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ABSTRACT We present a method for efficiently computing reachable sets and forward invariant sets for
continuous-time systems with dynamics that include unknown components. Our main assumption is that,
given any hyperrectangle of states, lower and upper bounds for the unknown components are available.
With this assumption, the theory of mixed monotone systems allows us to formulate an efficient method
for computing a hyperrectangular set that over-approximates the reachable set of the system. We then
show a related approach that leads to sufficient conditions for identifying hyperrectangular sets that are
forward invariant for the dynamics. We additionally show that set estimates tighten as the bounds on the
unknown behavior tighten. Finally, we derive a method for satisfying our main assumption by modeling the
unknown components as state-dependent Gaussian processes, providing bounds that are correct with high
probability. A key benefit of our approach is to enable tractable computations for systems up to moderately
high dimension that are subject to low dimensional uncertainty modeled as Gaussian processes, a class of
systems that often appears in practice. We demonstrate our results on several examples, including a case
study of a planar multirotor aerial vehicle.

INDEX TERMS Autonomous Systems, Safe Learning for Control, Stability of Nonlinear Systems

I. Introduction
The calculation of reachable or forward invariant sets for
a dynamical system is often a key component of safety
verification. However, these calculations tend to suffer from
the curse of dimensionality, and the complexity can be
compounded if the true dynamics of the system are not fully
known due to inaccuracies in the model or the presence
of external disturbances. Mixed monotone systems theory
has recently proved effective for efficiently estimating rect-
angular forward invariant sets and overapproximations of
reachable sets [1], with applications to control of practical
systems of around ten state dimensions [2], [3]. Further,
this theory is able to accommodate unknown but bounded
disturbances into this calculation [4]. We extend these ideas
by leveraging Gaussian Process (GP) theory to efficiently
calculate high-confidence bounds on unknown components
of the dynamics in order to compute, with high probability,
reachable sets and invariant sets. We then show that set

estimates are improved as the bounds on the unknown
components tighten due to, e.g., measurements of the GP,
which leads to several applications of this formulation in
robust control and safety verification.

An n–dimensional system is mixed monotone if there
exists a decomposition function that separates the vector field
of the system into solely increasing and solely decreasing
components [1], [5]–[8]. Said decomposition function is used
to construct a 2n–dimensional embedding system that is
monotone with respect to a particular southeast order (see
Section II). This allows for the application of tools from
monotone systems theory to the embedding system dynam-
ics, which yields conclusions on the reachability and safety
properties of the original system. In particular, if the original
system is subject to a p–dimensional disturbance input, the
resulting embedding system is subject to a 2p–dimensional
disturbance input; considering the worst-case inputs of these
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disturbances allows for the efficient computation of reachable
and forward invariant sets of the original system [4].

Prior works on mixed monotone systems did not con-
sider disturbances arising from unknown but state-dependent
uncertainty in the dynamics, although this is a common
practical scenario. To that end, GPs have been used to model
unknown functions to great effect in statistics and machine
learning [9], as they are able to model distributions over any
continuous domain and provide confidence estimates over a
given range of function values, even with few observations.
One can consequently take advantage of these confidence
estimates to form high-confidence bounds on the disturbance
and update these bounds as more observations are gathered.

The advantages afforded by GPs, and learning meth-
ods in general, in estimating unknown functions have not
gone unnoticed by the controls community; [10] provides
a method for online tuning of controller parameters using
GPs while fulfilling safety criteria, [11] describes a method
for incorporating Reinforcement Learning using GPs into
classical model reference adaptive control, [12], [13] ex-
plore the coverage control problem for estimating unknown
spatial fields using GPs, and [14] derives a uniform error
bound for GPs that is used to calculate safety bounds for
unknown dynamical systems. In service of providing high
probability safety guarantees, [15] uses Bayesian learning
to obtain a distribution over the system dynamics, [16]
presents a model predictive control formulation that incor-
porates GPs, and [17] implements reinforcement learning
to model uncertainties within control barrier function and
control Lyapunov function constraints. Further, a min-norm
control Lyapunov function-based stabilizing controller for
control affine systems with uncertain dynamics utilizing GP
regression is presented in [18]. Additionally, much work
has been done in leveraging Hamilton-Jacobi reachability
methods for safety. The paper [19] provides a least-restrictive
safety-preserving control framework based on combining
these methods with GPs, and [20] synthesizes techniques
to speed up computation of Hamilton-Jacobi safe sets as
uncertainties are reduced.

We present here a method for computing reachable and
forward invariant sets for systems whose dynamics include
unknown components, drawing from the previous literature
on mixed monotone systems. We accomplish this by assum-
ing bounds on the unknown components of the system and
then show that these bounds lead to the identification of
reachable and forward invariant sets, resulting in computa-
tionally efficient algorithms. We then show that, when GPs
are used to model the unknown components, this assumption
is particularly appropriate, as it enables the calculation of
bounds that are correct with high probability.

The proposed approach is well suited to high dimensional
systems with low dimensional uncertainty that appears as
unknown components in the dynamics. This scenario often
occurs in practice, for example, in mechanical systems,
where uncertain forces generally affect only the velocity

dynamics and might be a function of only positional state.
For such systems, bounds on the low dimensional uncertainty
can be efficiently evaluated using update laws for GPs
and direct sampling, while the theory of mixed monotone
systems accommodates the higher dimensional dynamics,
leading to tractable computations. In addition, in contrast
to much of the prior work using GPs in control systems,
we do not assume the dynamics are affine in the unknown
components, and we model systems in continuous time.

Theorems 1, 3, 4, and 7 have previously appeared in con-
ference proceedings [21], which focused on demonstrating
the validity of the proposed formulation in calculating high
probability reachable and forward invariant sets. We expand
upon the capabilities of this formulation with additional
theoretical results proving that calculated sets tighten as the
bounds on the unknown component tighten, as well as a
method for reducing the space over which the GPs need to
be sampled to the border of the hyperrectangular sets. These
additional results are showcased in a new set of case studies.

This paper is organized as follows. Key notation is intro-
duced in Section II. In Section III, we formally define the
assumptions made and the problems to be solved. Subse-
quently, in Section IV, we illustrate the key theoretical results
that solve the previously defined problems, before detailing
the theory that allows us to leverage GPs in Section V.
In Section VI, we showcase several demonstrations of the
results, and we conclude the paper in Section VII.

II. Notation
Let (x, y) denote the vector concatenation of x, y 2 Rn,
i.e., (x, y) := [xT yT ]T 2 R2n. Additionally, � denotes
the componentwise vector order, i.e., x � y if and only if
xi  yi for all i 2 {1, ..., n} where vector components are
indexed via subscript.

Given x, y 2 Rn such that x � y, we denote the
hyperrectangle defined by the endpoints x and y using the
notation [x, y] := {z 2 Rn | x � z and z � y}. Also,
given a = (x, y) 2 R2n with x � y, [[a]] denotes the
hyperrectangle formed by the first and last n components
of a, i.e., [[a]] := [x, y].

Finally, let �SE denote the southeast order on R2n defined
by (x, x0) �SE (y, y0) if and only if x � y and y0 � x0. In
particular, observe that when x � x0 and y � y0,

(x, x0) �SE (y, y0) () [y, y0] ✓ [x, x0]. (1)

III. Problem Formulation
Consider the continuous-time, Lipschitz dynamical system

ẋ = f(x,w) (2)
where x 2 Rn is the system state and w 2 Rp is an unknown,
state-dependent component of the dynamics so that wi =
gi(x) where gi is unknown. For example, gi might account
for higher order nonlinearities not explicitly captured in the
model.

We make the following two fundamental assumptions
throughout.
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Assumption 1. Each wi, i 2 {1, . . . , p} in (2) is state-
dependent so that wi = gi(x) for some unknown, Lipschitz
continuous gi : Rn 7! R.

Further, there exist known, Lipschitz continuous functions
�
i
(x, bx) and �i(x, bx), �i, �i : Rn ⇥ Rn 7! R, for all i 2

{1, . . . , p} such that

�
i
(x, x)  gi(x)  �i(x, x) 8x 2 [x, x] (3)

for all x, x 2 Rn with x � x. Without loss of generality, we
assume �

i
and �i satisfy the natural inclusion property that

for all x � y � y � x it holds that �
i
(x, x)  �

i
(y, y) 

�i(y, y)  �i(x, x).

In Section V, we present a method for computing func-
tions �

i
(x, bx) and �i(x, bx) satisfying Assumption 1 with

high probability when gi is modeled as a GP, and we
explicitly quantify the probability that (3) holds.

We denote by g(x), �, and � the vector concatenation of
gi, �i, and �i for i = 1, . . . , p.

Assumption 2. The system (2) is mixed monotone with
respect to a Lipschitz decomposition function �(x,w, bx, bw),
that is, � : Rn ⇥ Rp ⇥ Rn ⇥ Rp 7! Rn satisfies:

1) For all x and all w, �(x,w, x, w) = f(x,w);
2) For all i, j 2 {1, · · · , n}, i 6= j, @�i

@xj
(x,w, bx, bw) � 0

for all x, bx and all w, bw wherever the derivative exists;
3) For all i, j 2 {1, · · · , n}, @�i

@bxj
(x,w, bx, bw)  0 for all

x, bx and all w, bw wherever the derivative exists; and,
4) For all i 2 {1, · · · , n} and all k 2 {1, · · · , p},

@�i
@wk

(x,w, bx, bw) � 0 and @�i
@ bwk

(x,w, bx, bw)  0 for all
x, bx and all w, bw wherever the derivative exists.

Assumption 2 is not particularly restrictive as it has
been shown in [4] that all systems with Lipschitz dynamics
are mixed monotone with respect to some decomposition
function. Generally, domain-specific knowledge is leveraged
to obtain closed-form decomposition functions, and for some
classes of systems such as those for which the partial deriva-
tives of f are bounded, decomposition functions are readily
constructed from f . Additionally, the choice of decompo-
sition function affects the conservatism of the reachable
set overapproximation [22]. For examples of decomposition
functions, see equation (79) in Section VI, or [1] and
citations therein for more details. Lastly, we note that for
simplicity, we take Rn as the domain, although it is possible
to restrict to a domain that is a hyperrectangular subset of
Rn, as described in [1].

For initial condition x0 2 Rn, let �(t, x0) denote the
resulting state trajectory of (2) when w = g(x), that
is, �(t, x0) satisfies d

dt�(t, x0) = f(�(t, x0), g(�(t, x0))).
Given some X0 ✓ Rn, the T -horizon reachable set from X0

for (2) is the set of states reachable over the time horizon T
from any initial condition x0 2 X0 and is denoted

R(T,X0) = {�(T, x0) | x0 2 X0}. (4)

Even when the dynamics are fully known, computing ex-
act reachable sets is generally not possible. Thus, we are

interested in computing approximations of reachable sets.
In particular, over-approximations are often preferred for,
e.g., safety verification. A key feature of mixed mono-
tone systems is that hyperrectangular over-approximations
of reachable sets are efficiently computed from trajectories
of a 2n dimensional embedding system constructed from
the decomposition function �. In Section IV, we extend
this fundamental property to systems with state-dependent
uncertainty satisfying Assumption 1, expanding on our re-
sults from [21]. The focus of this paper is on the tractable
computation of over-approximations for reachable sets of (2).

Problem 1. Given X0 = [x0, x0] for some x0, x0 2 Rn

with x0 � x0, compute bR(T,X0) such that R(T,X0) ✓
bR(T,X0).

Closely related to the problem of computing reachable sets
is the problem of computing forward invariant sets for (2).

Problem 2. Identify sets A ✓ Rn such that R(t, A) ✓ A for
all t � 0.

In Section IV, we present solutions to Problems 1 and
2 using mixed monotone systems theory. Then, in Section
V, we use the theory of GPs to derive a general approach
to satisfying Assumption 1 and, in particular, obtaining the
necessary functions � and � such that (3), and consequently
the identified reachable and forward invariant sets, holds with
high probability.

IV. Reachable and Invariant Sets
We present solutions to Problems 1 and 2, including results
that show improvements to the tightness of the calculated
sets as bounds on the unknown components are tightened.
We then outline an additional refinement to our formulation
that results in more accurate reachable and forward invariant
sets at the cost of increased computational complexity.

We begin by recalling the fundamental result of mixed
monotone systems theory (see, e.g., [1]). Construct the em-
bedding system with state (x, bx) 2 Rn⇥Rn and disturbance
(w, bw) 2 Rp ⇥ Rp


ẋ
ḃx

�
= "(x,w, bx, bw) :=


�(x,w, bx, bw)
�(bx, bw, x,w)

�
. (5)

Denote the state of (5) at time t when initialized at (x0, x0)
under some disturbance input signal (w, bw) : [0,1) !
Rp ⇥ Rp by �"(t; (x0, x0), (w, bw)). The fundamental result
of mixed monotone systems theory is that (5) is a monotone
control system as defined in [23] with respect to the southeast
order on state and disturbance; that is, given a, a0 2 Rn⇥Rn

and b, b0 : [0,1) ! Rp ⇥ Rp such that a �SE a0 and
b(t) �SE b0(t) for all t � 0, then for all t � 0,

�"(t; a, b) �SE �"(t; a0, b0). (6)

A. Reachable Sets
Our main result for calculating reachable sets is as follows.

Theorem 1. Consider (2) satisfying Assumptions 1 and 2.
Let X0 = [x0, x0] for x0, x0 2 Rn, with x0 � x0, be a
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hyperrectangular set of initial conditions. Let (x(t), bx(t))
be the solution to the 2n dimensional system


ẋ
ḃx

�
= e(x, bx) :=


�(x, �(x, bx), bx, �(x, bx))
�(bx, �(x, bx), x, �(x, bx))

�
(7)

with initial condition (x(0), bx(0)) = (x0, x0). Then,
R(T,X0) ✓ [x(T ), bx(T )] for all T � 0.

Proof:
We first construct the embedding system (5), then sub-
stitute (�(x, bx), �(x, bx)) for (w, bw), giving the embedding
system (7). We denote the solutions (x(t), bx(t)) of this
system by �e(t; (x0, x0)), which we note is equivalent to
�"(t; (x0, x0), (�, �)), where it is understood that (�, �) is
evaluated along the (x, bx) trajectory. Note also that

�"(t; (x0, x0), (g, g)) = (�(t, x0),�(t, x0)), (8)

where it is understood that (g, g) is evaluated along the
system trajectory, i.e., �"(t; (x0, x0), (g, g)) is equivalent to
two copies of state trajectories of the original dynamics (2).

Now, Assumption 1 equivalently states that

(�(x, bx), �(x, bx)) �SE (g(x0), g(x0)) 8x � x0 � bx. (9)

Moreover, for any initial state x0 2 [x0, x0], we have
equivalently, (x0, x0) �SE (x0, x0). Per the fundamental
result of mixed monotone systems theory (6), we have
that (9) implies

�e(t; (x0, x0)) �SE �"(t; (x0, x0), (g, g)) (10)

for all t � 0. By (8),

�(t, x0) 2 [[�e(t; (x0, x0))]] (11)

for all t � 0. Finally, recalling (4) gives us

R(T,X0) ✓ [[�e(T ; (x0, x0))]] = [x(T ), bx(T )]. (12)

Theorem 1 establishes that bR(T,X0) := [x(T ), bx(T )],
where x(T ), bx(T ) are obtained as the solution to the ODE
(7), provides a hyperrectangular over-approximation of the
true reachable set R(T,X0), thus solving Problem 1.

As detailed in the next section, the theory of GPs naturally
leads to a methodology for modeling and obtaining � and �
satisfying Assumption 2. In this case, it is further reasonable
to envision updating the bounds � and � by incorporating
newly collected data into estimation of the GPs. In this case,
estimates of reachable sets become tighter, provided that the
updated bounds � and � become tighter. This is formalized
in Theorem 2.

Theorem 2. Consider (2) satisfying Assumption 2. Let �, �
be a pair of bounds satisfying Assumption 1, and let �0, �0

be another pair of bounds satisfying Assumption 1. Suppose
further that the bounds �0, �0 are tighter than �, �, that is,
for all x, x with x � x, it holds that

�(x, x) � �0(x, x) � �0(x, x) � �(x, x). (13)

Construct the embedding systems

ẋ
ḃx

�
= e0(x, bx) :=


�(x, �0(x, bx), bx, �0(x, bx))
�(bx, �0(x, bx), x, �0(x, bx))

�
(14)

and 
ẋ
ḃx

�
= e(x, bx) :=


�(x, �(x, bx), bx, �(x, bx))
�(bx, �(x, bx), x, �(x, bx))

�
. (15)

Then
[[�e0(T ; (x0, x0)]] ✓ [[�e(T ; (x0, x0)]]. (16)

Proof:
We first note that (13) equivalently states

(�(x, x), �(x, x)) �SE (�0(x, x), �0(x, x)) 8x � x. (17)

It thus follows that, per the fundamental result of mixed
monotone systems theory (6),

�"(t; (x, bx), (�(x, bx), �(x, bx))) (18)
�SE �"(t; (x, bx), (�0(x, bx), �0(x, bx))),

or, equivalently,

�e(T ; (x0, x0)) �SE �e0(T ; (x0, x0)), (19)

which is equivalent to (16).
The first case study of Section VI uses Theorem 2 to

learn a tight overapproximation of dynamics subject to a
sudden unknown disturbance by collecting observations of
the unknown component’s behavior.

B. Forward Invariant Sets
The same mixed monotone formulation allows for the effi-
cient computation of forward invariant sets.

Theorem 3. Consider (2) satisfying Assumptions 1 and 2.
If 9 x⇤, x⇤, w⇤, w⇤ with x⇤ � x⇤ and w⇤ � w⇤ such that

w⇤ � �(x⇤, x⇤) and �(x⇤, x⇤) � w⇤ (20)

and

�(x⇤, w⇤, x⇤, w⇤) ⌫ 0 and �(x⇤, w⇤, x⇤, w⇤) � 0, (21)

then [x⇤, x⇤] is forward invariant for (2).

Proof:
We construct an embedding system similar to the system
outlined by (7), substituting (w⇤, w⇤) for (�(x, bx), �(x, bx)):


ẋ
ḃx

�
= e⇤(x, bx) :=


�(x,w⇤, bx,w⇤)
�(bx,w⇤, x, w⇤)

�
. (22)

The upper triangle of this embedding system is defined as
T := {(x, bx) 2 Rn ⇥ Rn| x � bx}, and the set of points
in T such that the vector field of the embedding system
points into the southeast cone is defined as S := {(x, bx) 2
T | 0 �SE e⇤(x, bx)}. The set T is called the upper triangle as
it can be visualized as the set of states above the x = bx line
in the sense of the partial order . Per [4, Lemma 1], T is
forward invariant for (22). Further, as a direct result of [24,
Ch. 3, Prop 2.1], S is also forward invariant for (22) and
�e⇤(t1; a) �SE �e⇤(t2; a) for all a 2 S and all 0  t1  t2.
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In particular, a �SE �e⇤(t; a) for all a 2 S and all t � 0,
i.e., by (1), [[�e⇤(t; a)]] ✓ [[a]] for all a 2 S and all t � 0.

Let a⇤ := (x⇤, x⇤). By (21), a⇤ 2 S , so that
[[�e⇤(t; a⇤)]] ✓ [[a⇤]] for all t � 0. From Theorem 1, for
any t � 0, we have that R(t, [[a⇤]]) ✓ [[�e(t; a⇤)]] where
�e is as defined in the proof of Theorem 1. Next, (20) and
Theorem 2 implies [[�e(t; a⇤)]] ✓ [[�e⇤(t; a⇤)]]. Combined,
we have R(t, [[a⇤]]) ✓ [[�e(t; a⇤)]] ✓ [[�e⇤(t; a⇤)]] ✓ [[a⇤]] for
all t � 0, i.e., [[a⇤]] = [x⇤, x⇤] is forward invariant for (2).

We immediately have the following corollary.

Corollary 1. Consider (2) satisfying Assumptions 1 and 2.
If (x⇤, x⇤) is an equilibrium for the embedding system (7),
then [x⇤, x⇤] is forward invariant for (2).

Corollary 1 suggests a numerical method for identifying
invariant sets for (2): compute equilibria of the embedding
system (7) by, e.g., initializing the embedding system dynam-
ics at some point and simulating the dynamics to determine
if the trajectory converges. One difficulty of this method,
however, is that the functions � and � must be evaluated
at each point along the entire trajectory. As discussed in
the next section, this is computationally reasonable in some
cases, but may be impractical in other cases.

Instead, Theorem 3 offers an alternative method for iden-
tifying invariant sets that relies on evaluating � and � at a
sequence of points and simulating the resulting embedding
dynamics with � and � fixed to these evaluations.

To that end, consider an initial x1 � x1 and construct the
sequences {xk}1k=1, {xk}1k=1 according to the recursion

wk := �(xk, xk), wk := �(xk, xk) (23)

(xk+1, xk+1) := lim
t!1

(xk(t), bxk(t)) (24)

provided the limit exists, where (xk(t), bxk(t)) solves

ẋk = �(xk, wk, bxk, wk), ḃx
k
= �(bxk, wk, xk, wk) (25)

with initial condition xk(0) = xk, bxk(0) = xk.

Theorem 4. Consider (2) satisfying Assumptions 1 and 2.
For any initial x1 � x1, if the sequences {xk}1k=1, {xk}1k=1
constructed according to (23)–(25) are well-defined (i.e. the
limits exist) and converge, then (x⇤, x⇤) := limk!1(xk, xk)
constitutes an equilibrium of (7) and, hence, [x⇤, x⇤] is
forward invariant for (2).

In addition, if for some K it holds that

xK � xK+1 and xK+1 � xK , (26)

then for all k � K, it holds that xk � xk+1 and xk+1 � xk

and the sequences {xk}1k=1, {xk}1k=1 converge. Moreover,
each [xk, xk] for k � K is forward invariant for (2).

The proof of Theorem 4 relies in part on the following
lemma, which is an immediate consequence of Property 4
of the decomposition function � stated in Assumption 2.

Lemma 1. Consider (2) satisfying Assumptions 1 and 2.
Suppose x⇤, x⇤, w⇤, w⇤ with x⇤ � x⇤ and w⇤ � w⇤ are
such that

�(x⇤, w⇤, x⇤, w⇤) = 0 and �(x⇤, w⇤, x⇤, w⇤) = 0. (27)

If w0 and w0 satisfy w⇤ � w0 � w0 � w⇤, then

�(x⇤, w0, x⇤, w0) ⌫ 0 and �(x⇤, w0, x⇤, w0) � 0. (28)

Proof of Theorem 4:
For the first part of Theorem 4, construct the embedding

system described by (25) for each iteration k,

"
ẋk

ḃx
k

#
= ek(xk, bxk) :=


�(xk, wk, bxk, wk)
�(bxk, wk, xk, wk)

�
. (29)

Since the limit limt!1(xk(t), bxk(t)) exists, (xk+1, xk+1) as
defined by (24) must be such that


ẋ
ḃx

�
= ek(xk+1, xk+1) = 0, (30)

i.e., (xk+1, xk+1) is an equilibrium for ek.
Because the sequences {xk}1k=1, {xk}1k=1 converge,

and because � is Lipschitz continuous by Assump-
tion 2, the Lipschitz continuous function e⇤(x, bx) =⇥
�(x,w⇤, bx,w⇤) �(bx,w⇤, x, w⇤)

⇤T where (w⇤, w⇤) :=
limk!1(wk, wk) satisfies e⇤(x⇤, x⇤) = 0 where (x⇤, x⇤) :=
limk!1(xk, xk). In turn, this means that (x⇤, x⇤) is an
equilibrium of the embedding system

⇥
ẋ ḃx

⇤T
= e⇤(x, bx),

which we recall from Corollary 1 means that [x⇤, x⇤] is
forward invariant for (2).

For the second part of Theorem 4, we note from the
inclusion property in Assumption 2 that, for the K at
which (26) holds, it must be true that �(xK , xK) �
�(xK+1, xK+1) � �(xK+1, xK+1) � �(xK , xK), or, equiv-
alently, wK � wK+1 � wK+1 � wK . From (30),
it also holds that �(xK+1, wK , xK+1, wK) = 0 and
�(xK+1, wK , xK+1, wK) = 0. Thus, by Lemma 1,

�(xK+1, wK+1, xK+1, wK+1) ⌫ 0, (31)
�(xK+1, wK+1, xK+1, wK+1) � 0, (32)

which subsequently means that xK+1 � xK+2 and xK+2 �
xK+1 must also hold, which means that wK+1 � wK+2 �
wK+2 � wK+1 also holds, and so on by induction. This
also extends back one step to iteration K, i.e., it must
also have been true that �(xK , wK , xK , wK) ⌫ 0 and
�(xK , wK , xK , wK) � 0 in order for (26) to hold in the first
place (though we note that wK�1 � wK � wK � wK�1

does not necessarily have to hold for this to be the case).
As a result, for all k � K, it holds that xk � xk+1

and xk+1 � xk and the sequences {xk}1k=1, {xk}1k=1
converge. Additionally, as �(xk, wk, xk, wk) ⌫ 0 and
�(xk, wk, xk, wk) � 0 hold for all k � K, by Theorem 3
each [xk, xk] for k � K is forward invariant for (2).

Theorem 3 and Lemma 1 lead to another consequence
regarding identifying forward invariant sets. As previously
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established, it is reasonable to envision updating the bounds
� and � by incorporating newly collected data into estimation
of the GPs. As a result, estimates of any forward invariant
sets can be used to establish new, tighter forward invariant
sets, provided that the updated bounds � and � become
tighter. This is formalized in Proposition 1 below.

Proposition 1. Consider (2) satisfying Assumption 2. Let
�, � be one pair of bounds satisfying Assumption 1, and let
�0, �0 be another pair of bounds satisfying Assumption 1.
Suppose further that the bounds �, � are tighter than �0, �0,
that is, for all x, x with x � x, it holds that

�0(x, x) � �(x, x) � �(x, x) � �0(x, x). (33)

Let x⇤0, x⇤0 satisfy

0 = �(x⇤0, �0(x⇤0, x⇤0), x⇤0, �0(x⇤0, x⇤0)) (34)
0 = �(x⇤0, �0(x⇤0, x⇤0), x⇤0, �0(x⇤0, x⇤0)), (35)

that is, x⇤0, x⇤0 is an equilibrium for the embedding dynam-
ics constructed using �0 and �0. Construct the sequences
{xk}1k=1, {xk}1k=1 as prescribed in (23)–(25) with initial
x1 = x⇤0 and x1 = x⇤0. Then

xk � xk+1 and xk+1 � xk (36)

for all k � 1 so that, in particular, the conclusions of
Theorem 4 hold for all k � 1, namely, the sequences
{xk}1k=1, {xk}1k=1 converge and each [xk, xk] is forward
invariant for (2).

Proof:
Given (33), (x⇤, x⇤) = (x⇤0, x⇤0), (w⇤, w⇤) = (�0, �0), and
(w⇤0, w⇤0) = (�, �) satisfy the conditions for Lemma 1.
Thus, from Theorem 4 it holds that

�(x1, w1, x1, w1) ⌫ 0, �(x1, w1, x1, w1) � 0. (37)

The rest of the proof follows from the second part of the
proof of Theorem 4.

Theorem 3 and Corollary 1 indicate that the hyperrectan-
gular set A := [x⇤, x⇤], such that (x⇤, x⇤) is an equilibrium
for the embedding system (22), is a forward invariant set
for (2). Additionally, Theorem 4 and Proposition 1 describe a
computationally tractable algorithm for calculating [x⇤, x⇤],
which we demonstrate in the Case Studies below. Thus,
Theorem 3, Theorem 4, Proposition 1, and Corollary 1 solve
Problem 2.

C. Refinement of Reachable and Forward Invariant Sets
Since we consider systems in continuous time, we can further
refine the estimation of our reachable and forward invariant
sets by noting that, when calculating these sets, we are only
interested in the potential behavior of the disturbance at the
boundary of the set. Thus, we can modify the range over
which we calculate the bounds �, � in our formulations to
reflect this, at the cost of increased computational complex-
ity. This idea is formalized in our next set of theoretical
results which refine Theorems 1 and 3. We use the notation

a[i:b] to denote a vector a whose ith term has been replaced
by the ith term of vector b.

Theorem 5. Consider the hypotheses of Theorem 1 and
construct the system


ẋ0

ḃx
0

�
= e0(x, bx) :=

2

666666664

�1(x, �(x, bx[1:x]), bx, �(x, bx[1:x]))
...

�n(x, �(x, bx[n:x]), bx, �(x, bx[n:x]))
�1(bx, �(x[1:bx], bx), x, �(x[1:bx], bx))

...
�n(bx, �(x[n:bx], bx), x, �(x[n:bx], bx))

3

777777775

(38)
as an alternative to the embedding system (7). Then,
(38) is such that the conclusion of Theorem 1 re-
mains valid using instead trajectories of (38), that is,
R(T,X0) ✓ [x0(T ), bx0(T )], where (x0(t), bx0(t)) is the solu-
tion to the 2n-dimensional system (38) with initial condition
(x0(0), bx0(0)) = (x0, x0).

In Theorem 5, when determining a specific state’s update
behavior, we limit the calculation of the disturbance bounds
to the relevant face of the state hyperrectangle, as distur-
bances outside of this face do not affect the state.

Proof of Theorem 5:
Per the problem setup and Assumption 2, the system (2)

is mixed monotone with respect to a function �(x,w, bx, bw),
where the true behavior of w is dictated by an unknown
function g(x). Define

G(x, x) = max z s.t. z  g(x)8x 2 [x, x] (39)
G(x, x) = min z s.t. z � g(x)8x 2 [x, x] (40)

for x � x, which results in the tightest possible inclusion
function, i.e. g(x) 2 [G(x, x), G(x, x)] for all x 2 [x, x].

Define a new system ẋ = f 0(x,W ) := f(x, g(x) + W ).
Each component f 0

j(x,W ) is mixed-monotone with respect
to the decomposition function

�0j(x,W, bx,cW ) :=
(
�j(x,G(x, bx[j:x]) + wj , bx,G(x, bx[j:x]) + bwj), x � bx
�j(bx,G(x[j:bx], bx) + bwj , x,G(x[j:bx], bx) + wj), x ⌫ bx

where W = [w1, w2, ..., wn]T 2 Rpn and cW =
[ bw1, bw2, ..., bwn]T 2 Rpn. One can verify the derivative
conditions for this by utilizing the chain rule and noting
the following properties of G and G:

@G(x, bx[i:x])

@xj
� 0,

@G(x, bx[i:x])

@xj
 0 8i,j2n,i 6=j

@G(x, bx[i:x])

@bxj
 0,

@G(x, bx[i:x])

@bxj
� 0 8i,j2n

@G(x[i:bx], bx)
@xj

� 0,
@G(x[i:bx], bx)

@xj
 0 8i,j2n

@G(x[i:bx], bx)
@bxj

 0,
@G(x[i:bx], bx)

@bxj
� 0 8i,j2n,i 6=j .
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Then, construct the embedding system

ẋ
ḃx

�
= e(x, bx,W1,cW1,W2,cW2) =

"
�0(x,W1, bx,cW1)

�0(bx,cW2, x,W2)

#

(41)
which has inputs (W1,cW1,cW2,W2) 2 R4pn. This is
a modified embedding system without symmetric dis-
turbances that is a monotone control system with re-
spect to the southeast order on both state and all inputs
(w1

1, bw1
1, bw1

2, w
1
2), ..., (w

n
1 , bwn

1 , bwn
2 , w

n
2 ).

Observe that G(x, x) = G(x, x) = g(x). Then, with
W = cW = 0 and initial state x(0) = x0, solutions
to ẋ = f 0(x, 0) are also solutions to ẋ = f(x, g(x)).
Additionally, (41) consists of two copies of this true solution
when x(0) = bx(0) = x0. Thus, given some W1,W2 � 0
and cW1,cW2 ⌫ 0, we can apply the fundamental result of
mixed monotone systems theory (6) for solutions of (41).
Namely, that the hyperrectangle defined by the trajectory
�e(t;x, x,W1,cW1,W2,cW2) of (41) overapproximates the
true reachable set of the system, i.e.

�(t, x0) 2 [[�e(t;x, x,W1,cW1,W2,cW2)]] (42)

for x0 2 [x, x].
Now, consider (x0(t), bx0(t)) as the solution to (38) for any

(x0(0), bx0(0)) = (x0, x0). By the definition of G and G, there
exist some W1,W2 � 0 and cW1,cW2 ⌫ 0 such that

�(x, bx[i:x]) = G(x, bx[i:x]) + wi
1(t)

�(x, bx[i:x]) = G(x, bx[i:x]) + bwi
1(t)

�(x[i:bx], bx) = G(x[i:bx], bx) + wi
2(t)

�(x[i:bx], bx) = G(x[i:bx], bx) + bwi
2(t)

for all t. Thus, solutions to (38) are equivalent to solutions
of (41) with the associated W1,cW1,W2,cW2 and therefore
overapproximate the true reachable set of the system, i.e.,

R(T,X0) ✓ [[�e0(T ; (x0, x0))]] = [x0(T ), bx0(T )]. (43)

Per the natural inclusion requirement in Assumption 1,
modifying the disturbance bound calculation in this way
produces tighter bounds, which in turn results in tighter
reachable set estimates via Theorem 2. We can similarly ap-
ply these modified disturbance bounds toward the verification
of forward invariant sets as outlined in Theorem 6.

Theorem 6. Consider the hypotheses of Theorem 3, and
suppose x⇤, x⇤ 2 Rn, wi⇤

j , wi⇤
j 2 Rp, x⇤ � x⇤ and wi⇤

j �
wi⇤

j satisfy, for all i 2 {1, ..., n}, j 2 {1, 2},

wi⇤
1 � �(x⇤, x⇤

[i:x⇤]) and �(x⇤, x⇤
[i:x⇤]) � wi⇤

1 (44)

wi⇤
2 � �(x⇤

[i:x⇤], x
⇤) and �(x⇤

[i:x⇤], x
⇤) � wi⇤

2 (45)

and

�i(x
⇤, wi⇤

1 , x⇤, wi⇤
1 ) ⌫ 0, �i(x

⇤, wi⇤
2 , x⇤, wi⇤

2 ) � 0 (46)

as alternatives to (20) and (21). Then the conclusion of
Theorem 3 remains valid, i.e., [x⇤, x⇤] is forward invariant
for (2).

The proof is similar to that of Theorem 3 and is omitted.
Thus far, we have considered cases where tightening the

confidence bounds on the unknown component of the system
results in tighter overapproximations of reachable and for-
ward invariant sets. However, we can approach this problem
from a different perspective. Regarding the challenge of
safety, we can instead consider our forward-invariant sets
to be safety sets, and attempt to expand these sets as more
observations about the unknown components of the system
are made. Traditionally, when approaching the problem of
safety set expansion, the entire safety set is considered
for observation, with expansion theoretically guaranteed by
increasing confidence of the unknown behavior over the
entire range [18], [25]. However, Theorem 6 allows us to
guide our observation selection; to expand the safety set,
we only need to update our knowledge of the unknown
component of the dynamics near the edge of the current
safety set. We showcase this behavior in Section VI.

In the next section, we derive an approach for calculating
the bounds �, � such that they satisfy Assumption 1 with
high probability (specifically, with probability 1 � ⌘ for
some small ⌘ 2 (0, 1)). The results presented in this section
directly inherit this high-probability property, i.e., all calcu-
lated reachable sets (Theorems 1 and 2), refined reachable
sets (Theorem 5), forward invariant sets (Theorems 3 and 4),
and refined forward invariant sets (Theorem 6) are correct
with probability at least 1� ⌘.

V. Gaussian Processes for High Probability Uncertainty
Bounds
We now propose an approach to construct functions � and
� satisfying Assumption 1 with probability 1 � ⌘. The
crux of the approach is to posit the existence of a specific
probability distribution over the function space for each of
the unknown functions {gi}pi=1 constituting the unknown
part of the dynamics.

Assumption 3. The unknown functions {gi}pi=1, are inde-
pendent realizations of a Gaussian Process GP(0, k(x, x0))
with zero mean and kernel k(·, ·). In addition, observations
of the GP are perturbed by additive i.i.d. Gaussian noise
N (0,�2) with zero mean and variance �2.

GPs are a form of non-parametric estimators [9] that
are extremely powerful and have gained popularity in a
broad range of applications including optimization and con-
trol [10]–[14], [26]. The kernel k(·, ·) is a hyperparameter
of the model that controls the correlation of the GP over its
domain, which can be viewed as an assumption regarding
the smoothness of the unknown function gi.

Assumption 3 essentially states that the unknown function
is drawn from a GP, which allows the approximation of the
true unknown functions {gi}pi=1 using surrogate functions
that 1) provide lower or upper bounds for the true functions
with high probability; and 2) can be refined by acquiring
additional observations of the GP. Specifically, given noisy
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observations {yj}tj=1 of the GPs at corresponding points
{xj}tj=1 the surrogate functions of interest to approximate
gi are

8i 2 {1, · · · , p}
(
g(t)i (x) := µt(x) +

p
�t�t(x)

g(t)
i
(x) := µt(x)�

p
�t�t(x)

(47)

where �t is to be specified later (see Theorem 7), µt(·) is the
posterior mean, and �t(·) is the posterior variance, computed
according to the standard GP updates [9]:

µt(x) := kt(x)
T (Kt + �2I)�1y (48)

kt(x, x
0) := k(x, x0)� kt(x)

T (Kt + �2I)�1kt(x
0) (49)

�2
t (x) := kt(x, x) (50)

where kt(x) := (k(x1, x), · · · , k(xt, x)) and Kt =
[kt(xi, xj)]. Intuitively, the bounds in (47) hold with high
probability and can be used to create functions � and � as
follows. For all i 2 {1, · · · , p} and all t � 1

8x � x

(
�(t)
i
(x, x) := minx2[x,x] g

(t)
i
(x),

�(t)i (x, x) := maxx2[x,x] g
(t)
i (x).

(51)

By definition, the functions in (51) satisfy the natural in-
clusion property in Assumption 1. However, establishing
that (3) holds requires a bit more care because the statement
has to hold for all states in a subset of Rn and for all times
t at which updates are made to the GP. We introduce the
following mild technical assumptions [26].

Assumption 4. The states x are confined to a compact
subset D ⇢ Rn included in a hypercube of edge size r.
In addition, there exist constants a, b > 0 such that

8i 2 {1, · · · , n}8j 2 {1, · · · , p}

Pr

✓
sup
x2D

����
@gj
@xi

���� > L

◆
 ae�L2/b2 . (52)

The first part of Assumption 4 is relatively mild since we
can assume that the trajectories are confined into a (possibly)
large hypercube when computing safe reachable sets as in
Section VI. The second part of Assumption 4 is also mild
and is satisfied by many kernels of interest [26]. By adapting
the proof of [26, Theorem 2], we have the following.

Theorem 7. Assume that the unknown functions {gi}pi=1
satisfy Assumptions 3 and 4. Pick ⌘ 2 (0, 1) and set

�t := 2 log

✓
pt2⇡2

3⌘

◆
+ 2n log

 
t2nbr

s

log

✓
2pna

⌘

◆!
.

(53)
At every step t of the GP update, define a uniform discretiza-
tion Dt of the hypercube containing D with size ⌧nt where

⌧t := nt2br

r
log
⇣

2npa
⌘

⌘
. For every x 2 D, define

x(t,�) := sup{y 2 Dt | y � x}, (54)

x(t,+) := inf{y 2 Dt | x � y}. (55)

For all i 2 {1, · · · , p} and all t � 1 define 8x � x

�(t)
i
(x, x) := min

x2[x(t,�),x(t,+)]\Dt

g(t)
i
(x)� 1

t2
, (56)

�(t)i (x, x) := max
x2[x(t,�),x(t,+)]\Dt

g(t)i (x) +
1

t2
. (57)

Then, with probability at least 1� ⌘,

8x � x 8x 2 [x, x] 8t � 1 8j 2 {1, · · · , p}
�(t)
i
(x, x)  gi(x)  �(t)i (x, x). (58)

Sketch of proof:
Our proof closely follows the analysis of [27, Appendix

I, Section 2)], which details the result of [26, Theorem 2].
The idea is to combine the finite discretization Dt of D at
each step t, for which the GP approximations hold, with
Assumption 4 to bound the maximum deviation for points
outside the discretization.

With the choice of ⌧t and |Dt| = ⌧nt , the choice of �t
ensures [27, Lemma 5.6] that with probability at least 1�⌘/2

8x 2 Dt 8i 2 {1, . . . , p} 8t � 1

g(t)
i
(x)  gi(x)  g(t)i (x). (59)

Set ⌧ := b
q

log 2npa
⌘ and note that ⌘

2 = npa exp
⇣
� ⌧2

b2

⌘
.

From Assumption 4, with probability at least 1� ⌘/2

8i 2 {1, . . . , n} 8j 2 {1, . . . , p} sup
x2D

����
@gi
@xj

����  ⌧. (60)

From (60), we have with probability at least 1� ⌘/2

8x, x0 2 D 8i 2 {1, . . . , n} 8j 2 {1, . . . , p}
|gi(x)� gi(x

0)|  ⌧kx� x0k1. (61)

When obtaining Dt as a uniform discretization of size ⌧nt of
the hypercube containing D, we then have

8x 2 D kx� x(t,�)k1  nr

⌧t
and kx� x(t,+)k1  nr

⌧t
.

Consequently, with probability at least 1� ⌘/2 we have

8x 2 D 8i 2 {1, . . . , n} 8j 2 {1, . . . , p}
(��gi(x)� gi(x(t,+))

��  ⌧ nr
⌧t

= 1
t2 ,��gi(x)� gi(x(t,�))

��  ⌧ nr
⌧t

= 1
t2 .

(62)

Combining (59) and (62), with probability at least 1� ⌘,

8x 2 D 8i 2 {1, . . . , n} 8j 2 {1, . . . , p}
(
gi(x)  g(t)i (x(t,+)) + 1

t2 ,

gi(x) � g(t)
i
(x(t,�))� 1

t2 ,
(63)

Consequently, with probability at least 1� ⌘, 8x � x, 8x 2
[x;x], 8j 2 {1, . . . , p} and 8t � 1

�(t)
i
(x, x) := min

x02[x(t,�),x(t,+)]\Dt

g(t)
i
(x0)� 1

t2
(64)

 min
x02[x(t,�),x(t,+)]

gi(x
0) (65)

 gi(x) (66)
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 max
x02[x(t,�),x(t,+)]

gi(x
0) (67)

 max
x02[x(t,�),x(t,+)]\Dt

g(t)i (x0) +
1

t2
(68)

:= �(t)i (x, x), (69)

which is the desired result.
The bounds (56) and (57) of Theorem 7 can be directly

inserted into the formulations outlined in Section IV to
calculate reachable and forward invariant sets that hold with
probability at least 1� ⌘.

VI. Case Studies
We first present a case study of a vehicle encountering haz-
ardous road conditions, illustrating the learning capabilities
outlined by Theorems 1 and 2. We then provide an academic
example of the algorithm outlined by Theorem 4 and Propo-
sition 1. Finally, we showcase a case study of a multirotor
expanding its known safety set in an unknown wind field
by taking advantage of Theorem 6. Another example of a
multirotor iteratively exploring a wind field by computing
safe reachable sets via Theorem 1 is available in the confer-
ence paper [21]. Additionally, a code repository is available
at https://github.com/gtfactslab/Cao_OJCSYS2022.

A. Case Study: Vehicle on an Icy Road
Even though the results above focus on the time-invariant
system (2) for notational simplicity, mixed monotonicity, and
by extension our results, can naturally accommodate systems
subject to known, time-varying, exogenously defined inputs
for the reachable set overapproximation, as we demonstrate
in this case study.

We consider the kinematic planar bicycle model [28]
for abstracting the dynamics of a vehicle. Under nominal
conditions, the model relates the positional coordinates X
and Y , center-of-mass velocity v, heading angle  , side-slip
angle �(u2), and front and rear distances from center of mass
lf and lr as

Ẋ = v cos ( + �(u2)), Ẏ = v sin ( + �(u2)),

 ̇ =
v

lr
sin (�(u2)), v̇ = u1, (70)

where
�(u2) = arctan

✓
lr

lf + lr
tan (u2)

◆
, (71)

with inputs to the system being the desired acceleration u1

and steering angle u2. This model is visualized in Figure 1.
We consider a scenario where this system is suddenly

subject to road conditions that affect the friction between
the tires and the road surface, resulting in a disturbance in
the velocity dynamics in (70) so that the resulting velocity
update dynamics are given by

v̇actual = u1 + g(u1), (72)

where g(u1) constitutes the unknown effect of the changed
friction coefficient between the tires and road.

FIGURE 1. The planar bicycle model has positions X and Y ,
center-of-mass velocity v, heading angle  , side-slip angle �(�f ), front
and rear distances from center of mass lf and lr . The inputs to the
system are the desired acceleration u1 and front steering angle u2 = �f .
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FIGURE 2. Known acceleration and steering angle inputs to the vehicle.
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FIGURE 3. Visualization of the hyperrectangular overapproximation of
forward reachable set using mixed monotonicity in the autonomous
vehicle case study. The disturbance affecting the system is such that the
true trajectory of the system notably differs from the undisturbed
trajectory (left column, dotted lines). Initially, the system has low
knowledge of the disturbance behavior, resulting in a conservative
overapproximation of the true reachable set of the vehicle (top row). After
obtaining several observations, the reachable set overapproximation is
able to tightly approximate the true reachable set (bottom row).
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We assume the inputs u1(t) and u2(t) follow the fixed
braking and turning maneuver shown in Figure 2. We also
assume uncertainty in the initial state of the system such that
the initial X and Y positions are accurate within 0.5m, and
the heading angle is accurate within 0.05rad. The change in
the system dynamics (i.e. the road becoming slippery) occurs
at time t = 0. As shown by the dashed lines in the left plots
of Figure 3, this disturbance behavior is enough to cause the
actual position of the vehicle to be notably different by the
end of the 1.6s maneuver.

A decomposition function for the planar bicycle model
with added unknown disturbance (70)-(72) is given as fol-
lows. To accommodate the inputs, the associated terms in the
decomposition function must simply adhere to requirement
4 in Assumption 2, i.e. @�i

@uk
(x, u, w, bx, bu, bw) � 0 and

@�i
@buk

(x, u, w, bx, bu, bw)  0. We take

�(x, u, w, bx, bu, bw) =

2

664

dX

dY

d 

dv

3

775 (73)

where

dX = db1b2
✓

v

dcos( + �(�f ), b + �( b�f ))

�
,


bv

dcos( b + �( b�f ), + �(�f ))

�◆

dY = db1b2
✓

v

dsin( + �(�f ), b + �( b�f ))

�
,


bv

dsin( b + �( b�f ), + �(�f ))

�◆

d = db1b2
✓

v

dsin(�(�f ),�( b�f ))

�
,


bv

dsin(�( b�f ),�(�f ))

�◆

dv = u1 + w,

where, for vectors b,bb 2 R2,

db1b2(b,bb) =
(
min{b1b2,bb1b2, b1bb2,bb1bb2}, if b � bb
max{b1b2,bb1b2, b1bb2,bb1bb2}, if bb � b,

and dsin, dcos are tight decomposition functions for the
respective trigonometric functions, which take the forms of
equations (74) and (75).

By modeling g(u) as a GP, we attain high-confidence
bounds �(u, bu), �(u, bu) on the behavior of g(u) which can
be inserted into (73). Furthermore, since the input u is
known (i.e. u = bu), the computations of �, � along the
system trajectory are simplified. For this example, the ±3�
bounds of the GP are used. This decomposition function is
then used to create the embedding system which provides
hyperrectangular overapproximations of the reachable set of
the system at the end of the maneuver using Theorem 1.
Every 0.1 seconds throughout the maneuver, an observation
is collected about the disturbance’s behavior, allowing for
improved reachable set overapproximation from the updated
embedding system.

dsin(x, bx) := (74)8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

sin(x), if (cos(x), cos(bx)) ⌫ 0

and |x� bx|  ⇡

sin(bx), if (cos(x), cos(bx)) � 0

and |x� bx|  ⇡

sign(x� bx), if |x� bx| � 2⇡

sign(x� bx), if cos(x)  0  cos(bx)
and |x� bx|  2⇡

sign(x� bx), if cos(x) cos(bx) � 0

and ⇡  |x� bx|  2⇡

min{sin(x), sin(bx)}, if x  bx
and cos(x) � 0 � cos(bx)
and |x� bx|  2⇡

max{sin(x), sin(bx)}, if x � bx
and cos(x) � 0 � cos(bx)
and |x� bx|  2⇡,

dcos(x, bx) := dsin
✓
x+

⇡

2
, bx+

⇡

2

◆
(75)

To serve as a baseline, we leverage the Level Set Tool-
box [29] and CORA [30] to provide approximations of the
reachable set. The state-dependent disturbance behavior can
be added in the Level Set Toolbox by including the calcula-
tion of the worst-case disturbance bound in the Hamiltonian
and partial functions. However, due to the large state space
as well as the change in scale from the initial set to the final
set, the Level Set Toolbox takes several hours to return a
result, and moreover this result was inaccurate, most likely
due to numerical issues. Out of the box, CORA does not
allow disturbance bounds to evolve in the state-dependent
way as described by the problem, and we are unaware of any
other toolboxes that can do so. In CORA, the state-dependent
disturbance can be approximated by iteratively solving for
the reachable set over a small timestep and inserting the
worst-case bounds that will be found during that timestep.

As shown in Figure 3, the initial overapproximation of the
reachable set is conservative due to having little knowledge
about the disturbance behavior. However, after 0.3 seconds,
the embedding system is able to provide a much tighter
approximation of the reachable set. Additionally, the update
of the reachable set overapproximation takes approximately
0.02 seconds on a personal computer with prototype code
written in MATLAB, demonstrating the potential for real-
time deployment. By contrast, the set approximations given
by CORA are less conservative, but take around 600 seconds
(10 minutes) to compute on the same machine.

B. Example: Equilibrium Sequence Convergence
We illustrate Theorem 4 and Proposition 1 via an academic
example. Consider the system

ẋ1

ẋ2

�
= F (x,w) =


�x1 � x3

1 � x2 � w
�x2 � x3

2 + x1 + w3

�
(76)

10 VOLUME 22 2022



�10 �5 0 5 10

�10

0

10
k = 1

k = 2

k = 3

x1

x
2

FIGURE 4. Demonstration of Theorem 4 using embedding system (80)
and disturbance bounds (77) and (78), m = 2. [x1, x1] is initialized to
[(�7,�7), (7, 7)], shown in red (outermost solid), and the subsequent
steps in the sequence are plotted in black (dashed), with the final
converged hyperrectangle shown in green (innermost solid). At k = 2, the
sequence fulfills (26), from which we conclude that the remaining
subsequence is ordered and converges from the second part of
Theorem 4. The resulting hyperrectangle, [(�1.72,�3.40), (1.72, 3.40)] is
an equilibrium of (80) and is thus forward invariant for (76) per Theorem 4.

�4 �2 0 2 4
�4

�2

0

2

4

x1

x
2

FIGURE 5. Demonstration of Proposition 1 using embedding system (80)
and disturbance bounds (77) and (78), m = 1. Note that
(�, �) = (�(x, x; 1), �(x, x; 1)) and (�0, �0) = (�(x, x; 2), �(x, x; 2))

fulfill (33). [x1, x1] is initialized to the result from the first scenario,
[(�1.72,�3.40), (1.72, 3.40)], shown in green (outermost solid), and the
subsequent steps in the sequence are plotted in black (dashed), with the
final converged hyperrectangle shown in blue (innermost solid). The
resulting hyperrectangle, [(�1.00,�1.00), (1.00, 1.00)] is an equilibrium
of (80) and is thus forward invariant for (76) per Theorem 4.

with state x = (x1, x2) 2 R2 and disturbance w 2 R. We
assume that w is bounded by the parameterized functions
�(x, x;m)  w  �(x, x;m),

�(x, x;m) = �m(max{|x1|, |x1|}) (77)
�(x, x;m) = m(max{|x1|, |x1|}) (78)

where m is a slope parameter.
The system (76) is mixed monotone with respect to the

decomposition function

�(x,w, bx, bw) =

�x1 � x3

1 � bx2 � bw
�x2 � x3

2 + x1 + w3

�
. (79)

Thus, we form the associated embedding system using (7),


ẋ
ḃx

�
= e(x, bx) :=

2

664

�x1 � x3
1 � bx2 � �(x, bx;m)

�x2 � x3
2 + x1 + �(x, bx;m)3

�bx1 � bx3
1 � x2 � �(x, bx;m)

�bx2 � bx3
2 + bx1 + �(x, bx;m)3

3

775 . (80)

We then consider two scenarios in which a forward invari-
ant set of (76) is calculated by determining an equilibrium
of the system. In the first scenario we take m = 2, then in
the second scenario we initialize the equilibrium sequence
to the results of the first scenario and take m = 1. These
scenarios are demonstrated in Figures 4 and 5, respectively.

✓

u1

u2
y

z

FIGURE 6. The planar multirotor model has horizontal position y,
vertical position z, and roll angle ✓. The inputs are thrust u1 in the
direction perpendicular to the line segment connecting the rotors and roll
angle velocity u2. The five dimensional state x consists of y, z, ✓, and the
derivatives vy = ẏ, vz = ż, so that x =

⇥
y vy z vz ✓

⇤T .

C. Case Study: Multirotor Exploring a Wind Field
We consider a planar multirotor model, illustrated in Fig-
ure 6, for a multirotor aerial vehicle that is constrained to
move in a vertical plane. The horizontal and vertical position
of the multirotor are denoted y and z, and the roll angle is
denoted ✓. The system has two inputs, thrust u1 acting at
the center of mass in the direction

⇥
� sin ✓ cos ✓

⇤T , and
the roll angular velocity u2. We also assume that the system
is subject to input saturation, gravitational acceleration ag ,
and an unknown force due to wind. This wind force affects
the acceleration in both the horizontal and vertical directions,
and the force in each direction is a function of its associated
state (i.e. the horizontal wind force is a function of position
y and the vertical wind force is a function of altitude z).
The resulting dynamics with normalized mass and moment
of inertia are given by

ÿ = �u1 sin ✓ + g1(y)

z̈ = u1 cos ✓ � ag + g2(z)

✓̇ = u2

(81)

where g1 and g2 constitute the unknown wind forces in the
horizontal and vertical directions, respectively. We estimate
g1 and g2 using GPs with a radial basis function kernel,
and obtain high confidence bounds by considering posterior
estimates up to two standard deviations from the mean.

To control the system, we employ feedback linearization
to transform the system into a set of triple integrators in
the y and z directions. We then perform an eigenvector
transformation and utilize the method described in [1] to
derive a decomposition function for the resulting feedback
linearized system. This decomposition function allows us
to determine high probability forward invariant sets that
account for the potential disturbance modeled by the GPs.
We then develop an operational controller and a safety
controller using the feedback linearized system. The op-
erational controller utilizes proportional-integral-derivative
(PID) control to drive the system to a target point, while the
safety controller uses proportional-derivative (PD) control to
drive the system to the origin. During operation, an invariant
safe set is computed using Theorem 5 for the closed loop
system with safety controller, such that the safety controller
does not produce inputs that will saturate. The overall control
strategy is to execute the operational controller action to
explore the safety set and collect measurements, and to
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switch to the safety controller if the system enters within
some distance of the safety set boundary in order to maintain
safety with high probability.

We assume there exist obstacles which the system must
avoid as shown in Figure 7. Each GP is initialized with
observations near the starting point of the multirotor vehicle.
Using Theorem 5 and numerically searching for states in the
embedding system that satisfy Theorem 6, we find the largest
invariant set that does not intersect the obstacles and thus can
be used as a safety set, as well as the smallest invariant set
that intersects the obstacles and therefore cannot be used
as a safety set, as shown in Figure 7. We also leverage
Theorems 1 and 3 and the same numerical search method to
find another invariant set, which can be seen in the figure to
be smaller and thus more restrictive.

We then task the system with safely collecting observa-
tions about the wind’s behavior in order to update the GPs,
allowing for iterative computation of new, larger safety sets.
Recalling that Theorem 6 allows us to focus observation
points near the edge of the safety set, we have the system fly
to observation points near the corners of the current safety set
(marked by the asterisks in the figures), take measurements
of the disturbance, and then update the GPs and calculate a
new forward invariant set. This process continues iteratively,
allowing for the multirotor to safely explore larger areas of
the state space with high probability guarantees of avoiding
unsafe regions, as shown in Figure 7. For comparison, we
use the same procedure with Theorems 1 and 3. After the
same number of updates, we can again see in the figure that
this produces a more restrictive invariant set. On average, the
sets found by Theorem 6 took around 1.8 seconds to produce
on a personal computer with code written in MATLAB,
while the sets found by Theorem 3 took around 0.8 seconds,
showcasing the tradeoff between these theorems.

VII. Conclusion
We have presented a technique for efficiently computing
hyperrectangular reachable and forward invariant sets for
dynamical systems with unknown components by modeling
these components as GPs, which allows for the assumption
of high probability bounds. For systems that are moderately
high dimensional in the known component and low dimen-
sional in the unknown component, which occur often in
practice, this assumption in turn enables tractable algorithms
for determining reachable and forward invariant sets with
high probability by leveraging tools from mixed monotone
systems theory. As shown in the examples, this is achieved
by sampling the GP over the relevant region of the state space
to retrieve high probability bounds, then incorporating these
bounds into an embedding system, from which the reachable
and forward invariant sets are calculated. In contrast to
prior literature, this method does not require discrete-time
system dynamics or that the system dynamics be affine
in the unknown components. Future directions of research
include exploring sparse Gaussian process estimation to

further improve the computational performance, as well as
implementation on higher-dimensional or physical systems.
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FIGURE 7. The planar multirotor operates in an unknown wind field with
several obstacles and is initialized with some observations (2nd row) of
the wind’s behavior (1st row, arrows). Using Theorem 6, we identify two
invariant sets for the closed-loop safety controller (1st row, blue solid and
dashed rectangles). However, only the smaller (blue solid) set can be
used initially as a safety set because the larger set (blue dashed)
intersects obstacles. Additionally, the largest acceptable set (1st row,
green dashed) produced by Theorem 3 is more restrictive. After collecting
several rounds of observations (4th row), the multirotor can now safely
explore near the obstacles without collision, as denoted by the new safety
set (3rd row, solid blue). Again, note that set produced by Theorem 3 (3rd
row, green dashed) is more restrictive.
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