, x̂) satisfying Assumption 1 when gi is

modeled as a GP, and we explicitly quantify the probability
that (3) holds.

We denote by g(x), γ, and γ the vector concatenation of
gi, γi, and γi for i = 1, . . . , p.

Assumption 2. The system (2) is mixed monotone with
respect to a decomposition function δ(x,w, x̂, ŵ), that is,
δ satisfies:

1) For all x and all w, δ(x,w, x, w) = F (x,w);
2) For all i, j ∈ {1, · · · , n} with i 6= j, ∂δi∂xj

(x,w, x̂, ŵ) ≥
0 for all x, x̂ and all w, ŵ;

3) For all i, j ∈ {1, · · · , n}, ∂δi
∂x̂j

(x,w, x̂, ŵ) ≤ 0 for all
x, x̂ and all w, ŵ; and

4) For all i ∈ {1, · · · , n} and all k ∈ {1, · · · , m},
∂δi
∂wk

(x,w, x̂, ŵ) ≥ 0 and ∂δi
∂ŵk

(x,w, x̂, ŵ) ≤ 0 for all
x, x̂ and all w, ŵ.

A large class of systems have been shown to satisfy the
above assumption; see [1] for further details and examples.

For initial condition x0 ∈ Rn, let φ(t, x0) denote the
resulting state trajectory of (2) when w = g(x), that is,
φ(t, x0) satisfies d

dtφ(t, x0) = f(φ(t, x0), g(φ(t, x0))). The
T -horizon reachable set from X0 for (2) is the set of states
reachable over the time horizon T from any initial condition
x0 ∈ X0 and is denoted R(T,X0). That is,

R(T,X0) = {φ(T, x0) | x0 ∈ X0}. (4)

Even with full knowledge of the dynamics, computing ex-
act reachable sets is generally not possible. Thus, we are
interested in computing approximations of reachable sets. In
particular, over-approximations are often preferred for, e.g.,
safety verification.

The focus of this paper is on the tractable computation of
over-approximations for reachable sets of (2). Since g(x) is
unknown, and in light of Assumption 1, we specifically seek
over-approximations that hold with probability at least 1− ε.

Problem 1. Given X0 = [x0, x0] for some x0, x0 ∈ Rn
with x0 � x0, compute R̂(T,X0) such that R(T,X0) ⊆
R̂(T,X0) with probability at least 1− ε.

Closely related to the problem of computing reachable sets
is the problem of computing forward invariant sets. A set
A ⊆ Rn is forward invariant if R(t, A) ⊆ A for all t ≥ 0.



That is, A is forward invariant if any trajectory initialized in
A always remains within A.

Problem 2. Identify sets S ⊆ Rn that are forward invariant
for (2) with probability at least 1− ε.

In Section IV, we present solutions to Problems 1 and
2 using mixed monotone systems theory. Then, in Section
V, we use the theory of GPs to derive a general approach
to satisfying Assumption 1 and, in particular, obtaining the
necessary functions γ and γ such that (3) holds with high
probability.

IV. HIGH CONFIDENCE REACHABLE AND INVARIANT
SETS

A key feature of mixed monotone systems is that hyper-
rectangular over-approximations of reachable sets are ef-
ficiently computed from trajectories of a 2n–dimensional
embedding system constructed from the decomposition func-
tion δ; however, existing results have only considered deter-
ministic dynamics or dynamics with disturbances that have
constant bounds. In this section, we extend this fundamental
property to systems with state-dependent uncertainty satis-
fying Assumption 1. Due to page constraints, we omit full
proofs of Theorems 1 and 2, as they are natural extensions
of [1, Proposition 3] and [4, Theorem 1], respectively.

Theorem 1. Consider (2) satisfying Assumptions 1 and 2.
Let X0 = [x0, x0] for x0, x0 ∈ Rn, with x0 � x0, be a
hyperrectangular set of initial conditions. Let (x(t), x̂(t)) be
the solution to the 2n dimensional system[

ẋ
˙̂x

]
= e(x, x̂) :=

[
δ(x, γ(x, x̂), x̂, γ(x, x̂))
δ(x̂, γ(x, x̂), x, γ(x, x̂))

]
(5)

with initial condition (x(0), x̂(0)) = (x0, x0). Then, with
probability at least 1 − ε, R(T,X0) ⊆ [x(T ), x̂(T )] for all
T ≥ 0.

Theorem 1 indicates that R̂(T,X0) := [x(T ), x̂(T )],
where x(T ), x̂(T ) are obtained as the solution to (5), pro-
vides a hyperrectangular over-approximation of the true
reachable set R(T,X0) with probability at least 1− ε, thus
solving Problem 1. The system (5) is called the embedding
system for the mixed monotone system (2).

Theorem 2. Consider (2) satisfying Assumptions 1 and 2.
If x∗, x∗, w∗, w∗ with x∗ � x∗ and w∗ � w∗ are such that

w∗ � γ(x∗, x∗) and γ(x∗, x∗) � w∗ (6)

and

δ(x∗, w∗, x∗, w∗) � 0 and δ(x∗, w∗, x∗, w∗) � 0, (7)

then with probability at least 1 − ε, [x∗, x∗] is forward
invariant for (2).

We have the following useful corollary.

Corollary 1. Consider (2) satisfying Assumptions 1 and 2. If
(x∗, x∗) is an equilibrium for the embedding system (5), then
with probability at least 1− ε, [x∗, x∗] is forward invariant
for (2).

Corollary 1 suggests an immediate method for identifying
high probability invariant sets for (2): compute equilibria of
the embedding system (5) by, e.g., initializing the embedding
system dynamics at some point and simulating the dynamics
to determine if the trajectory converges.

One difficulty of this method, however, is that the func-
tions γ and γ must be evaluated at each point along the entire
trajectory, which may be impractical in some cases. Instead,
Theorem 2 offers an alternative method for identifying
invariant sets that relies on evaluating γ and γ at a sequence
of points and simulating the resulting embedding dynamics
with γ and γ fixed to these evaluations.

To that end, consider an initial x1 � x1 and construct the
sequences {xk}∞k=1, {xk}∞k=1 according to the recursion

wk = γ(xk, xk), wk = γ(xk, xk) (8)

and

(xk+1, xk+1) = lim
t→∞

(xk(t), x̂k(t)) (9)

provided the limit exists, where (xk(t), x̂k(t)) is the solution
to

ẋk = δ(xk, wk, x̂k, wk), ˙̂xk = δ(x̂k, wk, xk, wk) (10)

with initial condition xk(0) = xk, x̂k(0) = xk.

Theorem 3. Consider (2) satisfying Assumptions 1 and
2. For any initial x1 � x1, if the sequences {xk}∞k=1,
{xk}∞k=1 constructed according to (8)–(10) are well-defined
and converge, then (x∗, x∗) := limk→∞(xk, xk) constitutes
an equilibrium of (5) and, hence, with probability at least
1− ε, [x∗, x∗] is forward invariant for (2).

In addition, if for some K it holds that

xK � xK+1 and xK+1 � xK , (11)

then for all k ≥ K, it holds that xk � xk+1 and xk+1 � xk
and the sequences {xk}∞k=1, {xk}∞k=1 converge. Moreover,
with probability at least 1 − ε, each [xk, xk] for k ≥ K is
forward invariant for (2).

Proof. For the first part of Theorem 3, construct the embed-
ding system described by (8)–(10) for each iteration k[

ẋk

˙̂xk

]
= ek(xk, x̂k) :=

[
δ(xk, wk, x̂, wk)
δ(x̂k, wk, xk, wk)

]
. (12)

Since the limit limt→∞(xk(t), x̂k(t)) exists, (xk+1, xk+1) as
defined by (9) must be such that[

ẋ
˙̂x

]
= ek(xk+1, xk+1) = 0, (13)

i.e., (xk+1, xk+1) is an equilibrium for ek.
Because the sequences {xk}∞k=1, {xk}∞k=1 converge,

and because δ is Lipschitz continuous by Assump-
tion 2, the Lipschitz continuous function e∗(x, x̂) =[
δ(x,w∗, x̂, w∗) δ(x̂, w∗, x, w∗)

]T
where (w∗, w∗) :=

limk→∞(wk, wk) satisfies e∗(x∗, x∗) = 0 where (x∗, x∗) :=
limk→∞(xk, xk), meaning that (x∗, x∗) is an equilibrium of
the embedding system

[
ẋ ˙̂x

]T
= e∗(x, x̂), which we recall



from Corollary 1 means that with probability at least 1− ε,
[x∗, x∗] is forward invariant for (2).

For the second part of Theorem 3, we note from the
inclusion property in Assumption 2 that, for the K at
which (11) holds, it must be true that γ(xK , xK) �
γ(xK+1, xK+1) � γ(xK+1, xK+1) � γ(xK , xK), or,
equivalently, wK � wK+1 � wK+1 � wK . From (13),
it also holds that δ(xK+1, wK , xK+1, wK) = 0 and
δ(xK+1, wK , xK+1, wK) = 0. Thus, as an immediate con-
sequence of property 4 in Assumption 2,

δ(xK+1, wK+1, xK+1, wK+1) � 0, (14)

δ(xK+1, wK+1, xK+1, wK+1) � 0, (15)

which subsequently means that xK+1 � xK+2 and xK+2 �
xK+1 must also hold, which means that wK+1 � wK+2 �
wK+2 � wK+1 also holds, and so on by induction. This
also extends back one step to iteration K, i.e., it must
also have been true that δ(xK , wK , xK , wK) � 0 and
δ(xK , wK , xK , wK) � 0 in order for (11) to hold in the first
place (though we note that wK−1 � wK � wK � wK−1

does not necessarily have to hold for this to be the case).
As a result, for all k ≥ K, it holds that xk � xk+1

and xk+1 � xk and the sequences {xk}∞k=1, {xk}∞k=1

converge. Additionally, as δ(xk, wk, xk, wk) � 0 and
δ(xk, wk, xk, wk) � 0 hold for all k ≥ K, by Theorem 2
each [xk, xk] for k ≥ K is forward invariant for (2) with
probability at least 1− ε. �

Theorem 2 and Corollary 1 indicate that the hyperrect-
angle [x∗, x∗], such that (x∗, x∗) is an equilibrium for the
embedding system (5), is a forward invariant set for (2) with
probability at least 1− ε. Additionally, Theorem 3 describes
a computationally reasonable manner of calculating [x∗, x∗].
Thus, Theorems 2 and 3, and Corollary 1, solve Problem 2.

As detailed in the next section, the theory of GPs naturally
leads to a methodology for modeling and obtaining γ and γ
satisfying Assumption 2. In this case, it is further reasonable
to envision updating the bounds γ and γ by incorporating
newly collected data into estimation of the GPs, such that the
bounds become tighter as the confidence of the GPs increase.
This leads to tighter overapproximations of reachable and
forward invariant sets, which in turn leads to more refined
control of the system. We demonstrate this behavior in our
Case Study outlined in Section VI.

V. GAUSSIAN PROCESSES FOR HIGH PROBABILITY
UNCERTAINTY BOUNDS

We now propose an approach to construct functions γ
and γ satisfying Assumption 1. The crux of the approach
is to posit the existence of a specific probability distribution
over the function space for each of the unknown functions
{gi}i=1,··· ,p constituting the unknown part of the dynamics.

Assumption 3. The unknown functions {gi}i∈{1,··· ,p},
are independent realizations of a Gaussian Process
GP(0, k(x, x′)) with zero mean and kernel k(·, ·). In addi-
tion, observations of the GP are perturbed by additive i.i.d.
Gaussian noise N (0, σ2) with zero mean and variance σ2.

GPs are a form of non-parametric estimators [8] that are
extremely powerful and have gained popularity in a broad
range of applications including optimization and control [9]–
[13], [17]. The kernel k(·, ·) is a hyper-parameter of the
model that controls the correlation of the GP over its domain,
which can be heuristically viewed as an assumption regarding
the smoothness of the unknown function gi.

Assumption 3 allows one to approximate the true unknown
functions {gi}i=1,··· ,p using surrogate functions that 1) pro-
vide lower or upper bounds for the true functions with high
probability; and 2) can be refined by acquiring additional
observations of the GP. Specifically, given noisy observations
{yj}j∈1,··· ,t of the GPs at corresponding points {xj}j∈1··· ,t
the surrogate functions of interest to approximate gi are

∀i ∈ {1, · · · , p}

{
g
(t)
i (x) := µt(x) +

√
βtσt(x)

g(t)
i
(x) := µt(x)−

√
βtσt(x)

(16)

where βt is to be specified later (see Theorem 4), µt(·) is the
posterior mean, and σt(·) is the posterior variance, computed
according to the standard GP updates [8]:

µt(x) := kt(x)
T (Kt + σ2I)−1kt(x) (17)

kt(x, x
′) := k(x, x′) = kt(x)

T (Kt + σ2I)−1kt(x
′) (18)

σ2
t (x) := kt(x, x). (19)

where kt(x) := (k(x1, x), · · · , k(xt, x)) and Kt =
[kt(xi, xj)]. Intuitively, the bounds in (16) hold with high
probability and can be used to create functions γ and γ as
follows. For all i ∈ {1, · · · , p} and all t ≥ 1

∀x � x

{
γ(t)
i
(x, x) := minx∈[x,x] g

(t)
i
(x),

γ
(t)
i (x, x) := maxx∈[x,x] g

(t)
i (x).

(20)

By definition, the functions in (20) satisfy the natural inclu-
sion property in Assumption 1. However, establishing that (3)
holds requires a bit more care because the high probability
statement has to hold for all states in a subset of Rn and
for all times t at which updates are made to the GP. We
introduce the following mild technical assumptions.

Assumption 4. The states x are confined to a compact subset
D ⊂ Rn included in a hypercube of edge size r. In addition,
there exist constants a, b > 0 such that

∀i ∈ {1, · · · , n}∀j ∈ {1, · · · , p}

Pr

(
sup
x∈D

∣∣∣∣∂gj∂xi

∣∣∣∣ > L

)
≤ ae−L

2/b2 . (21)

The first part of Assumption 4 is relatively mild since we
can assume that the trajectories are confined into a (possibly)
large hypercube when computing safe reachable sets as in
Section VI. The second part of Assumption 4 is also mild
and is satisfied by many kernels of interest [17]. By adapting
the proof of [17, Theorem 2], we have the following.



Theorem 4. Assume that the unknown functions {gi}i=1,··· ,p
satisfy Assumptions 3 and 4. Pick ε ∈ (0, 1) and set

βt := 2 log

(
pt2π2

3ε

)
+ 2n log

(
t2nbr

√
log

(
4na

ε

))
.

(22)

At every step t of the GP update, define a uniform discretiza-
tion Dt of the hypercube containing D with size τnt where

τt := nt2br
√
log
(
2npa
ε

)
. For every x ∈ D, define

x(t,−) := sup{y ∈ Dt | y � x}, (23)

x(t,+) := inf{y ∈ Dt | x � y}. (24)

For all i ∈ {1, · · · , p} and all t ≥ 1 define ∀x � x

γ(t)
i
(x, x) := min

x∈[x(t,−),x(t,+)]∩Dt

g(t)
i
(x)− 1

t2
, (25)

γ
(t)
i (x, x) := max

x∈[x(t,−),x(t,+)]∩Dt

g
(t)
i (x) +

1

t2
. (26)

Then, with probability at least 1− ε,

∀x � x ∀x ∈ [x, x] ∀t ≥ 1 ∀j ∈ {1, · · · , p}
γ(t)
i
(x, x) ≤ gi(x) ≤ γ(t)i (x, x). (27)

The proof is omitted for brevity. Theorem 4 can be directly
combined with the results of Section IV.

VI. CASE STUDY: A PLANAR MULTIROTOR

We consider the planar multirotor model for a multirotor
aerial vehicle constrained to move in a vertical plane. The
horizontal and vertical position of the multirotor are denoted
y and z, the roll angle is denoted θ, and the six-dimensional
state x of the system consists of y, z, θ, and their derivatives,
vy = ẏ, vz = ż, ω = θ̇, so that x =

[
y vy z vz θ ω

]T
.

The two inputs are thrust u1 acting at the center of mass
in the direction

[
− sin θ cos θ

]T
perpendicular to the line

segment connecting the rotors, and roll angular acceleration
u2. Aside from gravitational acceleration ag , we assume the
system is also subject to an unknown force due to wind. We
assume this force affects acceleration in both the horizontal
and vertical directions and is a function of altitude z. The
resulting dynamics with normalized mass and moment of
inertia are given by

ÿ = −u1 sin θ + g1(z)

z̈ = u1 cos θ − ag + g2(z)

θ̈ = u2

(28)

where g1 and g2 constitute the unknown wind forces in
the horizontal and vertical directions, respectively. We es-
timate g1 and g2 using Gaussian processes with a radial
basis function kernel, and obtain high confidence bounds by
considering posterior estimates up to two standard deviations
from the mean.

To demonstrate our theoretical results, we consider a
simple control objective of climbing to a nominal altitude
and returning to the ground at z = 0. We suppose that

position is not measurable during the maneuver so that the
unknown wind force is capable of blowing the system off
course. On the other hand, this force can be compensated
by feedforward control using an estimate of the wind force.
Given a horizontal displacement that can be safely tolerated
during the maneuver, the theory developed in this paper is
able to determine in advance if the proposed maneuver is
safe with high probability.

To that end, given a target altitude and a time horizon T
for the maneuver, we propose the following control strategy
that does not require position measurements. We divide the
time horizon into a uniform acceleration phase during time
interval [0, T4 ], a uniform deceleration phase during [T4 ,

3T
4 ],

and a uniform acceleration phase from [ 3T4 , T ]. The result
is a desired vertical trajectory that is piecewise quadratic in
time and reaches the peak target altitude at time T

2 .
This desired vertical acceleration profile is converted to

a desired thrust profile u∗1(t) and desired roll angle θ∗(t)
computed from the dynamics (28) in order to counter the
force due to gravity and the wind forces, where we use the
mean estimated wind forces in place of the unknown g1 and
g2. We then apply a proportional-derivative control so that
θ(t) tracks θ∗(t), and we use directly u∗1(t) as the applied
thrust. The closed-loop system results in dynamics that are
mixed monotone after a state transformation of the closed-
loop (θ, ω) coordinates into Jordan canonical form. We then
obtain the system decomposition and embedding dynamics
from the tight decomposition construction in [18].

Since the estimated wind forces are used to compute the
input profile, the actual trajectory of the multirotor will
differ from the planned profile. Given a safe horizontal
displacement, Theorem 1 allows for efficiently computing a
high probability reachable set for the system over the horizon
T to determine if the system will remain safe with high
probability during the duration of the maneuver.

Lastly, note that while the system has six state dimensions,
the unknown wind force appears only in two entries of the
vector field, those for v̇y and v̇z , and is assumed only to
be a function of altitude z. Therefore, it is computationally
tractable to obtain the functions γ

i
and γi for i ∈ {1, 2} by

evaluating the Gaussian process mean and standard deviation
functions via direct sampling. This emphasizes the main
appeal of the methodology proposed in this paper: mixed
monotone system theory, which is applicable to high dimen-
sional systems, is combined with the theoretical guarantees
of Gaussian process estimation, which is tractable in lower
dimensions, to obtain high dimensional, high probability
over-approximations of reachable sets.

We consider three scenarios. In the first scenario, the target
altitude is z = 50, but the estimate of the wind force is poor
and therefore the reachable set computed using Theorem 1,
as well as the actual system trajectory, enters the unsafe
region, which is the set of states such that y ≤ −20 or
y ≥ 20. In the second scenario, we show that with the same
poor wind force estimate, the system is able to safely climb to
a lower target altitude of z = 20. Lastly, in the third scenario,
the target altitude is again z = 50 but the estimate of the wind
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Fig. 1. The planar multirotor model (right, top) has horizontal position
y, vertical position z, and roll angle θ. The inputs are thrust u1 in the
direction perpendicular to the line segment connecting the rotors and roll
angle acceleration u2. In the first two scenarios for the multirotor case study,
the estimate of the wind force is poor (left, top). With a target altitude of 50,
the high probability reachable set computed from this poor estimate using
Theorem 1 enters the unsafe set, as does the true trajectory (left, middle).
However, a lower target altitude of 20 maintains safety (left, bottom). In the
third scenario, the estimate of the wind force is improved (right, middle).
With a target altitude of 50, the high probability reachable set now remains
safe (right, bottom).

force is more accurate with lower uncertainty. For example,
wind measurements might be safely collected at successively
higher altitudes, although we do not consider here explicitly
the mechanism by which measurements are collected. In this
scenario, the maneuver is now safe with high probability.
In all scenarios, computing the reachable set of the six-
dimensional system with MATLAB on a standard personal
computer takes under one second. Figure 1 demonstrates
these scenarios.

VII. CONCLUSION

We have presented a technique for computing reachable
and forward invariant sets for dynamical systems with un-
known components by modeling these components as GPs,
which allows for the assumption of high probability bounds.
For systems that are moderately high dimensional in the
known component and lower dimensional in the unknown
component, which occur often in practice, this assumption
in turn enables tractable algorithms for determining reachable
and forward invariant sets with high probability by leveraging
tools from mixed monotone systems theory. As shown in the
case study, this is achieved by sampling the GP over the
relevant region of the state space to retrieve high probability
bounds, then inputting these bounds into an embedding
system, from which the reachable and forward invariant sets

are calculated. Crucially, this method does not require the
unknown components to be affine, and we are able to model
the components in continuous time. Future directions of re-
search include integrating techniques for efficient observation
of the state space in order to more effectively tighten bounds
on the unknown components.
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