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Abstract— We consider a dynamical system subject to a

disturbance input that is an unknown function of the state.

Given a target goal region, we propose a control scheme that

encourages exploration of the state space in order to sample the

dynamics and obtain an estimate of the unknown component

while avoiding unsafe regions of the state space until the goal

is able to be reached with high probability. By estimating

the unknown component as a Gaussian process, we efficiently

obtain hyperrectangular overapproximations of the reachable

set for the system using the theory of mixed monotone systems,

and these sets are improved over time as measurements of

the dynamics are collected. Using these reachability estimates,

we propose a model predictive scheme that avoids the unsafe

region and ensures the system is always within reach of a

conservative, guaranteed safe region that is given a priori,

thus always ensuring feasibility until the goal is reachable. We

demonstrate the approach on a model of an autonomous vehicle

operating on an icy road and on a planar multirotor moving

in an unknown wind field.

I. INTRODUCTION

When the dynamics of a controlled system are not fully
known, a common approach is to apply control actions to
explore and observe the behavior of the system and adjust the
control strategy as new information is collected. However, for
systems with safety constraints that restrict allowable regions
of the state space, the process of collecting observations must
be designed so as not to lead to unsafe behavior.

Learning and exploration with safety guarantees has been
considered in [1], which proposes a discrete-time Model
Predictive Control (MPC) algorithm that is guaranteed to be
safe with high probability by ensuring that a path back to
safety exists at every timestep. Alternatively, [2] presents a
learning algorithm that explicitly considers safety defined in
terms of Lyapunov stability guarantees, [3] proposes a gen-
eral safety framework based on Hamilton-Jacobi reachability
methods, [4]–[6] synthesize control barrier functions online
to guarantee safety, and [7] achieves safety by estimating
the Lipschitz constant of the disturbance. Other works, such
as [8]–[10], explore learning and updating safety sets in
an online manner. For MPC-based approaches, proposed
frameworks are robust to certain types of uncertainty, for
example by assuming a known Lipschitz constant [11],
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assuming the uncertainty is parametric [12], or applying
MPC to iterative learning control [13].

We draw from the problem setup proposed in [1] and con-
sider a nonlinear dynamical system whose dynamics are not
fully known. As in [1], we estimate the unknown component
using Gaussian Process (GP) regression. Exploration of the
state space is allowed so long as a feasible return trajectory
is available that returns the system to a known safe set.

In this work, we consider systems in continuous-time sub-
ject to state-dependent unknown components that enter the
dynamics nonlinearly. We leverage the mixed monotonicity
property of dynamical systems (see [14] for an overview) and
utilize previous results [15], [16] to obtain hyperrectangular
overapproximations of the reachable sets of the system that
hold with high probability. These overapproximations are
obtained by computing a single trajectory of an appropriately
constructed embedding system that is an ordinary differential
equation with twice the dimension of the original system.

Comparing to existing approaches, we consider
continuous-time systems with nonlinear disturbances
and we use reachability techniques that are computationally
efficient and scalable, as demonstrated on a multirotor
case study with six states. Moreover, this approach avoids
excessive conservatism that often occurs when linearizing
the dynamics and outerbounding the linearization error
using the Lipschitz constant of the dynamics [17]. Lastly,
we explicitly consider the goal of reaching a target region
of the state-space while avoiding an unsafe region. We pose
our algorithm for safe exploration and goal reaching as a
continuous-time model predictive control problem.

The rest of the paper is structured as follows: Section II
introduces key notation, and Section III formally defines
the problem. We then develop a controller that solves this
problem in Section IV, before demonstrating its efficacy
on two case studies in Section V: an autonomous vehicle
traveling on an icy road and a planar multirotor operating in
a wind field. Finally, we conclude with a short discussion in
Section VI.

II. NOTATION

Let (x, y) denote the vector concatenation of x, y 2 Rn,
i.e., (x, y) := [xT yT ]T 2 R2n. Additionally, � denotes
the componentwise vector order, i.e., x � y if and only if
xi  yi for all i 2 {1, ..., n} where vector components are
indexed via subscript.

Given x, y 2 Rn such that x � y, we denote the
hyperrectangle defined by the endpoints x and y using the
notation [x, y] := {z 2 Rn | x � z and z � y}. Also,
given a = (x, y) 2 R2n with x � y, [[a]] denotes the



hyperrectangle formed by the first and last n components
of a, i.e., [[a]] := [x, y]. Finally, let �SE denote the southeast
order on R2n defined by (x, x0) �SE (y, y0) if and only if
x � y and y0 � x0. In particular, observe that when x � x0

and y � y0,

(x, x0) �SE (y, y0) () [y, y0] ✓ [x, x0]. (1)

III. PROBLEM SETUP

Consider the continuous-time nonlinear dynamical system

ẋ = f(x, u, w) (2)

with f differentiable where x 2 Rn is the system state,
u 2 U ⇢ Rm is the input constrained to take values in
U , and w 2 Rp is an unknown, state-dependent component
of the dynamics so that wi = gi(x) where gi is unknown.
Throughout, we assume the input constraint set has the form
U = [u, u] for some u, u 2 Rm, u � u, that is, U is a
hyperrectangle defined by corners u and u.

We denote by �(t, x0,⇡) the resulting closed-loop state
trajectory of (2) under control strategy u = ⇡(t, x) when
w = g(x) and the system is initialized at x0 at time 0. If ⇡
is time-invariant, we write ⇡(x) instead.

Assumption 1. There exists a known subset of the state
space Xunsafe ⇢ Rn which must be avoided. There also
exists a known safe set Xsafe ⇢ Rn and corresponding time-
invariant safety controller ⇡safe with ⇡safe(x) 2 U for all
x 2 Rn such that, if the system is initialized in Xsafe, it
avoids Xunsafe, i.e.

�(t, x0,⇡safe) 2 (Xunsafe)
C 8t � 0, 8x0 2 Xsafe. (3)

Our objective is to control the system to a goal region
while avoiding the unsafe region.

Problem statement. Consider a system as in (2) with
specified initial condition x0 2 Xsafe and input constraints U .
Given a goal region Xgoal ⇢ Rn, compute a feedback control
strategy u = ⇡(t, x) that reaches the goal while avoiding the
unsafe region Xunsafe, i.e.,

8t � 0,�(t, x0,⇡) 2 (Xunsafe)
C (4)

9T > 0 s.t. �(T, x0,⇡) 2 Xgoal. (5)

In general, we are interested in scenarios in which Xgoal
does not intersect Xsafe so that we cannot achieve our
objective by remaining within Xsafe. Thus, while the safety
controller ⇡safe achieves (4), it generally will not achieve (5).

Our proposed control approach is to incrementally move
towards the goal while ensuring the system is always able
to safely return to Xsafe if needed, until it can be guaranteed
that the system can safely reach the goal. This safe return
and guaranteed reach to the goal is ensured via a nonlinear
MPC scheme which directly optimizes for a control input in
both cases and incorporates uncertainty from the unknown
component g(x) of the dynamics. While moving towards
the goal, the system is able to collect information about
its dynamics and reduce the uncertainty in its estimate of
g(x), allowing it more freedom to safely explore. We next
formalize this approach.

IV. SAFE LEARNING ALGORITHM

In this section we develop a safe control scheme that is
safe with high probability by leveraging the mixed mono-
tonicity property of dynamical systems to calculate high-
probability reachable sets, then utilize an MPC formulation
to solve for a control strategy that always has a path back
to safety. We define the reachable set of (2) at time t = T
initialized from any state x0 2 X0 with control policy u as

R(T,X0, u) = {�(T, x0, u) | x0 2 X0}. (6)

A. Mixed Monotonicity

The system (2) is mixed monotone with respect to a
decomposition function � if � satisfies the following:

1) For all x and all w, �(x, u, w, x, w) = f(x, u, w);
2) For all i, j 2 {1, · · · , n}, i 6= j, @�i

@xj
(x, u, w, bx, bw) �

0 for all x, bx, u, w, bw;
3) For all i, j 2 {1, · · · , n}, @�i

@bxj
(x, u, w, bx, bw)  0 for

all x, bx, u, w, bw;
4) For all i 2 {1, · · · , n} and all k 2 {1, · · · , p},

@�i
@wk

(x, u, w, bx, bw) � 0 & @�i
@ bwk

(x, u, w, bx, bw)  0 for
all x, bx, u, w, bw.

For any system, there exists some decomposition function
� satisfying the above conditions [17], although one may
not be readily available in closed form. In general, finding
a decomposition function is problem specific; see [14] for
further discussion and the case studies below for examples.

We then construct an embedding system with state (x, bx) 2
Rn⇥Rn, input u 2 Rm, and disturbance (w, bw) 2 Rp⇥Rp:


ẋ
ḃx

�
= "(x, u, w, bx, bw) :=


�(x, u, w, bx, bw)
�(bx, u, bw, x,w)

�
. (7)

Denote the state of (7) at time t when initialized at
(x0, x0) under some input signal u : [0,1) ! Rm,
and disturbance signal (w, bw) : [0,1) ! Rp ⇥ Rp by
�"(t; (x0, x0), u, (w, bw)). The fundamental result of mixed
monotone systems theory is that (7) is a monotone control
system as defined in [18] with respect to the southeast order
on state and disturbance; that is, given a, a0 2 Rn ⇥ Rn,
b : [0,1) ! Rm and c, c0 : [0,1) ! Rp ⇥ Rp such that
a �SE a0 and c(t) �SE c0(t) for all t � 0, then for all t � 0,

�"(t; a, b, c) �SE �"(t; a0, b, c0). (8)

In other words, provided that the system is initialized
within [x0, x0], and the disturbance signal is overapprox-
imated by [w, bw], then the hyperrectangle defined by
[[�"(t; (x0, x0), u, (w, bw))]] overapproximates the true reach-
able set of (2), i.e.

R(T,X0, u) ✓ bR(T,X0, u) := (9)
[[�"(T ; (x0, x0), u, (w, bw))]].

We have shown that, given some assumptions [16, As-
sumptions 3 & 4] on g(x), it is possible to derive bounding
functions �(x, bx), �(x, bx) on w using GP theory that hold
with probability at least 1 � ⌘ for any ⌘ 2 (0, 1). We



preserve these assumptions and select our hyperparameters
accordingly, resulting in the embedding system


ẋ
ḃx

�
= e(x, u, bx) :=


�(x, u, �(x, bx), bx, �(x, bx))
�(bx, u, �(x, bx), x, �(x, bx))

�
. (10)

We denote the state of (10) at time t when initialized at
(x0, x0) under some input signal u : [0,1) ! Rm as
�e(t; (x0, x0), u). Thus, the hyperrectangle of states defined
by [[�e(t; (x0, x0), u)]] overapproximates the reachable sets
of (2) with probability at least 1 � ⌘. Crucially, since �, �
bound the entire disturbance function with probability 1�⌘,
the uncertainty does not compound over successive reachable
set estimations. As observations of the unknown behavior
g(x) are collected and the confidence bounds �, � tighten,
the hyperrectangular reachable set overapproximations also
tighten. In the next section, we insert these hyperrectangles
into a safe model predictive formulation.

B. Safe With High Probability MPC
We sample the embedding system (10) with timestep h

such that at each step k = t/h,

x[k + 1]
bx[k + 1]

�
= �e(h; (x[k], bx[k]),⇡k) (11)

where ⇡k is the controller applied from time kh to (k+1)h.
Below, we assume ⇡k is a constant policy ⇡k(t, x) ⌘ uk for
some uk 2 U to be designed by an MPC scheme. Thus,
taking bRk = [x[k], bx[k]] overapproximates the reachable
set of (2) at time t = kh with high probability (i.e. with
probability at least 1� ⌘).

We then use these overapproximations and formulate the
following MPC scheme which satisfies the safety condi-
tion (4):

minimize
⇧={u0,...,uD}

Jk,obj( bR0, ..., bRD) (12)

subject to:
(11), x[0] = bx[0] given, ud 2 U 8d 2 {0, . . . , D � 1}
bRd = [x[d], bx[d]], bRD ⇢ Xobj 8d 2 {0, . . . , D}
[x(t), bx(t)] ⇢ (Xunsafe)

C 8t 2 [0, T ]

where obj 2 {goal, safe}. The control strategy incorporating
the above MPC scheme is outlined in Algorithm 1. This
strategy optimizes for desired behavior based on the cost
functions Jk,goal and Jk,safe which are designed to prioritize
goal-reaching and exploration, respectively. If (12) is feasible
when obj = goal, then ⇧ contains a control input for each
timestep that altogether are guaranteed with high probability
to drive the system into Xgoal while avoiding Xunsafe. Thus,
the entire resulting control strategy ⇧ is executed immedi-
ately and the algorithm terminates.

Otherwise, the algorithm attempts to solve (12) with
obj = safe. If this MPC problem is feasible, ⇧ contains
a set of control inputs that explores the state space while
guaranteeing with high probability that the system will avoid
Xunsafe and return to Xsafe. Thus, the algorithm saves the
entire strategy as ⇧k. If the problem is not feasible, the

algorithm copies the unexecuted actions from the previous
saved strategy ⇧k�1 and appends the safety action ⇡safe. The
previously saved strategy ⇧k�1 must either end in Xsafe or
be the result of applying ⇡safe for all time after starting in
Xsafe, thus ⇧k is guaranteed to be safe with high probability.
The algorithm then executes the first action saved in ⇧k, and
restarts at trying to solve (12) with obj = goal.

The system may be initially unable to reach the goal, as
high uncertainty on the bounds of the unknown behavior
may prevent the final reachable set bRK from being contained
in Xgoal. However, as observations are collected and the
bounds �, � tighten, the reachable set overapproximations
also tighten, allowing for finer control over the system and
thus allowing for exploration further outside of Xsafe or
enabling the system to reach Xgoal. We note that, in practice,
to ensure the safety condition [x(t), bx(t)] ⇢ (Xunsafe)C for all
t 2 [0, T ] in (12), we check this condition at a large number
of time instances between the sampling times.

Algorithm 1: Resulting Control Scheme
Data: Safety controller ⇡safe, embedding system (10)

sampled as (11), bounding functions �, �
1 ⇧0  {⇡safe, ...,⇡safe};
2 for k = 0, 1, ... do

3 (feasible,⇧) solve MPC problem, obj = goal;
4 if feasible then

5 apply u = ⇧ to system
6 break;

7 (feasible,⇧) solve MPC problem, obj = safe;
8 if feasible then

9 ⇧k  ⇧
10 else

11 ⇧k  {⇧k�1,1:D�1,⇡safe}
12 xk+1  apply u(t) = ⇧k,0(x(t)) to (2) until

t = (k + 1)h

Theorem 1. Given a system (2) under Assumption 1 with
x0 2 Xsafe, the control strategy resulting from Algorithm 1
is safe with high probability.

Proof Sketch. Consider Algorithm 1 at timestep k = 1. If
the MPC problem is feasible for obj = goal, the resulting
control strategy ⇧1 is guaranteed with high probability to
drive the system to Xgoal while avoiding Xunsafe by the fact
that the reachable set overapproximations calculated by the
MPC problem hold with high probability. Thus, the entire
strategy ⇧1 is executed and the algorithm terminates. If the
MPC problem is feasible for obj = safe, the resulting control
strategy ⇧1 is guaranteed with high probability to drive the
system to Xsafe while avoiding Xunsafe, thus ⇧1 is safe with
high probability. If neither MPC problem is feasible, ⇧1 is
safe with high probability by virtue of ⇧0 being safe, as ⇧1

appends ⇡safe to ⇧0, which ends in Xsafe. This continues by
induction: at timestep k, if either MPC problem is feasible,
⇧k is safe with high probability. If not, ⇧k is safe with high



probability due to ⇧k�1 being safe.

V. CASE STUDIES

In this section we apply Algorithm 1 to case studies of
a four-dimensional autonomous vehicle operating on an icy
road and a six-dimensional planar multirotor operating in
a wind field. We task each with safely reaching a goal
area in the presence of unknown disturbances (i.e. the ice
and wind) while avoiding unsafe sets. Both case studies
were implemented using the Model Predictive Control Tool-
box in MATLAB, and a code repository is available at
https://github.com/gtfactslab/Cao ACC2023.

A. Autonomous Vehicle on Icy Road
We consider an autonomous vehicle modeled by the four-

dimensional kinematic planar bicycle, which has state x =
[X,Y, , v]T and relates positional coordinates X and Y ,
center-of-mass velocity v, heading angle  , side-slip angle
�(u2), and front and rear distances from center of mass lf =
2.2m and lr = 3.3m as

Ẋ = v cos ( + �(u2)), Ẏ = v sin ( + �(u2)),

 ̇ =
v

lr
sin (�(u2)), v̇ = u1, (13)

where
�(u2) = arctan

✓
lr

lf + lr
tan (u2)

◆
, (14)

with inputs being the desired acceleration u1 and steering
angle u2. We assume the system is subject to constraints
U = [(�600,�⇡/3), (600,⇡/3)].

The vehicle is operating on a road which varies in friction
due to the presence of ice patches. As a result, the actual
velocity update dynamics are given by

v̇actual = (1� g(X,Y ))u1, (15)

where the true behavior of g(X,Y ) 2 [0, 1) represents the
state-dependent change in friction based on the road surface
at that position. We estimate g using a GP with a radial basis
kernel, initialized with several points around the starting
point of the vehicle, and obtain high-confidence bounds by
considering posterior estimates up to three standard devi-
ations from the mean. We set h = 0.05s and collect an
observation of g(X,Y ) at every timestep.

The associated decomposition function takes the form

�(x, u, w, bx, bw) =
⇥
dX dY d dv

⇤T (16)

dv = db1b2
✓

1� bw
u1

�
,


1� w
u1

�◆

where, for b,bb 2 R2,

db1b2(b,bb) =
(
min{b1b2,bb1b2, b1bb2,bb1bb2}, if b � bb
max{b1b2,bb1b2, b1bb2,bb1bb2}, if bb � b,

and dX , dY , d take the same forms as in [16, Section VI-A].
We define the safety set as

Xsafe = [(�2,�5,�2⇡,�50), (0, 5, 2⇡, 50)] (17)

and task the system with entering the goal set

Xgoal = [(5,�5,�2⇡,�15), (7, 5, 2⇡, 15)] (18)

while avoiding Xunsafe, which is the union of a set of
hyperrectangles (see the dashed red boxes in Figure 1).

We then leverage the following observation:

Observation 1. Given vectors (x, x0) and (y, y0) such that
x � x0 and y � y0,

(x, x0) �SE (y0, y) () [x, x0] \ [y, y0] 6= ;. (19)

Thus, our safety constraint is equivalently defined as

(x(t), bx(t)) �SE (xui, xui) 8t�0,i (20)

where [xui, xui] are the unsafe hyperrectangles. We check
that six intermediate reachable sets between each timestep
satisfy [x(t), bx(t)] ⇢ (Xunsafe)C and solve the MPC prob-
lem (12) for D = 4 timesteps.

We take

Jk,goal( bR0, ..., bRD) =
DX

d=0

||Cd � Cgoal|| (21)

where Cd, Cgoal are the center points of the respective reach-
able sets and goal. If a feasible solution is found, the set of
control actions is executed immediately, as these represent a
control strategy that is guaranteed to end in Xgoal with high
probability. If this is infeasible, (12) is solved with cost

Jk,safe( bR0, ..., bRD) = (22)

�
DX

d=0

✓
↵�(Cd)� ||Cd � Cgoal||e�↵�(Cd)

◆

where ↵ > 0 is a user-specified constant. This reverts
the objective back to pure exploration, with a bias toward
observation points that take the system closer to the goal.
Multiplying the bias term ||Cd �Cgoal|| by e�↵�(Cd) allows
the bias to be overcome if the expected information gain
is high enough, and the exponential function is specifically
chosen to mirror the structure of the GP radial basis kernel.

As shown in Figure 1, initially, the system is unable to find
a control strategy that is guaranteed to reach the goal while
avoiding the unsafe areas with high probability, so it reverts
to exploring the state space for the first few timesteps (first
and second plots). After sufficient exploration, the controller
is able to compute a strategy that reaches the goal, and
executes this strategy immediately (third and fourth plot).
Thus, at all times, the controller has a safe path to either
Xsafe or Xgoal that holds with high probability. On average, it
takes approximately 18 minutes to compute the next control
action single-threaded on a personal computer, though timing
analysis shows that around 60 percent of this computation
is spent sampling the GP; these processes are parallelizable,
though outside the scope of this work.
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Fig. 1: Execution of the Autonomous Vehicle case study. The
shaded region is the portion of the road unaffected by ice.

B. Planar Multirotor in Wind Field

We consider a multirotor aerial vehicle constrained to
move in a vertical plane. The six-dimensional state x of
the planar multirotor system consists of horizontal position
y, vertical position z, roll angle ✓, and their derivatives,
vy = ẏ, vz = ż, ! = ✓̇, so that x =

⇥
y vy z vz ✓ !

⇤T .
The two inputs are thrust u1 acting at the center of mass
in the direction

⇥
� sin ✓ cos ✓

⇤T perpendicular to the line
segment connecting the rotors, and roll angular acceleration
u2. We assume the system is subject to input constraints
U = [(�40,�2⇡), (40, 2⇡)], gravitational acceleration ag ,
as well as an unknown force due to wind. We assume this

force affects acceleration in both the horizontal and vertical
directions and is a function of altitude z. The resulting
dynamics with normalized mass and moment of inertia are

ÿ = v̇y = �u1 sin ✓ + g1(z)

z̈ = v̇z = u1 cos ✓ � ag + g2(z)

✓̈ = !̇ = u2

(23)

where g1 and g2 constitute the unknown wind forces in the
horizontal and vertical directions, respectively. We again esti-
mate g1 and g2 using GPs with a radial basis function kernel,
initialized with several points around the starting point of the
multirotor, and obtain high confidence bounds by considering
posterior estimates up to three standard deviations from the
mean. We set h = 0.2s and collect an observation of g1(z)
and g2(z) at every timestep.

The associated decomposition function takes the form

�(x, u, w, bx, bu, bw) =
⇥
vy dvy vz dvz ! u2

⇤T (24)

dvy = �db1b2
✓

u1

dsin(b✓, ✓)

�
,


u1

dsin(✓, b✓)

�◆
+ w1

dvz = db1b2
✓

u1

dcos(✓, b✓)

�
,


u1

dcos(b✓, ✓)

�◆
� ag + w2

where db1b2 is defined as before and dsin, dcos are the known
tight decomposition functions for sin and cos, respectively
(see [16, Equations 74–75]).

We define the safety set Xsafe as the hyperrect-
angle [(�5,�30,�2,�30,�2⇡,�2⇡), (5, 30, 0, 30, 2⇡, 2⇡)]
and task the system with entering the goal set Xgoal =
[(�5,�8, 9,�8,�⇡,�⇡), (5, 8, 11, 8,⇡,⇡)] while avoiding
Xunsafe, which is the union of a set of hyperrectangles
(see the dashed red boxes in Figure 2). We again leverage
Observation 1 and define our safety constraint as (20). We
check that seven intermediate reachable sets between each
timestep satisfy [x(t), bx(t)] ⇢ (Xunsafe)C , and solve (12) for
D = 5 timesteps.

Finally, we formulate our cost functions for each MPC
scheme. We define our cost function for goal reaching as
before with equation (21). If a feasible solution is found,
the set of control actions is executed immediately, as these
represent a control strategy that is guaranteed to end in
Xgoal with high probability. However, if this is infeasible, the
controller attempts to explore the state space in a way that
brings the rotor closer to the target altitude, while having
a path back to safety. As g1, g2 are only functions of the
altitude z, we can set altitude as the exploration metric
Jk,safe( bR0, ..., bRD) = �

PD
d=0 Cd,2.

As shown in Figure 2, the system is initially unable to
compute a control strategy that is guaranteed to reach the
goal while avoiding the unsafe areas, so it reverts to exploring
the state space (first and second plots). After sufficient
exploration, the controller is able to guarantee with high
probability that it reaches the goal (third and fourth plot).
Thus, at all times, the controller has a safe path to either
Xsafe or Xgoal that holds with high probability. On average, it



takes approximately nine minutes to compute the next control
action single-threaded on a personal computer.

VI. CONCLUSION

We have presented a control scheme that is guaranteed
to be safe with high probability while enabling both ex-
ploration and goal reaching. This control scheme leverages
mixed monotonicity theory in an MPC formulation that is
capable of calculating hyperrectangular overapproximations
of reachable sets that hold with high probability. This MPC
formulation is then used in an algorithm which produces
a control strategy that is safe with high probability. The
proposed algorithm is tunable for both exploration and goal
reaching, incorporates unknown disturbances nonlinearly,
and is scalable to systems of moderately high dimension
due to the efficiency of the reachable set computations.
Future directions of research include developing different
cost functions to optimize for alternative objectives and
implementation on physical systems.
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