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Abstract— We consider the problem of tracking a reference

trajectory for dynamical systems subject to a priori unknown

state-dependent disturbance behavior. We propose a formula-

tion that embeds the uncertain system into a higher dimensional

deterministic system that accounts for worst case disturbances.

Our main insight is that a single controlled trajectory of this

embedding system corresponds to a controlled forward invari-

ant interval tube around the reference trajectory. By taking

observations of the system, we then propose to estimate the

state-dependent uncertainty with Gaussian Process regression,

which improves the accuracy of the forward invariant tube

as data is collected. Given a safety objective, we also provide

conditions on when an additional observation of the unknown

disturbance behavior needs to be collected to maintain safety.

We demonstrate our formulation on a case study of a planar

multirotor attempting a safe landing in an unknown wind field.

I. INTRODUCTION

Safety-critical autonomous systems often require guaran-
tees that they will only operate within an allowable safe re-
gion of their statespace. As a motivating example considered
throughout this paper, in the context of urban air mobility,
one key safety requirement is the ability of aerial vehicles
to land without damaging the vehicle or the environment
around it. As these vehicles are operating in uncontrolled
outdoor environments, they are subject to environmental
disturbances that are not known a priori. While techniques
exist for planning trajectories that are nominally safe [1],
ensuring that the system is able to track these trajectories
during runtime in the presence of unknown disturbances is
challenging. The goal of this work is to design a runtime-
assurance framework that ensures safety in the presence of
unknown disturbances. Our approach is to compute forward
invariant tubes for the system given the limits of the control
input and the current knowledge of the disturbance behavior,
and override a nominal tracking control law if the system is
at risk of violating its safety restrictions.

In many cases, uncertainty in the dynamics can be learned
via observations. For example, the position-dependent wind
field that an aerial vehicle encounters might be unknown a
priori but can be learned through observations of the wind at
different points. For such systems, in [2], [3], we derive high
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probability bounds on the unknown disturbance behavior
by modeling the disturbance as a state-dependent Gaussian
Process (GP). In turn, these bounds enable us to calculate
overapproximations of the reachable sets of the system that
hold with high probability. For this, we leverage the mixed
monotonicity property of dynamical systems to embed the
dynamics in a higher dimensional system [4], [5]. A key
advantage of this overapproximation technique is its compu-
tational efficiency: it reduces the reachable set computation
to the evaluation of a single trajectory of an embedding
system with twice the number of states as the original system.
This computation is able to be updated in real-time, even for
systems of moderately high dimension [6], and we leverage
this property to develop an approach that dynamically detects
when a new observation of the disturbance behavior needs to
be collected to keep the system within an acceptable bound
of the reference trajectory. We then update the reference tra-
jectory and forward invariant tube with the new observation
during runtime to preserve safety.

There are several methods for ensuring safety at runtime,
which is commonly referred to as runtime assurance. The
most common runtime assurance architecture is the Sim-
plex architecture proposed by [7], where two controllers
are developed for the system: one that is high-assurance
and another that is high-performance. The high-performance
controller is allowed to run until some predetermined de-
cision logic detects that the system is about to violate a
safety specification, at which point control is switched to the
high-assurance controller. This allows the high-performance
controller to be developed without having to validate that it
is safe beforehand. Alternatively, [8] introduces online active
set invariance filtering, which instead minimally modifies the
control action such that there exists a back-up trajectory
that takes the system to a safe set, while never actually
needing to execute the backup strategy. Another approach
is introduced in [9], which develops a formal language to
implement runtime assurance. An illustrative example of
practical runtime assurance for unmanned aerial systems is
implemented in [10], though that method is implemented at
the waypoint and trajectory selection level.

With regards to assurance for systems with partially un-
known dynamics, [11] develops a Twin Neural Lyapunov
Function which is then used to build a runtime monitor.
However, like many neural network applications, a large
amount of training data is needed to ensure safety, and the
formulation assumes no prior knowledge of the system’s
dynamics. Alternatively, [12] develops a runtime assurance
mechanism for distributed avionics architecture which can



intervene in the event of failure. [13] develops a nested
control strategy consisting of an outer task-space loop and
an inner joint-space loop for the trajectory tracking problem
on a manipulator with uncertain kinematics and dynamics.

Other approaches to the invariant tube synthesis problem
(also known as the funnel synthesis problem) include [14],
which develops a funnel synthesis algorithm for computing
controlled invariant sets around a given nominal trajectory
by solving a differential LMI, [15] which develops several
strategies utilizing Sum-of-Squares programming for com-
puting regions of finite-time invariance around solutions of
polynomial differential equations, and [16] which proposes
an approach to funnel synthesis that is based on falsification.
Additionally, [17] develops a joint trajectory and funnel
synthesis technique for discrete-time systems with locally
Lipschitz nonlinearities. Finally, [18], [19] develop funnel
synthesis strategies applied in real-time on aerial vehicles.

In this work, we leverage the mixed monotonicity property
to derive a runtime assurance mechanism that can detect
whether the controller is unable to follow the reference
trajectory within a desired tolerance. Specifically, we apply
the formulation proposed by [20] to calculate a forward-
invariant tube around the reference trajectory based on the
current observations of the unknown disturbance behavior
and the limits of the controller, and we then design a
controller which guarantees this forward invariance. Next, we
define a safe deviation threshold which, if crossed, triggers
an observation of the unknown dynamics and a recalcula-
tion of the reference trajectory and forward invariant tube,
ensuring that the system never deviates from the reference
trajectory by more than the safe threshold. We demonstrate
this formulation on a case study of a planar multirotor vehicle
making a safe landing in a wind field.

In contrast to the current literature, our proposed formu-
lation natively accommodates nonlinear dynamics without
the need to solve for LMIs, which are relatively expensive
computationally. Additionally, we solve the problem fully in
continuous-time and do not need to choose time discretiza-
tion points. Finally, we propose a method for sampling to
improve knowledge of the unknown dynamics that minimizes
the number of samples needed to ensure safety.

The rest of this paper is structured as follows: We in-
troduce key notation in Section II, define our problem in
Section III, and derive our forward-invariant tube formulation
and runtime assurance mechanism in Section IV. We then
apply it to a case study of a planar multirotor vehicle in
Section V, and conclude with a discussion in Section VI.

II. NOTATION

Let (x, y) denote the vector concatenation of x, y 2 Rn,
i.e., (x, y) := [xT yT ]T 2 R2n. Additionally, � denotes
the componentwise vector order, i.e., x � y if and only if
xi  yi for all i 2 {1, ..., n} where vector components are
indexed via subscript.

Given x, y 2 Rn such that x � y, we denote the
hyperrectangle defined by the endpoints x and y using the
notation [x, y] := {z 2 Rn | x � z and z � y}. Also,

given a = (x, y) 2 R2n with x � y, [[a]] denotes the
hyperrectangle formed by the first and last n components
of a, i.e., [[a]] := [x, y]. Finally, let �SE denote the southeast
order on R2n defined by (x, x0) �SE (y, y0) if and only if
x � y and y0 � x0. In particular, observe that when x � x0

and y � y0,

(x, x0) �SE (y, y0) () [y, y0] ✓ [x, x0]. (1)

III. PROBLEM SETUP

We consider the continuous-time, nonlinear, Lipschitz-
continuous system

ẋ = f(x, u, w) (2)

where x 2 Rn is the system state, u 2 U = [u, u] ⇢ Rm is
the system input constrained to an interval, and w 2 Rp is
an unknown, state-dependent component of the dynamics so
that wi = gi(x) where gi is unknown.

We make the following assumptions on (2).

Assumption 1. The Isaacs minimax condition is satisfied:
given any interval sets U = [u, u] ⇢ Rm and W = [w,w] ⇢
Rp, for all q 2 Rn,

min
u2U

max
w2W
hq, f(x, u, w)i = max

w2W
min
u2U
hq, f(x, u, w)i (3)

This is a mild assumption requiring that, for obtaining an
optimal control strategy, it does not matter whether the input
is chosen before or after the disturbance is realized at each
time instant.

Assumption 2. For all (x,w) 2 Rn ⇥ Rp, f(x, U,w) is an
interval set.

This assumption is more restrictive, but as we will show-
case in Section V, it is sometimes possible to apply a
transformation to the state-space dynamics of a system
such that the transformed dynamics fulfill this assumption.
Additionally, when the assumption does not hold, it is always
possible to under-approximate f(x, U,w) with interval sets.

Thus, we define our problem as follows.

Problem 1. Given a system (2) which fulfills Assumptions 1
and 2, as well as reference trajectories xr(t), ẋr(t), ur(t),
which solve (2) for some wr(t), devise an assurance mecha-
nism that ensures the system remains within a safe distance
" of the reference trajectory for all time.

Multiple formulations exist to produce safe trajectories for,
e.g., autonomous aerial vehicles, leveraging techniques from
optimal control [1], [21], and differential flatness [22], [23],
for example. In this work, we are specifically interested in
the problem of ensuring close tracking of a given reference
trajectory in the presence of unknown disturbance behavior
at runtime. Thus, we presume that any of these techniques
are readily available for generating the reference trajectory.

IV. HIGH PROBABILITY FORWARD INVARIANCE

In this section, we provide an overview of mixed mono-
tonicity and how it enables efficient calculation of reachable



set overapproximations. We then illustrate how the intro-
duction of Gaussian Processes (GPs) leads to overapprox-
imations of reachable sets that hold with high probability.
Finally, we modify the formulation to enable the calculation
of a forward invariant tube with respect to a reference
trajectory in service of solving Problem 1.

A. Mixed Monotonicity

The system (2) is mixed monotone with respect to a
decomposition function � if it satisfies the following:

1) For all x, u, w, �(x, u, w, x, u, w) = f(x, u, w);
2) For all x, x, u, bu,w, bw and all i, j 2 {1, · · · , n}, i 6=

j, @�i
@xj

(x, u, w, x, bu, bw) � 0;
3) For all x, x, u, bu,w, bw and all i, j 2 {1, · · · , n},

@�i
@xj

(x, u, w, x, bu, bw)  0 ;
4) For all i 2 {1, · · · , n} and all k 2 {1, · · · , p},

@�i
@wk

(x, u, w, x, bu, bw) � 0 and @�i
@ bwk

(x, u, w, x, bu, bw) 
0 for all x, x, u, bu,w, bw.

5) For all i 2 {1, · · · , n} and all k 2 {1, · · · , m},
@�i
@uk

(x, u, w, x, bu, bw) � 0 and @�i
@buk

(x, u, w, x, bu, bw) 
0 for all x, x, u, bu,w, bw.

For any system, there exists some decomposition function �
satisfying the above conditions [24], although one may not
be readily available in closed form. In general, obtaining a
decomposition function is problem specific, but automated
tools exist for computing certain classes of decomposition
functions [4]. We demonstrate construction of a decomposi-
tion function in the case study of Section V. For more exam-
ples of decomposition functions and practical applications of
mixed monotonicity, see [25], [26].

Given mixed monotone system (2) and a corresponding
decomposition function, we then construct the embedding
system with state (x, x) 2 Rn⇥Rn, input (u, bu) 2 Rm⇥Rm,
and disturbance (w, bw) 2 Rp ⇥Rp defined by the dynamics

ẋ
ẋ

�
= "(x, u, w, x, bu, bw) :=


�(x, u, w, x, bu, bw)
�(x, bu, bw, x, u, w)

�
. (4)

Denote the state of (2) at time t when initialized at x0

under some input signal u : [0,1) ! Rm and some
disturbance signal w : [0,1) ! Rp by �(t;x0, u, w),
and denote the state of (4) at time t initialized at (x0, x0)
under some input signal (u, bu) : [0,1) ! Rm ⇥ Rm,
and disturbance signal (w, bw) : [0,1) ! Rp ⇥ Rp

by �"(t; (x0, x0), (u, bu), (w, bw)). The fundamental result of
mixed monotone systems theory is that (4) is a monotone
control system as defined in [27] with respect to the southeast
order on state, input, and disturbance; that is, given a, a0 2
Rn ⇥ Rn, b, b0 : [0,1) ! Rm ⇥ Rm and c, c0 : [0,1) !
Rp⇥Rp such that a �SE a0, b �SE b0, and c(t) �SE c0(t) for
all t � 0, then for all t � 0,

�"(t; a, b, c) �SE �"(t; a0, b0, c0). (5)

In other words, provided that the system is initial-
ized within [x0, x0], the input signal is overapproxi-
mated by [u, bu], and the disturbance signal is overap-
proximated by [w, bw], then the hyperrectangle defined by

[[�"(t; (x0, x0), (u, bu), (w, bw))]] overapproximates the true
reachable set of (2), i.e.

�(T ;x0, u, w) ✓ [[�"(T ; (x0, x0), (u, bu), (w, bw))]] (6)

for all T � 0 and x0 2 [x0, x0].

B. Gaussian Processes and High Probability Reachable Sets
If there exist known bounding functions �

i
(x, x) and

�i(x, x), �
i
, �i : Rn ⇥ Rn 7! R, for all i 2 {1, . . . , p}

such that

�
i
(x, x)  gi(x)  �i(x, x), x 2 [x, x], (7)

for all x, x 2 Rn with x � x, where g(x) represents the
a priori unknown function dictating the behavior of w, then
these functions can be inserted into the previously described
embedding system to produce valid reachable set overap-
proximations. This is achieved by taking the embedding
system (4) and inserting �(x, x), �(x, x) in place of w, bw
to produce a new embedding system as

ẋ
ẋ

�
= e(x, u, x, bu) :=


�(x, u, �(x, x), x, bu, �(x, x))
�(x, bu, �(x, x), x, u, �(x, x))

�
.

(8)
We have shown previously in [3] that modeling the

unknown functions gi(x) as GPs enables us to formulate
bounding functions that fulfill (7) with probability 1�⌘, ⌘ 2
(0, 1]. Given observations {yj}tj=1 of the GP at correspond-
ing points {xj}tj=1, the surrogate functions of interest to
approximate gi are

8i 2 {1, · · · , p},
(
g(t)i (x) := µt(x) +

p
�t�t(x)

g(t)
i
(x) := µt(x)�

p
�t�t(x)

(9)

where �t is

�t := 2 log

✓
pt2⇡2

3⌘

◆
+ 2n log

 
t2nbr

s

log

✓
2pna

⌘

◆!
,

(10)

µt(·) is the posterior mean, and �t(·) is the posterior vari-
ance, computed according to the standard GP updates [28]:

µt(x) := kt(x)
T (Kt + �2I)�1y (11)

kt(x, x
0) := k(x, x0)� kt(x)

T (Kt + �2I)�1kt(x
0) (12)

�2
t (x) := kt(x, x) (13)

where kt(x) := (k(x1, x), · · · , k(xt, x)) and Kt =
[kt(xi, xj)]. Then, for all i 2 {1, · · · , p} and all t � 1,
define for all x � x,

�(t)
i
(x, x) := min

x2[x(t,�),x(t,+)]\Dt

g(t)
i
(x)� 1

t2
, (14)

�(t)
i (x, x) := max

x2[x(t,�),x(t,+)]\Dt

g(t)i (x) +
1

t2
. (15)

These functions fulfill (7) with probability at least 1 � ⌘,
and thus the reachable set overapproximations calculated by
the embedding system (8) using these functions hold with
probability at least 1� ⌘.



C. Forward Invariant Tube
We now apply the formulation proposed in [20] to gen-

erate our forward invariant tube. For any system, a valid
decomposition function takes the form

�i(x, u, w, x, bu, bw) = min
a2[x,x],ai=xi

min
b2[u,bu]

min
c2[w, bw]

fi(a, b, c)

(16)
�i(x, bu, bw, x, u, w) = max

a2[x,x],ai=xi

max
b2[u,bu]

max
c2[w, bw]

fi(a, b, c)

(17)

for all i 2 [1, n]. However, solving for these values at runtime
is generally difficult; thus the main challenge lies in deriving
a closed-form version of � that solves (16)-(17). A function
� that has this property is considered to be tight.

For the particular problem setting of tracking a reference
trajectory, the control input u and disturbance input w are
strictly competitive forces. In other words, any deviation
from wr(t) taken by the disturbance input w must be
countered with deviation from ur(t) by the control input
u. To model this competition, we note that a function � that
is tight (i.e. fulfills (16)–(17)) also has the properties

�i(x, bu,w, x, u, bw) = min
a2[x,x],ai=xi

max
b2[u,bu]

min
c2[w, bw]

fi(a, b, c)

(18)
�i(x, u, bw, x, bu,w) = max

a2[x,x],ai=xi

min
b2[u,bu]

max
c2[w, bw]

fi(a, b, c)

(19)

for all i 2 [1, n] via property 5 of the requirements of a valid
decomposition function �.

Since our application is essentially interested in the worst-
case scenario, we can use u and u moving forward, as these
represent the full capability of our controller. We also recall
that the reference trajectory xr(t) solves (2) for some ur(t)
and wr(t); such a trajectory can be attained by defining
wr(t) = µt(xr(t)), which lies within the high-probability
bounds attained previously. Finally, as our objective is to
track the reference trajectory, we want to know when we are
capable of doing so exactly. Thus, as is proposed in [20], we
define the embedding system dynamics as

ẋi =

(
di(x, x), xi(t) < xri(t)

min{di(x, x), ẋri(t)}, xi(t) � xri(t)
(20)

ẋi =

(
di(x, x), xi(t) > xri(t)

max{di(x, x), ẋri(t)}, xi(t)  xri(t)
(21)

where

di(x, x) = �i(x, u, �(x, x), x, u, �(x, x)), (22)
di(x, x) = �i(x, u, �(x, x), x, u, �(x, x)). (23)

The resulting hyperrectangular tube formed by [x(t), x(t)]
is a controlled invariant tube, that is, a tube that the system
is able to remain within given the limits of the controller.
Again, as we are using bounds on the disturbance that hold
with probability at least 1 � ⌘, this property holds with the
same probability.

We now characterize a class of safety assurance control
policies. At runtime, given current state x(t), any control
strategy that satisfies

u(x(t)) 2 argmin
u2[u,u]

max
w2[�,�]

hp(x(t)), f(x(t), u, w)i (24)

where

pi(x(t)) =

8
><

>:

1, xi(t) � xi(t)

�1, xi(t)  xi(t)

0, otherwise

guarantees forward invariance of [x(t), x(t)] with probability
at least 1� ⌘.

Moreover, if at some time it does not hold that
n̂

i=1

|xi(t)� xri(t)|  " ^ |xi(t)� xri(t)|  " (25)

for all t � 0, then an observation of the unknown disturbance
behavior g(x) is triggered at the time tr where

tr = min
t�0

|xi(t)� xri(t)| � " _ |xi(t)� xri(t)| � ", (26)

after which a new reference trajectory is generated and the
forward invariant tube is recalculated. The overall runtime
assurance mechanism is outlined in Algorithm 1.

Algorithm 1 Runtime Assurance Mechanism
1: Data: Embedding system (20)-(21), bounding functions

�, �, safety threshold "
2: tr  0
3: while In Operation do

4: if t � tr then

5: Generate Reference Trajectories xr, ẋr, ur which
solve (2) for wr 2 [�, �], xr(t) = x(t);

6: x, x  solutions to (20), (21), x(t) = x(t) =
x(t);

7: tr  (26);
8: Apply u satisfying (24);

This brings us to the main theoretical result of this work.

Theorem 1. Given reference trajectories xr(t), ẋr(t), ur(t)
that solve 2 for wr(t) = µt(xr(t)), applying the runtime
assurance mechanism outlined by Algorithm 1 guarantees
that no state in the system deviates from its reference
trajectory by more than " for all t > 0.

Proof. At the instant t = tr, the reference trajectory is
calculated with xr(t) = x(t) and the tube is initialized with
x(t) = x(t) = x(t). Thus, it must always hold that the next
tr > t given " > 0 and condition (26). Consequently, we
can say that t  tr for all t > 0 at runtime.

We then note that, per condition (26), it must hold that

[x(t), x(t)] ✓ [xr(t)� ", xr(t) + "]8ttr . (27)

Since t  tr for all t > 0 at runtime, then for all time t > 0,

[x(t), x(t)] ✓ [xr(t)� ", xr(t) + "]. (28)
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Fig. 1: The planar multirotor model has horizontal position y,
vertical position z, and roll angle ✓. The inputs are thrust u1

in the direction perpendicular to the line segment connecting
the rotors and roll angle acceleration u2. The modified five
dimensional state x consists of y, z, ✓, and the velocity in
the horizontal and vertical directions of the frame of the
multirotor h and v, so that x =

⇥
y h z v ✓

⇤T , which fulfills
Assumption 2.

Finally, per [20, Theorem 1], the hyperrectangular tube
defined by [x(t), x(t)] is forward invariant given a control
strategy that satisfies (24). ⌅

Thus, the outlined formulation solves Problem 1.

V. AERIAL VEHICLE CASE STUDY

We now apply the forward invariant tube and runtime as-
surance mechanism to an example of a multirotor system that
is constrained to moving within the vertical plane. The five-
dimensional state x of the planar multirotor system consists
of horizontal position y, vertical position z, roll angle ✓,
and the derivatives ẏ and ż, so that x =

⇥
y ẏ z ż ✓

⇤T . The
two inputs are thrust u1 acting at the center of mass in the
direction

⇥
� sin ✓ cos ✓

⇤T perpendicular to the line segment
connecting the rotors, and roll angular velocity u2.

We assume the system is subject to input constraints
[u, u] = [(�5,�5), (15, 5)] and gravitational acceleration
ag = 9.81m/s2, as well as an unknown force due to wind.
We assume this force affects acceleration in the horizontal
direction and is a function of altitude z. The resulting
dynamics with normalized mass and moment of inertia are

ÿ = �u1 sin ✓ + g(z)

z̈ = u1 cos ✓ � ag

✓̇ = u2

(29)

where g(z) constitutes the unknown wind force in the
horizontal direction.

Generally, a set of system dynamics where the same input
appears in multiple state update equations (as in (29)) does
not fulfill Assumption 2. Thus, we introduce state variables
v and h to denote the vertical and horizontal velocity of
the multirotor in its own frame. In effect, this is applying a
rotation based on ✓ to the original velocity dynamics ẏ and
ż. The transformed state-space dynamics take the form

ẏ = h cos ✓ � v sin ✓

ḣ = �ag sin ✓ + g(z) cos ✓

ż = h sin ✓ + v cos ✓

v̇ = u1 � ag cos ✓ � g(z) sin ✓

✓̇ = u2

(30)

which now fulfill Assumption 2. These dynamics are illus-
trated in Figure 1. The resulting decomposition function is

�(x, u, w, x, bu, bw) =
⇥
dy dh dz dv u2

⇤T (31)

dy = db1b2
✓

h
dcos(✓, ✓)

�
,


h

dcos(✓, ✓)

�◆

� db1b2
✓

v
dsin(✓, ✓)

�
,


v

dsin(✓, ✓)

�◆

dh = �agdsin(✓, ✓) + db1b2
✓

w
dcos(✓, ✓)

�
,


bw

dcos(✓, ✓)

�◆

dz = db1b2
✓

h
dsin(✓, ✓)

�
,


h

dsin(✓, ✓)

�◆

+ db1b2
✓

v
dcos(✓, ✓)

�
,


v

dcos(✓, ✓)

�◆

dv = u1 � agd
cos(✓, ✓)� db1b2

✓
bw

dsin(✓, ✓)

�
,


w

dsin(✓, ✓)

�◆

where, for b,bb 2 R2,

db1b2(b,bb) =
(
min{b1b2,bb1b2, b1bb2,bb1bb2}, if b � bb
max{b1b2,bb1b2, b1bb2,bb1bb2}, if bb � b,

and dsin, dcos take the forms

dsin(x, bx) := (32)8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

sin(x), if (cos(x), cos(bx)) ⌫ 0

and |x� bx|  ⇡

sin(bx), if (cos(x), cos(bx)) � 0

and |x� bx|  ⇡

sign(x� bx), if |x� bx| � 2⇡

sign(x� bx), if cos(x)  0  cos(bx)
and |x� bx|  2⇡

sign(x� bx), if cos(x) cos(bx) � 0

and ⇡  |x� bx|  2⇡

min{sin(x), sin(bx)}, if x  bx
and cos(x) � 0 � cos(bx)
and |x� bx|  2⇡

max{sin(x), sin(bx)}, if x � bx
and cos(x) � 0 � cos(bx)
and |x� bx|  2⇡,

dcos(x, bx) := dsin
✓
x+

⇡

2
, bx+

⇡

2

◆
. (33)

To generate a reference trajectory, we linearize the
system (30) around the equilibrium and then employ a
Linear-Quadratic Regulator (LQR) feedback controller with
parameters Q = diag([1000, 500, 20, 500, 1]) and R =
diag([20, 20]) to simulate a trajectory to the origin assuming
g behaves according to the current mean of the Gaussian
process estimation of the disturbance using a radial basis
kernel. The resulting state and input trajectories form the
reference trajectories xr, ẋr, ur that we use in calculating
the forward invariant tube.
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Fig. 2: The planar multirotor landing simulation. The multirotor attempts to make a safe landing by following the calculated
reference trajectory (top, black dashed), which is a solution to (2) assuming the wind behaves according to the current
estimated mean (bottom, blue dashed) based on the available observations (bottom, points) of the true wind behavior
(bottom, black, and top, arrows). Based on these observations and the limits of the propellers, it is possible to calculate a
forward invariant tube (top, red and blue) around the reference trajectory. This forward invariant tube assumes the worst-case
wind behavior which is calculated by the current confidence bounds (bottom, shaded) on the wind behavior. At the point
in the trajectory where the invariant tube deviates from the reference by a certain threshold, a recalculation of the reference
trajectory and invariant tube is triggered. As the multirotor descends and collects observations of the wind disturbance
behavior, the reference trajectory and invariant tube are continuously updated until the multirotor makes a safe landing.

We then designate a safe landing hyperrectangle Xland :=
[(�0.5,�0.1,�1,�0.1,�⇡/6), (�0.5, 0.1, 0, 0.1,⇡/6)] and
then calculate the forward invariant tube of the system
using the formulation outlined in Section IV and the current
estimated bounds on g.

We calculate the applied control action as u(x(t)) =
[u1(v(t)), u2(✓(t))]T where, for i = {1, 2},

ui(x(t)) = uri(t) (34)

+

(�x(t)�xr(t)
x(t)�xr(t)

�3
(uri(t)� ui), x(t) � xr(t)�xr(t)�x(t)

xr(t)�x(t)

�3
(ui � uri(t)), x(t)  xr(t)

which fulfills the condition (24). If there does not exist a
time t such that [x(t), x(t)] ✓ Xland, then we collect a
new observation of the disturbance when any edge of the
tube deviates from the reference trajectory more than the
safety threshold " = 0.3, and then recalculate the reference
trajectory and forward invariant tube. The simulation of the
system was executed in Simulink on a personal computer,
the results of which are outlined in Figure 2.

As shown, the quadcopter is initially unable to guarantee a
safe landing; the forward invariant tube quickly expands past
the allowed threshold, as it must account for the uncertainty

of the disturbance behavior when the reference trajectory
enters regions with few observations of the disturbance.
As the quadcopter descends, collecting observations and
updating the reference trajectory and forward invariant tube,
it is eventually able to achieve a safe landing. The calculation
of the reference trajectories and forward invariant tube takes
between 0.08–0.2 seconds, and a recalculation is triggered
every 0.75–2.0 seconds, showcasing the real-time capabilities
of the formulation.

VI. CONCLUSION

In this work, we have presented a formulation that lever-
ages the mixed monotonicity property of dynamical systems
that is able to calculate a forward invariant tube around
a desired reference trajectory. We use this formulation to
detect when the controller will be unable to adhere to the
reference trajectory within a desired threshold, and trigger
an observation of the unknown behavior and recalculation
of the reference trajectory and forward invariant tube. This
formulation guarantees that the system will remain within
the desired threshold of safety for all time. Finally, we
showcased a case study of a planar multirotor wherein the
system is able to achieve a safe landing.
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