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Abstract— In this paper, we introduce a high-level controller

synthesis framework that enables teams of heterogeneous agents

to assist each other in resolving environmental conflicts that

appear at runtime. This conflict resolution method is built upon

temporal-logic-based reactive synthesis to guarantee safety and

task completion under specific environment assumptions. In

heterogeneous multi-agent systems, every agent is expected to

complete its own tasks in service of a global team objective.

However, at runtime, an agent may encounter un-modeled

obstacles (e.g., doors or walls) that prevent it from achieving its

own task. To address this problem, we employ the capabilities of

other heterogeneous agents to resolve the obstacle. A controller

framework is proposed to redirect agents with the capability

of resolving the appropriate obstacles to the required target

when such a situation is detected. Three case studies involving

a bipedal robot Digit and a quadcopter are used to evaluate the

controller performance in action. Additionally, we implement

the proposed framework on a physical multi-agent robotic

system to demonstrate its viability for real world applications.

I. INTRODUCTION

Heterogeneous multi-agent systems with distinct mobility
capabilities are generally capable of accommodating a larger
variety of tasks than those consisting of a homogeneous team
of agents [1]–[3]. To achieve autonomous team behaviors
such as the multi-room patrolling shown in Figure 1b, a
common approach is to automatically synthesize a controller
for each agent, as this is often more efficient than crafting
controllers by hand. However, creating controllers in this
way has its own set of challenges, among which ensuring
that the generated controllers do not cause any agents to
perform tasks that would induce breakage or otherwise risk
the agent’s safety is a top priority [4].

In this paper, we study controller synthesis to resolve
environmental conflicts such that multi-agent team speci-
fications are fulfilled using the generalized reactivity (1)
(GR(1)) fragment [6] of Linear Temporal Logic (LTL). The
GR(1) fragment, in particular, allows for reactive synthesis
algorithms that have favorable polynomial time complexity
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while retaining the ability to encode a large variety of
specifications [7]–[9]. These reactive synthesis methods are
powerful because they provide formal guarantees on correct-
by-construction controller behavior under any modeled ac-
tion from the environment [10].

A major challenge of reactive synthesis methods is that
they require an explicit model of the environment’s capa-
bilities and may not be robust to unexpected changes in
these capabilities encountered at runtime [11]. For example,
an unmodeled obstacle that interferes with the operation
of the system may unexpectedly appear. Ensuring that the
system’s operation is robust to environmental changes is
therefore an important area of research. To this end, multiple
lines of research have been proposed in the literature, such
as online synthesis of local strategies which are further
patched to the original controller [12], offline analysis of
counter-strategies to resolve unrealizable specifications [13],
controller synthesis that can tolerate a finite sequence of
environmental assumption violations [14], or robust metric
automata designed such that the system state is maintained
within a bounded ✏-distance from the nominal state under
unmodeled disturbances [15]. There also exist robustness
methods that allow the system to identify specific broken
environment assumptions [16]. However, none of these works
studied the strategy of employing other agents to resolve
environmental conflicts, which will be the focus of this paper,
as this direction is underexplored. For example, the authors
in [17] have studied the correction of broken assumptions,
but focus on the cases where the broken assumption is due to
unexpected behaviors by another agent operating within the
workspace, and is resolved by changing that agent’s behavior.

In heterogeneous teams, certain agents may have the
capability to manipulate and correct a broken environment
assumption for another agent. There have been works that
explore the reconfiguration of the environment by the active
agent in order to enable completion of its own objective [18]–
[20]. these works, however, did not focus on employing
the assistance of other agents. Motivated by this, our study
focuses on leveraging each agent’s individual capability to
resolve broken environment assumptions that prevent another
agent from achieving its objective. Formally, we consider
scenarios where the broken environment assumption renders
an agent’s specification unrealizable, yet another agent has
the ability to fix the violation.

The contribution of this paper is to (i) propose a navigation
planning framework enabling agents in a multiagent team to
leverage their heterogeneous capabilities to assist each other
in resolving environmental obstacles using reactive synthesis;
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(a) Simulation set-up with a bipedal robot
opening a door for the quadcopter

(b) A bird’s eye view of Digit’s and the
quadcopter’s trajectories

(c) Hardware set-up with a Digit walking
robot and a quadcopter

Fig. 1: 3D rendering of case study 1 in Drake simulation [5]. The quadcopter approaches an unknown door obstacle preventing
it from achieving its goal. The quadcopter then requests assistance from a bipedal walking robot Digit. Accordingly, Digit
opens the door and both agents resume their original task. As the formulation is built on a correct-by-construction controller,
the actions that Digit takes are guaranteed to be safe (barring detection of another unexpected obstacle), though they may
not take the most direct path available. The controllers are then implemented in hardware experiments.

(ii) implement the proposed framework on a physical multi-
agent robotic system composed of a Digit [21] bipedal robot
and a Parrot Bebop 2 quadcopter. This is the first time that
the LTL-based planning method is implemented on a het-
erogeneous robot team including a full-size humanoid robot
for navigation tasks and obstacle resolution. The proposed
framework has the following four main components:

• Environment Characterization: Observe the environ-
ment at runtime and verify whether the next state in the
controller automaton would satisfy or violate any new
specifications generated from runtime observations.

• Safe Action Replanning: Backtrack states in the au-
tomaton and replace an action that will lead to a safety
violation with a known safe maneuver.

• Violation Resolution: Identify other agents with the
capability of resolving the violation and assign one to
be responsible for violation resolution.

• Task Replanning: Add the resolution of the violation
to the assigned agent’s objectives and trigger a change
in behavior of that agent to execute its new objective.

We refer to these components collectively as the “coordi-
nation layer” that interacts with the other elements of the
controller (see Figure 2).

The rest of the paper is outlined as follows: In Section II,
we introduce the basics of LTL specifications and GR(1)
formulas. We then formally define our problem statement in
Section III. In Section IV, we provide an overview of the
previous work that this study is built upon before detailing
the main approach that enables heterogeneous cooperation
in Section V. Section VI outlines several simulated case
studies, and Section VII showcases our framework on a
physical multi-agent system. Finally, we conclude the study
and discuss potential future work in Section VIII.

II. PRELIMINARIES

In this study, we use the General Reactivity of Rank 1
(GR(1)) fragment [6] of Linear Temporal Logic (LTL) to
specify desired tasks for each agent in a given environment.
GR(1) synthesis is used to automatically generate correct-
by-construction finite state machines (FSM). The generated

strategy is implemented as a two-player game between the
agent and the environment, where the FSM guarantees the
agent satisfies the goal and safety specifications for any
modeled environment action [7], [22].

GR(1) allows for efficient synthesis while maintaining
much of the expressiveness of LTL. In particular, GR(1)
allows us to design temporal logic formulas (') with atomic
propositions (AP) that can either be True ('_¬') or False
(¬True). With negation (¬) and disjunction (_) one can also
define the following operators: conjunction (^), implication
()), and equivalence (,). There also exist temporal opera-
tors “next” (�), “eventually” (⌃), and “always” (⇤). Further
details of GR(1) can be found in [6].

Our implementation uses the SLUGS reactive synthesis
tool [23], which allows rules to be specified in a more
human-intelligible structured slugs format using infix nota-
tion, non-negative integers, comparisons, and addition. These
rules are automatically converted to GR(1) formulas which
are used to synthesize a reactive controller.

III. PROBLEM FORMULATION

This paper studies a particular control synthesis problem
where an agent in a heterogenous multi-agent team cannot
complete its tasks because the environment has violated its
assumptions at runtime. Formally, this occurs because an
unmodeled environment behavior causes the specification to
be unrealizable.

Let P denote the set of heterogeneous agents in a multi-
agent team. When synthesizing a multi-agent controller, each
agent p 2 P within the team is given its own set of goal and
safety specifications, denoted as '

p
o and '

p
s , respectively.

At the high-level, the environment is modeled using a
coarse abstraction that divides the workspace into a set of
N discrete regions S = {s0, s1, ..., sN�1}. As low-level
controllers are responsible for planning agent actions within
each coarse region, they can be swapped in and out to
accommodate different agent types without largely affecting
the high-level actions.

The set of known, irresolvable obstacles O ⇢ S are



accounted for as the set of safety specifications

'
p
s :=

^

s2O

⇤¬s. (1)

To account for the heterogeneity of the system, each
agent p 2 P is also modeled with an a priori known
finite set of capabilities Cp = {cp0, cp1, cp2, ...}. Examples
of capabilities include “open doors”, “inspect regions for
hazards”, or “climb stairs”.

Obstacles that are resolvable but not known a priori are
modeled as another subset R ⇢ S . Each resolvable obstacle
r 2 R has an associated action cr and set of states Sr within
which that action may be performed in order to resolve
the obstacle and remove it from the environment. These
properties are such that

cr 2

[

p2P

Cp, Sr ⇢ (S \ O). (2)

Thus, an agent p is considered to be capable of resolving an
obstacle r if cr 2 Cp. If an obstacle r whose corresponding
resolution action is not present in any agent’s capability set,
the obstacle r will be considered as an unresolvable obstacle.
By modeling agents and obstacles in this way, one can
construct a robot team that is capable of resolving multiple
types of obstacles by adding more robots with different
capabilities to the team as needed.

It follows that any instance of an agent encountering an
obstacle that it does not have the capability to resolve is
considered a safety violation. We introduce an “augmented”
set of safety specifications '

p
a, which contains the same

specifications as '
p
s but in addition contains all of the

additional safety specifications originating from unknown,
resolvable obstacles:

'
p
a := '

p
s

^

r2R | cr /2Cp

⇤¬r (3)

We can now formally define the problem statement.
Problem Statement: Assume a set of given controllers
synthesized using '

p
s , and a set of “actual” environment

specifications '
p
a such that one or more '

p
o are unrealizable

under '
p
a. Once the system is detected to violate '

p
a at

runtime, create a generalizable formulation that assigns an
agent p to resolve and remove conflicting specifications in
'
p
a such that the original synthesized controller satisfies '

p
a.

IV. CONTROLLER SYNTHESIS

To leverage the formal guarantees afforded by LTL, we
synthesize navigation planners for each agent based on the
planning framework detailed in [24]. In this section, we
provide an overview of the task and motion planners, which
serve as the foundation that the proposed coordination layer
will be built on. In subsequent sections, we augment the
high-level navigation planning structure to further encode
collaborative behaviors capable of resolving environment
assumption violations at runtime, which constitutes the main
contribution.

Fig. 2: Block diagram of collaborative task and motion
planning framework. A coordination layer verifies that the
desired actions generated by an offline-synthesized naviga-
tion planner are still safe based on environment information
observed at runtime. If an environment assumption is vi-
olated, the navigation planner replans its current action to
ensure the system enters a safe state while the coordination
layer determines if the violation can be resolved by any other
agent. The resolution is encoded and the plan progresses.

The approach from [7], [8], [22] adopted in [24] and used
here is summarized as follows. To synthesize task planners,
we construct two-player games between each agent and an
abstracted environment. We automatically encode a variety
of propositions about how the game may evolve within
LTL specifications, including initialization assumptions, en-
vironment safety assumptions, system safety guarantees, and
system liveness properties. We synthesize an automaton,
represented as a finite state machine (FSM), that guarantees
the agent will always win the game as long as all the envi-
ronment assumptions hold true at runtime. During runtime,
the current environment state is input to the FSM, which
outputs an action for the agent. Each action is guaranteed to
meet the safety specifications while bringing the agent closer
to completing its task.

In this work we synthesize planners for a bipedal robot
Digit [21] and a quadcopter to study heterogeneous au-
tonomous multi-agent navigation. We accomplish this by
constructing a two-player game between each agent and its
environment, where we treat all other agents as part of a par-
tially observable environment and encode the possible moves
each agent can expect the others to make in environment
safety specifications. Thus, we can easily expand to more
than two agents while keeping the planner synthesization
a two-player game. As the planner prioritizes safety, the
optimality of the controller is not necessarily guaranteed.
For full details, see [24].

V. COORDINATION LAYER DESIGN

In this section, we introduce the coordination layer on
top of the synthesized controllers, containing the elements
enabling agents to identify new safety specifications at
runtime, replan actions when necessary, identify and assign
other agents to resolve obstacles, and adjust the behavior of
each agent to execute the conflict resolution. Throughout,
we assume the agents possess the necessary capabilities to
facilitate the described sensory and communication actions.
An overview of the proposed planning framework is in



Figure 2.

A. Environment Characterization

At runtime, the Environment Characterization (EC) block
passes the game state abstracted from the environment to
the Navigation Planner (NP) block and requests a navigation
action. The EC block determines new safety specifications
based on the observed environment and verifies if the
navigation action would violate these specifications. This
block is the main component responsible for observing the
specifications in '

p
a that were not known during synthesis. If

a safety violation occurs, the EC block signals the NP block
to replan its current action.

B. Safe Action Replanning

The safe action replanning occurs within the NP block. At
each step, the current environment state is fed to the FSM to
generate a correct system action. When the replanning flag is
raised, the navigation planner backtracks to the previous state
in the FSM and extracts a new system action to avoid the
safety violation. The new action is passed to the EC block,
which passes it on to the lower-level planners if deemed safe.

C. Violation Resolution

When the EC block determines that the safety specifi-
cations based on the observed environment do not match
the safety specifications used during offline synthesis, it also
passes the details of the violation to the Violation Resolution
(VR) block, including the action(s) cr required, as well as
the state(s) Sr at which those actions must be performed in
to resolve the obstacle. The VR block then identifies which
agent p 2 P has the capability to resolve the obstacle,
i.e., any agent p such that cr 2 Cp. This component then
broadcasts a request for an appropriate agent to assist.

D. Task Replanning

The Task Replanner (TR) block receives incoming re-
quests for assistance in the form of updated system goals
and is responsible for adjusting the agent’s strategy to assist
the agent in need. Once a violation has been detected and
assisting agents have been assigned, the TR block can trigger
a resynthesis of each of the affected agent’s controllers
with their new objectives. The helping agent is assigned to
resolving the obstacle, and the requesting agent is assigned
to a known safety objective that does not interfere with the
helping agent. After the controller detects that the obstacle
has been resolved, another resynthesis is triggered, returning
the agents to their original objectives.

This method stores previous objectives in a stack; if a
new resolvable obstacle is encountered while resolving a
known obstacle, the resynthesis targets the new obstacle
and pushes the previous set of objectives onto the stack.
Once an obstacle is resolved, the top set of objectives in
the stack is popped off, and controllers are resynthesized
to these objectives. Beyond changing the target locations
in the original objective, any number of new goal tasks or
locations can be encoded in the new specifications to assist

another agent that has encountered an assumption violation.
Additionally, the agent that has encountered an obstacle that
it cannot resolve on its own can be assigned a new task to
complete while it waits for the obstacle to be resolved. A
detailed pipeline of this process is shown in Algorithm 1.

It should be noted that the algorithm is built upon an
assumption of the existence of a sequence of obstacle
resolutions that eventually results in the original objectives
becoming achievable. In cases where this is not true, i.e., no
agent exists that can resolve the obstacle or a set of resolution
objectives are pushed onto the stack recursively, it would be
impossible for the agents to accomplish their original set
of objectives without external intervention. In such cases,
synthesis or resynthesis of the automaton will fail, signaling
the need for human operator intervention. One may avoid
these cases by introducing agents with new capabilities.

Algorithm 1: Resynthesis for Conflict Resolution
for p 2 P do

'p
o  initial objectives;

end

'stack  ; ;
synthesize controllers;
while system active do

execute controllers;
if resolvable obstacle r encountered by agent pr at so then

if cr /2 Cpr then

push all of current 'p
o onto 'stack;

change 'pr
o to safe behavior;

for p 2 P do

if cr 2 Cp then

add state in Sr to 'p
o ;

synthesize controllers;
break;

end

continue;
else if r 2 'pr

o then

resolve obstacle r;
pop 'p

o off of 'stack;
synthesize controllers;
continue;

end

end

end

Notice that since the controllers are synthesized by GR(1)
reactive synthesis, they are correct by construction [7].

We additionally develop an alternative method involv-
ing an additional runtime-assignable goal location speci-
fied in the assisting agent’s liveness specifications, which
enables a limited amount of coordination without resyn-
thesis. However, details of this method are omitted due
to space constraints. Instead, for full implementations
of either method, we point the reader to the GitHub
repository located at https://github.com/GTLIDAR/
safe-nav-locomotion under the Robot_Colab_

dev branch.

VI. CASE STUDIES

In this section, we implement and evaluate the framework
described in Section IV, which was primarily built to synthe-
size controllers for the bipedal walking robot platform Digit,
designed by Agility Robotics [21]. We consider a second



quadcopter agent in the environment that has dramatically
different capabilities in both mobility and manipulation. A
quadcopter, which lacks the ability to manipulate objects,
is instead able to perform maneuvers that are unavailable
to Digit, such as backward movement or 180� turns in a
single region. In this study, the quadcopter is assumed to fly
above Digit at all times, so that collision is not a concern.
This assumption is made to reduce the complexity of the
controller synthesis for these case studies, as employing
collision avoidance, while possible from an implementation
standpoint thanks to [24], drastically increases the computa-
tion time. Additionally, we preserve the belief space planning
framework proposed in [24], [25], allowing Digit to infer
the quadcopter location if it is out of Digit’s visible range.
Digit’s locomotion planner is designed based on the phase-
space planning framework in [26].

Resolvable obstacles are also implemented within the
simulated environment. We recall from Section III that each
resolvable obstacle r has an associated state Sr where an
action cr must be performed by an agent p for which cr 2 Cp

in order to resolve the obstacle and remove it from the
environment. These properties are directly inserted into the
simulation environment. The set of resolvable obstacles R

and the set of agents and their capabilities Cp are imple-
mented as separate dictionary data structures. As such, this
framework is generalizable as one would simply need to add
the appropriate agent capabilities and obstacle resolutions to
each dictionary.

To represent the potential for obstacles to appear at run-
time, two separate simulated environments are initialized,
one without the resolvable obstacle. This instance of the
environment, representing '

p
s , is used for the initial syn-

thesis, and then the resulting controller is applied to the
environment instance containing the resolvable obstacles,
which corresponds to '

p
a. At runtime, if an agent enters

a state containing a resolvable obstacle r that it is unable
to resolve (i.e., violates '

p
a), the controller is able to check

that a violation has happened in the simulated environment,
and sends this information to the simulation to assign new
objectives to each agent accordingly, such that the agent p
tasked with resolving the obstacle fulfills cr 2 Cp. Thus, the
simulation running each of the controllers is responsible for
the VR and TR blocks of the coordination layer, while the
separate simulated environment instances simulate the EC
component. The Safe Action Replanner is built directly into
the NP block.

Three case studies utilizing the synthesized controllers
are presented to evaluate the proposed approach. For each
case study, an environment is created where a quadcopter
and Digit are each running on their own controller and
have their own task objectives to complete. The environ-
ment is abstracted into a 7⇥13 coarse set of regions S =
{s0, s1, ..., s90} such that s0 is the northwestern-most region
and increments following English reading orientation (i.e.
incrementing left to right, then starting at the leftmost region
on the next row). This setup can be seen in Figures 3-4.

We consider a team of agents P = {quadcopter and

Digit} with unique capabilities Cquad := {sense}, CDigit :=
{push}. Resolvable obstacles that may appear within a
region si in the environment consist of two types: r = door
and r = uncertainty. A resolvable obstacle of type r =
door, if found in si, has properties

Sr = {si}, cr = push, (4)

and represents physical doors that the quadcopter cannot fly
through, but are able to be opened by Digit. Resolvable
obstacles of type r = uncertainty have the properties

Sr = {snorth, seast, ssouth, swest}, cr = sense, (5)

and represent regions in which Digit is uncertain about its
capabilities to safely traverse through the environment, but
the quadcopter is able to scout them by visiting any adjacent
region.

We design a set of objective specifications for each agent
p 2 P such that the agent alternates between visiting two
regions in the environment sA, sB 2 S , with an AP scout
unique to each agent, which initializes to False, to track
which region the agent should head towards. The set of
objective specifications is thus

Patrolp(sA, sB) = (6)
⇤⌃(sA ^ ¬scoutp)

^⇤((sA ^ ¬scoutp) ) �(scoutp ^ ¬sA))

^⇤⌃(sB ^ scoutp)

^⇤((sB ^ scoutp) ) �(¬scoutp ^ ¬sB))

^⇤¬(sA ^ scoutp)

^⇤¬(sB ^ ¬scoutp).

While the figures in this section mainly feature abstrac-
tions of the environment in order to easily illustrate the
behaviors of each agent, the computed control actions are
applicable to a real 3D simulation environment, as shown in
Figure 1, which shows the real-world interactions resulting
from the behavior in the first case study.

A. Case Study 1: Opening A Door

The first case study leverages Digit’s manipulation capa-
bility in the environment with higher dexterity and power
than the quadcopter. The quadcopter is tasked with patrolling
between shomeQ and sawayQ, where shomeQ is a region in the
left room and sawayQ is in the right room. Digit is tasked with
patrolling between shomeC and sawayC, where both shomeC

and sawayC are in the left room:

'
quad
o := Patrolquad(shomeQ, sawayQ), (7)

'
Digit
o := PatrolDigit(shomeC, sawayC).

At runtime, the quadcopter discovers an obstruction at
sdoor = s47 while in ssafe = s46 that prevents it from
accomplishing its objective in the form of a closed door
that cannot be flown through but can be opened by Digit. A
resynthesis of objectives is triggered, where the quadcopter
is now tasked with hovering outside the door, and Digit is



(a) Initial Configuration (b) The quadcopter’s controller encoun-
ters a door, so instead it elects to have the
quadcopter wait in the preceding region.

(c) Digit opens the door and the original
objectives are reinstated. Both agents are
now able to complete their objectives.

Fig. 3: Execution of case study 1 leveraging Digit’s manipulation abilities to clear the path for the quadcopter. Digit’s objective
is patrolling the left room, while the quadcopter’s objective is delivering to the right room. However, the quadcopter discovers
a closed door separating the two rooms at runtime, prompting Digit to navigate to open it so that both agents are able to
complete their objectives. The potential quadcopter locations are calculated using the framework from [24].

tasked with visiting one of its initial patrol points and the
closed door, resulting in

'
quad
o := Patrolquad(ssafe, ssafe), (8)

'
Digit
o := PatrolDigit(shomeC, sdoor).

Once Digit visits the door, it is considered open and the
obstacle is removed from the environment, triggering another
resynthesis which returns both agents to their original target
objectives. A walkthrough of the execution of this case study
is shown in Figure 3. For this case study, we also used low-
level planners to generate safe motions for the quadcopter
and Digit, including center of mass (CoM) trajectories and
foot placements. A 3D visualization can be seen in Figure 1
and the included video.

B. Case Study 2: Scouting Ahead
The second case study involves Digit encountering several

states and not knowing whether each state is safe to traverse
on foot, requiring the help of the quadcopter’s heightened
sensing capabilities. To this end, the quadcopter is set to pa-
trol between shomeQ and sawayQ, where shomeQ and sawayQ

are in the left room, while Digit must patrol between shomeC

and sawayC, where shomeC is a region in the left room and
sawayC is in the right room:

'
quad
o := Patrolquad(shomeQ, sawayQ), (9)

'
Digit
o := PatrolDigit(shomeC, sawayC).

At runtime, Digit encounters region suncertain1 = s34

while at ssafe1 = s33, and it is unsure about its ability to
traverse this region. A resynthesis is triggered, where the
quadcopter is tasked with observing the uncertain region by
visiting any of the adjacent regions (in this case, the region
suncertain1W directly west of suncertain1), resulting in

'
quad
o := Patrolquad(shomeQ, suncertain1W), (10)

'
Digit
o := PatrolDigit(ssafe1, ssafe1).

Once the quadcopter observes the unknown region, the
resolvable obstacle is removed from the environment. If the

quadcopter senses that the region is not traversable by Digit,
then the region is added to O and will be considered as an
immovable obstacle during future synthesis. In this specific
case study, suncertain1W is found to be untraversable.

The two agents are returned to their original objectives,
outlined in (9), before Digit encounters another uncertain
state at suncertain2 = s60 while in ssafe2 = s59, where
the process repeats. The quadcopter is tasked with visiting
suncertain2W, directly west of suncertain2, while Digit is
instructed to stay at ssafe2. The uncertain region is found to
be traversable by Digit, and both agents are returned to their
original objectives, now able to fulfill them. A walkthrough
of the execution of this case study is shown in Figure 4.

C. Case Study 3: Chain of Conflicts
The third case study merges the previous two and requires

both agents to resolve an obstacle. For this case study, the
quadcopter encounters a door while on its way to resolving
an uncertain region encountered by Digit, requiring Digit
to first open the door, thus demonstrating the coordination
layer’s ability to handle multiple resolvable obstacles in a
chain when required.

Initially, Digit is tasked with patrolling between shomeC

in the leftmost room and sawayC in the center room, while
the quadcopter is tasked with patrolling between shomeQ and
sawayQ, both in the rightmost room:

'
quad
o := Patrolquad(shomeQ, sawayQ), (11)

'
Digit
o := PatrolDigit(shomeC, sawayC)

Digit encounters an uncertain state at suncertain = s43

while in ssafeC = s43, triggering a resynthesis requiring the
quadcopter to sense the true traversibility of that state by
visiting suncertainE = s44, resulting in

'
quad
o := Patrolquad(shomeQ, suncertainE), (12)

'
Digit
o := PatrolDigit(ssafeC, ssafeC).

However, the quadcopter encounters a closed door at
sdoor = s47 while in ssafeQ = s48 on its way to resolve
Digit’s uncertainty, triggering another resynthesis where



(a) Whenever Digit’s controller encoun-
ters an uncertain region, it has Digit wait
in the preceding region.

(b) The quadcopter (flying above Digit)
senses that the first region is an obstacle,
but the second region is traversable.

(c) Original objectives are reinstated,
with both agents now able to meet their
objectives.

Fig. 4: Execution of case study 2 leveraging the quadcopter’s sensory capabilities to find a traversable path for Digit. The
quadcopter’s objective is to patrol the left room, while Digit’s objective is to deliver something to the right room. However,
Digit encounters several uncertain regions, requiring the quadcopter to observe each until it finds a traversable region.

Digit is tasked with opening the door, resulting in '
quad
o :=

Patrolquad(ssafeQ, ssafeQ), '
Digit
o := PatrolDigit(ssafeC, sdoor).

Once the door is opened and resolved, the quadcopter travels
to the uncertain state and resolves that obstacle, resulting in
both agents being able to accomplish their objectives.

For this case study, in lieu of a figure illustrating the
abstracted simulation, we apply the computed control actions
to a physical robotic system consisting of a bipedal robot and
a quadcopter, detailed in the next section.

VII. HARDWARE IMPLEMENTATION

We replicate case study 3 (see Sec. VI-C) on an in-lab
mock setup to simulate a search and rescue scene, which
requires coordination between a bipedal robot Digit and a
quadcopter Parrot Bebop 2. A video of the experiment is
included as supplementary material.

Digit has an upper body that consists of a torso and
two arms with 4 actuatable joints on each, which allows
it to achieve manipulation skills and enables it to open a
door during the hardware experiment (see Fig. 5). For this
experiment, we use the Digit controller provided by Agility
Robotics, which takes the 2D world waypoint position as in-
put and automatically plans Digit’s walking gait to approach
the desired position. Hence, at runtime, Digit is commanded
to track the waypoints sent by the task and motion planner
to fulfill the patrolling task. When the new task of opening
a door is triggered, Digit navigates to the door and opens it
by pushing the door with its left arm.

Localization of the quadcopter is performed with an over-
head Vicon motion capture system (servo rate 20 Hz). The
LTL framework computes setpoints for the quadcopter to
track, and tracking is performed using a quadratic program-
ming based controller, also operating at 20 Hz.

The experiment is set up to simulate a disaster relief
scenario where the two robots collaborate in a disaster-struck
house. Two desks (simulating walls) and a door are placed
inside the Vicon motion capture area, with the desks as static
obstacles and the door as the resolvable obstacle (i.e., can
be opened). The uncertain region is represented using a tray
with bricks (boxed in green in Fig. 5). Hence, Digit is tasked
with patrolling between suncertain = s43 and sawayC in the
center room.

During the hardware experiment, new goals are extracted
from the automaton synthesized offline. Since commands
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Fig. 5: Hardware experiment Setup. In the top figure, the
desks represent walls — static obstacles in the LTL setup,
and the door represents the resolvable obstacle. The tray
boxed in green represents the uncertain region. The robot
boxed in red is the Digit bipedal robot and the one boxed
in blue is the Bebop quadcopter at initial positions. In the
bottom figure, the robots’ motion trajectories are represented
via arrowed lines in a similar simulated environment.

extracted from the automaton take negligible time, the FSM
can generate control policies at runtime. The hardware exper-
iments showed that the proposed LTL framework was able
to command the robot team to successfully open the door,
sense the uncertain region, and fulfill the original tasks. The
experiment was recorded in the accompanying video.

The hardware implementation reveals a few new chal-
lenges. First, the synchronization between the two different
robots makes the collaborative task less efficient as they
reach the setpoints at different times, which results in longer
time for the task completion. The initial LTL synthesis took
around one minute, leaving Digit standing, and the drone
airborne and exhausting their battery. Efforts can be made to
reduce the initial synthesis time. Additionally, incorporating
a high-performance whole-body motion controller for Digit
such as [27] would enable improved walking performance,



though that is beyond the scope of this work.

VIII. CONCLUSION AND FUTURE WORK

We presented a generalizable approach to identifying and
resolving environment assumption violations discovered at
runtime by automatically leveraging the capability of hetero-
geneous agents. This allows the team of agents to recover
from cases where their objectives become unrealizable due to
runtime-observed violations. We implemented this approach
in a grid world simulation and generated safe 3D CoM
motion plans for a bipedal robot and a quadcopter. Future
directions of research include implementing deadlock reso-
lution strategies and further developing the non-resynthesis
solution to enable more complex runtime-assignable behav-
iors. Additionally, more complex sets of robot teams can be
constructed to resolve a wider range of obstacles using the
proposed approach. Future work can be done to catalogue a
comprehensive library of robots, capabilities, and obstacle
resolutions to enable broader applications, such as multi-
quadcopter teaming to deliver a battery for Digit charging
and executing long-duration navigation for package delivery.
Migrating towards signal temporal logic is also of future
research interest so that specifications about resolution time
can be included, enabling the proposed approach to be
deployed in timing-critical missions.
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