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Abstract

We consider continuous-time systems subject to a priori unknown state-dependent disturbance inputs. Given a target goal
region, our first approach consists of a control scheme that avoids unsafe regions of the state space and observes the disturbance
behavior until the goal is reachable with high probability. We leverage collected observations and the mixed monotonicity
property of dynamical systems to efficiently obtain high-probability overapproximations of the system’s reachable sets. These
overapproximations improve as more observations are collected. For our second approach, we consider the problem of minimizing
cost while navigating towards the goal region and modify our previous formulation to allow for the estimated confidence
bounds on the disturbance to be adjusted based on what would reduce the overall cost. We explicitly consider the additional
cost incurred through exploration and develop a formulation wherein the amount of exploration performed can be directly
tuned. We show theoretical results confirming that this confidence bound modification strategy outperforms the previously
developed strategy on a simplified system. We demonstrate the first approach on an example of a motorboat navigating a
river, then showcase a Monte Carlo simulation comparison of both approaches on a planar multirotor navigating towards a
goal region through an unknown wind field.

Key words: analysis of systems with uncertainties; optimal controller synthesis for systems with uncertainties; robust
estimation.

1 Introduction

When the dynamics of a controlled system are not fully
known, a common approach is to apply control actions
to explore and observe the behavior of the system and
adjust the control strategy as new information is col-
lected. However, for systems with safety constraints that
restrict allowable regions of the state space, the process
of collecting observations must be designed to avoid un-
safe behavior. Additionally, if there exists a separate ob-
jective that must be fulfilled, a balance must be struck
between collecting observations of the unknown dynam-
ics and progressing towards the objective.

Often, the system must optimize for some cost while in
operation. For example, minimizing the magnitude of
the input signal or the amount of power consumed by
the system may be desirable. As collecting observations
of the unknown behavior generally increases this cost,
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a natural strategy is to collect the minimum number of
observations needed to guarantee safety and objective
fulfillment, then immediately drive the system to the
goal. However, as the disturbance signal is state-based,
it may be that unexplored areas of the state space would
have incurred a lower disturbance and a lower overall
cost. Consequently, a key challenge arises in determining
the optimal tradeoff between exploring the state space
and exploiting the current least-cost path to the goal.

As an example, consider a planar quadrotor operating
in an unknown wind field (see Figures 1-2), where the
quadrotor must fly to the goal area while minimizing en-
ergy usage. Given some observations of the wind field at
lower altitudes, it is possible to calculate a control strat-
egy that arrives at the goal with high probability. Since
the wind is observed to be blowing against the quadrotor
at this altitude, the overall cost (i.e. the energy usage)
is likely to be quite high. However, the wind at higher
altitudes is less strong, and even blowing in the direc-
tion of the goal. If the quadrotor were to discover this,
it could achieve lower energy usage. Exploring the wind-
field is, however, not without risk as the quadrotor needs
to spend energy to fly higher and collect these observa-
tions. Thus, the objective is to design a control scheme
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that quantifies the risk and expected reward of explo-
ration, and determines whether it is worth exploring to
collect more observations.

In this work, we consider systems in continuous-time
subject to state-dependent unknown components that
enter the dynamics nonlinearly. We leverage the mixed
monotonicity property of dynamical systems (see [11]
for an overview) and utilize previous results [9] to ob-
tain hyperrectangular overapproximations of the reach-
able sets of the system that hold with high probability.
These overapproximations are obtained by computing
a single trajectory of an appropriately constructed em-
bedding system that is an ordinary differential equation
with twice the dimension of the original system.

Comparing to existing approaches, we consider contin-
uous time systems with nonlinear disturbances and we
use reachability techniques that are computationally effi-
cient and scalable, as demonstrated on a multirotor case
study with six states. Moreover, this approach avoids ex-
cessive conservatism that often occurs when linearizing
the dynamics and outerbounding the linearization error
using the Lipschitz constant of the dynamics [1]. We also
explicitly consider the goal of reaching a target region of
the state-space while avoiding an unsafe region. We pose
our algorithm for safe exploration and goal reaching as
a continuous-time model predictive control problem.

We next formulate a control scheme that considers po-
tentially lower-cost trajectories, and provide an analy-
sis of a novel strategy for selecting when to pursue said
trajectories. Specifically, we allow the Model Predictive
Control (MPC) solver to directly adjust the probabilistic
bounds on the disturbance so that it can consider lower-
cost potential trajectories. We offer theoretical results
that show the advantages of this novel strategy on a sim-
plified system, and empirical results demonstrating per-
formance on a more complex system. Complete results
for general nonlinear systems are left as future work.

Parts of this work have previously appeared in confer-
ence proceedings [10], which focused on developing the
base MPC scheme outlined in Section 6. We expand
upon this work by providing a formal proof of the safety
of the MPC scheme as well as an additional case study.
Moreover, a major focus of the present work is to mod-
ify the control scheme to allow for speculation on lower-
cost trajectories, which was not considered in our prior
work, supported with a theoretical analysis and numer-
ical studies.

The rest of this paper is organized as follows: in Sec-
tion 2, we cover related work, before formally providing
useful notation in Section 3 and defining our problem in
Section 4. We then provide a brief overview of the tools
we use in Section 5, before detailing the resulting control
formulation in Section 6. We then outline the modifica-
tions made to enable speculation on lower-cost trajecto-

ries in Section 7, and perform an experimental analysis
of each in Section 8. We conclude the paper in Section 9.

2 Related Work

Our work is most closely related to [18], which presents
a discrete time MPC formulation that provides high
probability safety guarantees in the presence of uncer-
tain dynamics. The paper [18] also uses Gaussian Pro-
cesses (GPs) to estimate the unknown dynamics, and
then high probability ellipsoidal overapproximations of
reachable sets are computed by combining these estima-
tions with a linearization of the dynamics, where the er-
ror is bounded using Lipschitz constants. We draw from
the problem setup proposed in [18] and consider a non-
linear dynamical system whose dynamics are not fully
known. As in [18], we estimate the unknown component
using Gaussian Process (GP) regression. Exploration of
the state space is allowed so long as a feasible return tra-
jectory is available that returns the system to a known
safe set.

Similarly, [2] provides safety guarantees on reinforce-
ment learning for robotic applications by learning the
system’s unknown dynamics using GPs, then employ-
ing Hamilton-Jacobi-Isaacs (HJI) reachability analy-
sis to iteratively update the safety set of the system.
The authors in [5] also provide safety guarantees (de-
fined in terms of stability guarantees) on model-based
reinforcement learning using Lyapunov-based stabil-
ity verification. Additionally, [20] proposes an explo-
ration/exploitation reachability-based control frame-
work utilizing Bayesian meta-learning to learn the en-
tirety of the dynamical model, while [21] uses Lipschitz
interpolation to calculate reachable sets towards the
same end. Alternatively, [30] proposes a Bayesian MPC
algorithm wherein the model predictive controller op-
timizes directly on the parametric model derived from
collected samples to enable the exploration/exploitation
tradeoff, though safety constraints are not explicitly
considered.

The paper [7] presents an adaptive MPC framework un-
der state-dependent uncertainty. Safety is guaranteed
by approximating the graph of the uncertainty via en-
velopes defined by quadratic constraints. A set of con-
vex optimization problems is solved to guarantee robust
constraint satisfaction for all possible values of system
uncertainty. However, a key assumption of [7] is that
the uncertainty is additive and globally Lipschitz with a
known Lipschitz constant.

The work [5] presents a learning algorithm that explic-
itly considers safety defined in terms of Lyapunov sta-
bility guarantees, [13] proposes a general safety frame-
work based on Hamilton-Jacobi reachability methods,
[12,15,16] synthesize control barrier functions online to
guarantee safety, and [17] achieves safety by estimating
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the Lipschitz constant of the disturbance. Other works,
such as [3, 8, 27], explore learning and updating safety
sets in an online manner. For MPC-based approaches,
proposed frameworks are robust to uncertainty by, e.g.,
assuming a known Lipschitz constant [7], assuming the
uncertainty is parametric [19], or applying MPC to iter-
ative learning control [25].

In the realm of optimizing control strategies in the face
of uncertainty, [26] presents a gradient descent algorithm
that simultaneously learns and optimizes for the par-
tially unknown dynamics of a discrete-time system, [6]
derives a set of sampling point selection strategies that
result in data-efficient learning of an unknown Gaus-
sian Process system, and [29] leverages a Neural Control
Contraction Metric to ensure safety of a system while
exploring and observing state-dependent uncertainties.

In our previous work [9], we derive high probability
bounds on the unknown disturbance behavior by mod-
eling it as a GP. In turn, these bounds enable us to
calculate overapproximations of the reachable sets of
the system that hold with high probability. We then use
these reachable set overapproximations in an MPC for-
mulation to compute a control strategy that is safe with
high probability [10]. We accomplish this by requiring
that the reachable set overapproximations never inter-
sect the unsafe regions of the state space. This results in
a control strategy that is not only safe with high proba-
bility, but is also able to ensure fulfillment of objectives
with high probability.

Our approach differs from these existing works in several
key aspects. Specifically, we leverage mixed monotonic-
ity from nonlinear systems theory to calculate the high
probability reachable set overapproximations. This al-
lows us to work in continuous time, incorporate the un-
certainty nonlinearly, avoid excess conservatism that re-
sults from linearizing the dynamics and outerbounding
the linearization error, and provide tighter bounds than
outerbounding the uncertainty through Lipschitz con-
stants. Additionally, this enables our method to scale to
systems of higher dimension, something which has tra-
ditionally been a challenge for other reachability-based
techniques, though this is an active area of research as
shown in [14, 22] where warm-starting is employed to
speed up computation times in HJI-based methods.

The outlined strategy also bears a resemblance to tra-
ditional closed-loop MPC, but there are a few key dis-
tinctions. Chiefly, the computed strategy is still open-
loop. Adjusting the confidence bounds in the described
manner acts as a proxy to closing the loop around the
disturbance input, as it is implicit in this strategy that
an observation of the disturbance behavior will be col-
lected and the control actions will be recomputed at the
next time step. As a result, the strategy gains some of
the forward-looking benefits of closed-loop MPC while

avoiding the need for a computationally complex dy-
namic programming solution.

The main novelty of this work is that we explicitly con-
sider the tradeoff between safety and performance. Most
of the existing literature focuses on providing safety
guarantees during the learning process, assuming that
the system has enough time and resources to reach the
optimal policy. By contrast, we present a formulation
wherein the desired probability of safety is a tunable
parameter, allowing for the balance between safety and
performance, given limited time and resources, to be
fully customizable.

3 Notation

Let (x, y) denote the vector concatenation of x, y ∈ Rn,
i.e., (x, y) := [xT yT ]T ∈ R2n. Additionally, ⪯ denotes
the componentwise vector order, i.e., x ⪯ y if and only
if xi ≤ yi for all i ∈ {1, ..., n} where vector components
are indexed via subscript.

Given x, y ∈ Rn such that x ⪯ y, we denote the hyper-
rectangle defined by the endpoints x and y using the no-
tation [x, y] := {z ∈ Rn | x ⪯ z and z ⪯ y}. Also, given
a = (x, y) ∈ R2n with x ⪯ y, [[a]] denotes the hyperrect-
angle formed by the first and last n components of a,
i.e., [[a]] := [x, y]. Finally, let ⪯SE denote the southeast
order on R2n defined by (x, x′) ⪯SE (y, y′) if and only
if x ⪯ y and y′ ⪯ x′. In particular, observe that when
x ⪯ x′ and y ⪯ y′,

(x, x′) ⪯SE (y, y′) ⇐⇒ [y, y′] ⊆ [x, x′]. (1)

4 Problem Setup

We consider the continuous-time nonlinear dynamical
system

ẋ = f(x, u, w) (2)

with f continuously differentiable where x ∈ Rn is the
system state, u ∈ U ⊂ Rm is the input constrained to
take values in U , and w ∈ Rp is an unknown, state-
dependent component of the dynamics so that wi =
gi(x) where gi is unknown. Throughout, we assume the
input constraint set has the form U = [u, u] for some
u, u ∈ Rm, u ⪯ u, that is, U is a hyperrectangle defined
by corners u and u.

Given a feedback control strategy u = π(t, x), we denote
by ϕ(t, x0, π) the resulting true closed-loop state trajec-
tory of (2) when w = g(x) and the system is initialized
at x0 at time 0. If π is time-invariant, we write π(x) in-
stead. Additionally, given some X0 ⊆ Rn, the T -horizon
reachable set from X0 for (2) is the set of states reach-
able over the time horizon T from any initial condition
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Fig. 1. An illustrative example system that fits the prob-
lem setting. A planar multirotor must fly to the goal region
(green) while avoiding obstacles in midair (red). There is
also a wind force acting on the multirotor which varies based
on its location and is unknown a priori. Observations of this
force can be collected, and the objective is to guarantee a
safe path to the goal, potentially while minimizing the en-
ergy spent.

x0 ∈ X0 and is denoted

R(T,X0, π) = {ϕ(T, x0, π) | x0 ∈ X0}. (3)

Our objective is to steer the system to a goal region
with minimal cost while avoiding any unsafe regions. For
example, given a planar multirotor operating in a wind
field as in Figure 1, the objective is to avoid crashing
into the mid-air obstacles while trying to reach the other
end of the state space, while potentially minimizing the
amount of power used. We formalize this objective in the
following problems and assumption.

Problem 1. Consider a system as in (2) with speci-
fied initial condition x0 ∈ Xsafe and input constraints U .
Given a goal region Xgoal ⊂ Rn, the objective is to com-
pute a feedback control strategy u = π(t, x) that reaches
the goal while avoiding the unsafe region Xunsafe, i.e.,

∀t ≥ 0, ϕ(t, x0, π) ∈ (Xunsafe)
∁ (4)

∃T > 0 s.t. ϕ(T, x0, π) ∈ Xgoal. (5)

For this problem, we make the following assumption.

Assumption 1. There exists a known subset of the
state space Xunsafe ⊂ Rn that must be avoided. Addi-
tionally, there exists a known safe set Xsafe ⊂ Rn and
corresponding time-invariant safety controller πsafe with
πsafe(x) ∈ U for all x ∈ Rn such that, if the system is
initialized in Xsafe, it avoids Xunsafe, i.e.

ϕ(t, x0, πsafe) ∈ (Xunsafe)
∁ ∀t ≥ 0, ∀x0 ∈ Xsafe. (6)

In general, we are interested in scenarios in which Xgoal

does not intersect Xsafe so that we cannot achieve our
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Fig. 2. For systems in which there is a cost to be minimized
(i.e., energy consumption), such as the planar multirotor op-
erating in an unknown wind field shown above, the distur-
bance behavior in unexplored areas of the state space may
incur a lower overall cost. As shown, the system tries to
reach the goal region (green rectangle) while minimizing the
energy spent. The multirotor only has a few observations of
the wind around its starting location, thus considering the
worst-case behavior of the disturbance (Pessimism) results
in the red trajectory. However, allowing the multirotor to
adjust the estimated worst-case bounds (Optimism) allows
the multirotor to explore, resulting in the blue trajectory. In
this case, it is advantageous to be Optimistic, as the blue
trajectory is closer to the calculated optimal trajectory in
black. These trajectories were generated from an execution
of the second case study in Section 8.

objective by remaining within Xsafe. Thus, while the
safety controller πsafe achieves (4), it generally will not
achieve (5). Consequently, a separate control strategy
that can navigate the unknown disturbance behavior is
required to drive the system into the goal region.

Our proposed control approach is to incrementally make
progress towards the goal while learning the unknown
component of the dynamics and ensuring the system is
always able to safely return to Xsafe if needed, until it
can be guaranteed that the system can safely reach the
goal. The safe return and path to the goal are ensured
via a nonlinear MPC scheme that directly optimizes for
an open-loop control input strategy in both cases and
incorporates uncertainty from the unknown component
g(x) to produce probabilistically safe reachable sets of
the dynamics via the mixed monotonicity property of
dynamical systems. While moving towards the goal, the
system is able to collect information about its dynam-
ics and reduce the uncertainty in its estimate of g(x),
allowing it more freedom to safely explore.

We also consider that the system must often also opti-
mize for some cost J(x, u) (e.g. fuel consumption) while
in operation. Thus, a strategy must be developed to de-
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termine when exploration, which generally increases this
cost, is worth the potential long-term gains while fulfill-
ing the objective.

Problem 2. Consider a system as in (2) with specified
initial condition x0 and input constraints U . Given a
goal region Xgoal ⊂ Rn, the objective is to compute a
feedback control strategy u = π(t, x) that reaches the
goal with lower expected cost than the nominal strategy
that solves Problem 1.

This problem setup assumes that it is possible for explo-
ration to lower the incurred cost; thus, we only consider
scenarios in which the unknown disturbance behavior
has at least an indirect effect on the overall cost. Addi-
tionally, as we are only considering cost incurred, we no
longer assume the existence of unsafe sets in this prob-
lem, which also removes the need for a safety set.

An example of this setup can be found in Figure 2,
wherein a planar multirotor is attempting to fly to the
goal with minimal energy expenditure. The nominal
strategy that solves Problem 1 produces the red trajec-
tory, whereas the trajectory that would be optimal if
wind disturbance were exactly known is in black. The
objective of Problem 2 is, given current knowledge of
the disturbance behavior, to produce strategies akin to
the blue trajectory, which is closer to the optimal trajec-
tory than the nominal red trajectory. We return to this
planar multirotor system with a case study in Section 8.

5 High Probability Reachable Sets

In this section, we provide an overview of mixed mono-
tonicity and how it enables efficient calculation of reach-
able set overapproximations. We then illustrate how the
introduction of Gaussian Processes (GPs) leads to over-
approximations of reachable sets that hold with high
probability. In subsequent sections, we will use these
reachable sets to formulate our proposed solutions to
Problems 1 and 2.

5.1 Mixed Monotonicity

The system (2) is mixed monotone with respect to a de-
composition function δ if δ satisfies the following:

(1) For all x and all w, δ(x, u, w, x, w) = f(x, u, w);
(2) For all i, j ∈ {1, · · · , n}, i ̸= j, ∂δi∂xj

(x, u, w, x̂, ŵ) ≥
0 for all x, x̂, u, w, ŵ;

(3) For all i, j ∈ {1, · · · , n}, ∂δi
∂x̂j

(x, u, w, x̂, ŵ) ≤ 0 for

all x, x̂, u, w, ŵ;
(4) For all i ∈ {1, · · · , n} and all k ∈ {1, · · · , p},

∂δi
∂wk

(x, u, w, x̂, ŵ) ≥ 0 and ∂δi
∂ŵk

(x, u, w, x̂, ŵ) ≤ 0

for all x, x̂, u, w, ŵ.

For any system (2), it is known that there always exists
a decomposition function δ satisfying the above condi-
tions, although onemay not be readily available in closed
form [1]. In general, finding a decomposition function,
especially one that produces tight overapproximations,
is problem-specific, although automated techniques ex-
ist for computing some classes of decomposition func-
tions. In the case studies of Section 8, we demonstrate
how a decomposition function is obtained in closed form
for particular systems.

From a decomposition function, we then construct an
embedding system with state (x, x̂) ∈ Rn × Rn, input
u ∈ Rm, and disturbance (w, ŵ) ∈ Rp × Rp as

[
ẋ

˙̂x

]
= ε(x, u, w, x̂, ŵ) :=

[
δ(x, u, w, x̂, ŵ)

δ(x̂, u, ŵ, x, w)

]
. (7)

Denote the state of (7) at time t when initialized at
(x0, x0) under some input signal u : [0,∞) → Rm,
and disturbance signal (w, ŵ) : [0,∞) → Rp × Rp
by Φε(t; (x0, x0), u, (w, ŵ)). The fundamental result
of mixed monotone systems theory is that (7) is a
monotone control system as defined in [4] with re-
spect to the southeast order on state and disturbance;
that is, given a, a′ ∈ Rn × Rn, b : [0,∞) → Rm and
c, c′ : [0,∞) → Rp × Rp such that a ⪯SE a′ and
c(t) ⪯SE c

′(t) for all t ≥ 0, then for all t ≥ 0,

Φε(t; a, b, c) ⪯SE Φε(t; a′, b, c′). (8)

An important implication of this result is that, pro-
vided that the system is initialized within X0 ⊆
[x0, x0], and the disturbance signal is overapproxi-
mated by [w, ŵ], then the hyperrectangle defined by
[[Φε(t; (x0, x0), u, (w, ŵ))]] overapproximates the true
reachable set of (2), i.e.

R(T,X0, u) ⊆R̂(T,X0, u) := (9)

[[Φε(T ; (x0, x0), u, (w, ŵ))]].

5.2 Gaussian Processes and High Probability Reachable
Sets

If there exist known bounding functions γ
i
(x, x̂) and

γi(x, x̂), γi, γi : R
n×Rn 7→ R, for all i ∈ {1, . . . , p} such

that

γ
i
(x, x) ≤ gi(x) ≤ γi(x, x) ∀x ∈ [x, x] (10)

for all x, x ∈ Rn with x ⪯ x, then these functions can be
inserted into the previously described embedding system
to produce valid reachable set overapproximations. This
is achieved by taking the embedding system (7) and in-
serting γ(x, x̂), γ(x, x̂) in place of w, ŵ to produce a new
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embedding system as follows:

[
ẋ

˙̂x

]
= e(x, x̂, u) :=

[
δ(x, u, γ(x, x̂), x̂, γ(x, x̂))

δ(x̂, u, γ(x, x̂), x, γ(x, x̂))

]
. (11)

Modeling the unknown functions gi(x) as GPs enables
us to formulate bounding functions that fulfill (10) with
probability 1 − η, η ∈ (0, 1]. Given noisy observations
{yj}tj=1 of the GP at corresponding points {xj}tj=1, the
surrogate functions of interest to approximate gi are

∀i ∈ {1, · · · , p}

{
g
(t)
i (x) := µt(x) +

√
βtσt(x)

g(t)
i
(x) := µt(x)−

√
βtσt(x)

(12)

where βt is defined as in [9, Theorem 7] to meet the
probability constraint 1− η, µt(·) is the posterior mean,
and σt(·) is the posterior variance, computed according
to the standard GP updates [24]:

µt(x) := kt(x)
T (Kt + σ2I)−1y (13)

kt(x, x
′) := k(x, x′)− kt(x)T (Kt + σ2I)−1kt(x

′) (14)

σ2
t (x) := kt(x, x) (15)

where kt(x) := (k(x1, x), · · · , k(xt, x)) and Kt =
[kt(xi, xj)]. We make the mild technical assumption [28]
that the states x are confined to a compact subset
D ⊂ Rn included in a hypercube of edge size r, and that
there exist constants a, b > 0 such that

∀i ∈ {1, · · · , n}∀j ∈ {1, · · · , p}

Pr

(
sup
x∈D

∣∣∣∣∂gj∂xi

∣∣∣∣ > L

)
≤ ae−L

2/b2 . (16)

Then, by adapting the proof of [28, Theorem 2], we pick
η ∈ (0, 1) and set

βt := 2 log

(
pt2π2

3η

)
+ 2n log

(
t2nbr

√
log

(
2pna

η

))
.

(17)

At every step t of the GP update, define a uniform dis-
cretization Dt of the hypercube containing D with size

τnt where τt := nt2br

√
log
(

2npa
η

)
. For every x ∈ D, de-

fine

x(t,−) := sup{y ∈ Dt | y ⪯ x}, (18)

x(t,+) := inf{y ∈ Dt | x ⪯ y}. (19)

Finally, for all i ∈ {1, · · · , p} and all t ≥ 1, we define
∀x ⪯ x,

γ(t)
i
(x, x) := min

x∈[x(t,−),x(t,+)]∩Dt

g(t)
i
(x)− 1

t2
, (20)

γ
(t)
i (x, x) := max

x∈[x(t,−),x(t,+)]∩Dt

g
(t)
i (x) +

1

t2
. (21)

These functions fulfill (10) for all x, x with probability
at least 1− η, and thus given Φe(T ; (x0, x0), u), which is
the resulting state trajectory of (11), it holds that

P (R(T,X0, u) ⊆R̂(T,X0, u) := (22)

[[Φe(T ; (x0, x0), u)]]) ≥ 1− η.

In other words, the hyperrectangular sets calculated by
the embedding system (11) using these functions over-
approximate the true reachable set of the system with
probability at least 1− η.

6 A Safe Control Algorithm

We now outline our first main contribution in develop-
ing a control scheme that is safe with high probability by
leveraging the mixed monotonicity property of dynami-
cal systems to calculate high-probability reachable sets.
We insert these reachable sets into an MPC formulation,
which allows for the controller to tune the amount of ex-
ploration outside the safe set while ensuring a feasible re-
turn to the safe set through the terminal set constraint.
Thus, we obtain a formulation that solves for a control
strategy that always has a path back to safety. We first
prove that this formulation indeed satisfies Problem 1.
While safe, this strategy is conservative and might incur
high cost, as elaborated below. We therefore consider
this nominal safe strategy to be a pessimistic solution to
Problem 2. In subsequent sections, we modify this for-
mulation to form the proposed optimistic strategy.

To create a numerically tractable algorithm, we consider
sampled control inputs with control update timestep h
such that at each step k = t/h, the resulting sampled
embedding system dynamics are[

x[k + 1]

x̂[k + 1]

]
= Φe(h; (x[k], x̂[k]), πk) (23)

where πk is the controller applied from time kh to (k +
1)h, and the disturbance bound functions γ, γ are re-
solved by sampling over the state hyperrectangle and
taking the relevant min or max. Below, we assume πk is
a zero-order hold policy so that πk(t, x) ≡ uk for some
uk ∈ U to be designed by an MPC scheme. Thus, tak-

ing R̂k = [x[k], x̂[k]] overapproximates the reachable set
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of (2) at time t = kh with high probability (i.e. with
probability at least 1− η).

We then use these overapproximations and formulate
the following MPC scheme that satisfies the safety con-
dition (4):

minimize
Π={u0,...,uD}

Jk,obj(R̂0, ..., R̂D) (24)

subject to:

(23), x[0] = x̂[0] given, ud ∈ U ∀d ∈ {0, . . . , D − 1}
R̂d = [x[d], x̂[d]], R̂D ⊂ Xobj ∀d ∈ {0, . . . , D}
[x(t), x̂(t)] ⊂ (Xunsafe)

∁ ∀t ∈ [0, T ]

where obj ∈ {goal, safe}.

The control strategy incorporating the above MPC
scheme is outlined in Algorithm 1. This strategy opti-
mizes for desired behavior based on the cost functions
Jk,goal and Jk,safe that are designed to prioritize goal-
reaching and exploration, respectively. If (24) is feasible
when obj = goal, then Π contains control inputs for
each timestep that altogether are guaranteed with high
probability to drive the system into Xgoal while avoiding
Xunsafe. Thus, the entire resulting control strategy Π is
executed immediately and the algorithm terminates.

Otherwise, the algorithm attempts to solve (24) with
obj = safe. If this MPC problem is feasible, Π contains a
set of control inputs that explores the state space while
guaranteeing with high probability that the system will
avoid Xunsafe and return to Xsafe. Thus, the algorithm
saves the entire strategy as Πk. If the problem is not fea-
sible, the algorithm copies the unexecuted actions from
the previous saved strategy Πk−1 and appends the safety
action πsafe. The previously saved strategy Πk−1 must
either end in Xsafe or be the result of applying πsafe for
all time after starting in Xsafe, thus Πk is guaranteed to
be safe with high probability. The algorithm then exe-
cutes the first action saved in Πk, and restarts at trying
to solve (24) with obj = goal.

The system may be initially unable to reach the goal, as
high uncertainty on the bounds of the unknown behavior

may prevent the final reachable set R̂K from being con-
tained in Xgoal. However, as observations are collected
and the bounds γ, γ tighten, the reachable set overap-
proximations also tighten, allowing for finer control over
the system and thus allowing for exploration further out-
side of Xsafe or enabling the system to reach Xgoal.

Finally, we note that as we are discretizing a continuous-
time system, it is possible for the system to enter Xunsafe

between timesteps, and thus violate the safety condition
requiring [x(t), x̂(t)] ⊂ (Xunsafe)

∁ for all t ∈ [0, T ] in
(24). Thus, in practice, we also check this condition at
a large number of time instances between the sampling

times. Moving forward, we assume sufficient sampling
to prevent violation between timesteps, and we note the
number of instances sampled where relevant.

Algorithm 1 Resulting Control Scheme

1: Data: Safety controller πsafe, embedding system
(11) sampled as (23), bounding functions γ, γ

2: Π0 ← {πsafe, ..., πsafe};
3: for k = 0, 1, ... do
4: (feasible,Π)← solve MPC (24), obj = goal;
5: if feasible then
6: apply u = Π to system;
7: break;

8: (feasible,Π)← solve MPC (24), obj = safe;
9: if feasible then

10: Πk ← Π;
11: else
12: Πk ← {Πk−1,1:D−1, πsafe};
13: xk+1 ← apply u(t) = Πk,0(x(t)) to (2) until t =

(k + 1)h;
14: collect observation and update γ, γ

We then have the following guarantee of safety for all
timesteps, even if the MPC problems are infeasible.

Theorem 1. Given a system (2) under the assumptions
made in Problem 1 with x0 ∈ Xsafe, the control strategy
resulting from Algorithm 1 is safe with probability at
least 1− η.

The proof of this theorem is built on the following Lem-
mas.

Lemma 1. Given a system (2) under the assumptions
made in Problem 1 at timestep k = 0 with x0 ∈ Xsafe,
the control strategy resulting from Algorithm 1 is safe
with probability at least 1− η.

PROOF. Given the constraints of the MPC problem,
the produced reachable sets [x(t), x̂(t)] do not intersect
any portion of Xunsafe. As these reachable sets hold with
probability at least 1 − η per (22), it follows that the
overall strategy Π that produces these reachable sets is
safe with probability at least 1− η.

Thus, if theMPCproblem (24) is feasible for either obj =
safe or obj = goal, the resulting strategy is safe with
probability at least 1− η.

If the MPC problem is infeasible in both cases, Algo-
rithm 1 produces a control strategy that only consists of
applying πsafe. As the system is initialized in Xsafe, this
guarantees the system’s safety per the problem setup. ■

Lemma 2. Given a system (2) under the assumptions
made in Problem 1, and a control strategy computed
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by Algorithm 1 in the previous timestep k − 1 which is
safe with probability at least 1− η, the control strategy
resulting from Algorithm 1 at timestep k is safe with
probability at least 1− η.

PROOF. Again, if the MPC problem (24) is feasible
for either obj = safe or obj = goal, the resulting strategy
is safe with probability at least 1− η.

If the MPC problem is infeasible in both cases, Algo-
rithm 1 produces a control strategy that appends πsafe
to the strategy computed in the previous timestep.

We then consider the potential origins of the previous
strategy. If the previous strategy was originally com-
puted by solving (24) with obj = safe, by the constraints
of the MPC problem, applying this strategy results in
the system avoiding Xunsafe and ending in Xsafe with
probability at least 1 − η. Thus, appending πsafe to the
end of this strategy preserves this safety via the prob-
lem setup. It is not possible for the previous strategy
to have resulted from solving (24) with obj = goal, as
Algorithm 1 immediately executes the entire strategy if
that problem is feasible.

If the previous strategy is a result of the MPC prob-
lem being infeasible in both cases, then that previous
strategy will have, at some point, entered Xsafe and then
started only executing πsafe. Thus, appending πsafe to
this strategy preserves safety via the problem setup. ■

With the previous Lemmas now proven, we now formally
prove Theorem 1.

PROOF. Proof of Theorem 1: At timestep k = 0, the
control strategy produced by Algorithm 1 is safe with
probability at least 1−η via Lemma 1, and must be safe
with probability at least 1− η for every timestep after-
ward via Lemma 2. Thus, the control strategy produced
by Algorithm 1 is safe for all timesteps with probability
at least 1− η. ■

Thus, this control scheme solves Problem 1. We empha-
size that the key features of Algorithm 2 that make it
computationally tractable and always safe are: 1) the se-
quential solving of a goal-reaching strategy and, failing
that, a safe strategy; 2) the persistent safety property
that there always exists a known safe control action from
the previous step that can be executed next if needed; 3)
the efficient computation of high probability reachable
sets using mixed monotone systems theory.

7 An Optimistic Control Algorithm

Our second main contribution is to modify the control
scheme outlined in the previous section with the goal
of solving Problem 2. The key insight is that the val-
ues of β are typically fixed to guarantee the probability
of bounding the disturbance behavior defined by 1− η.
As outlined in Section 6, this allows for safety guaran-
tees that hold with high probability. However, these high
probability guarantees often result in conservative con-
trol actions that leads to suboptimal cost minimization.

Thus, adjusting these bounds allows us to calculate al-
ternative trajectories that hold with lower probability.
In other words, we allow the system more freedom to
explore cost-minimizing paths by reducing the required
amount of conservatism in estimating the disturbance
behavior.

We modify the embedding system to accept the desired
level of confidence as an input, resulting in

[
ẋ

˙̂x

]
= e(x, x̂, u, β, β) :=

δ(x, u, γβ(x, x̂), x̂, γβ(x, x̂))
δ(x̂, u, γβ(x, x̂), x, γβ(x, x̂))

 (25)

where γ
β
and γβ represent the bounding functions (20)

and (21) with their values of βt set to β and β, respec-
tively.

We then sample this new embedding system with
timestep h such that at each step k = t/h,

[
x[k + 1]

x̂[k + 1]

]
= Φe(h; (x[k], x̂[k]), πk, β, β), (26)

where πk is again the zero-order hold controller applied
from time kh to (k+1)h. Below, we assume πk is a con-
stant policy πk(t, x) ≡ uk for some uk ∈ U to be designed

by an MPC scheme. Thus, taking R̂k = [x[k], x̂[k]] over-
approximates the reachable set of (2) at time t = kh
with high probability. These discretized reachable sets
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are then included in the MPC as follows:

minimize
Π,β,β

Jk(R̂,Π) (27)

subject to:

(26), x[0] = x̂[0] given, ud ∈ U ∀d ∈ {0, . . . , D − 1}
R̂d = [x[d], x̂[d]] ∀d ∈ {0, . . . , D}
R̂D ⊂ Xobj

β, β ∈ [βMIN, βMAX],

P (γ
β
⪯ g(x) ⪯ γβ) ≥ 1− ηo

where Xobj is the goal hyperrectangle, and Jk,obj is the
desired cost function. The value of βMAX is the value
of
√
βt where βt is defined as in [9, Theorem 7], which

results in bounding functions that encapsulate the dis-
turbance behavior with probability at least 1− η, where
η represents the same value as in Section 6. The value
of βMIN where βMIN ∈ [0, βMAX] is a user-defined value.
Additionally, 1 − ηo where 1 − ηo ∈ [0, 1 − η] is a user-
defined value that determines the minimum probability
desired for the bounds to encapsulate the disturbance
behavior. This chance constraint is imposed by convert-
ing the chosen β, β using the associated z-score to the
resulting probability value based on the Gaussian distri-
bution. Thus, when this problem is feasible, it produces
the lowest-cost set of inputs that is guaranteed to drive
the system into the objective with probability at least
1− ηo.

We then note that the nominal strategy of fixing β, β =
βMIN = βMAX recovers the control strategy that solves
Problem 1. While this solution provides feasible trajec-
tories, it effectively assumes the worst-case disturbance
behavior and as a result may be overly conservative and
thus incur more cost than is necessary. Thus, moving for-
ward we refer to this strategy as Pessimistic. This strat-
egy is outlined in Algorithm 2.

Algorithm 2 Pessimistic Control Strategy

1: Data: Embedding system (25) sampled as (26),
bounding functions γ

β
, γβ

2: for k = 0, 1, ... do
3: (Π, β, β)← solve MPC (27), βMIN = βMAX;
4: Πk ← Π;
5: xk+1 ← apply u(t) = Πk,0(x(t)) to (2) until t =

(k + 1)h;
6: collect observation and update γ

β
, γβ

Our proposed strategy is to allow the MPC to modify
the bounds by setting βMIN = 0 and selecting a prob-
ability ηo such that 1 − ηo ≤ 1 − η, thereby expanding
the search space of feasible trajectories available to the
solver. While allowing the calculated bounds to shrink
means that the resulting bounds have a lower probabil-
ity of encapsulating the disturbance, the resulting explo-

ration and new observations allow the system to take ad-
vantage of the disturbance behavior in areas that further
decrease the cost incurred. Selecting 1−ηo > 0 addition-
ally preserves some of the robustness of Pessimism, by
accounting for the fact that new observations are going
to be collected and allowing the MPC scheme to “look
ahead” despite being open-loop. As the trajectories pro-
duced are essentially speculation, we refer to this strat-
egy moving forward as Optimistic. This strategy is out-
lined in Algorithm 3.

Algorithm 3 Optimistic Control Strategy

1: Data: Embedding system (25) sampled as (26),
bounding functions γ

β
, γβ

2: for k = 0, 1, ... do
3: (Π, β, β)← solve MPC (27), βMIN = 0;
4: Πk ← Π;
5: xk+1 ← apply u(t) = Πk,0(x(t)) to (2) until t =

(k + 1)h;
6: collect observation and update γ

β
, γβ

An example of the different trajectories produced by
each strategy is shown in Figure 2 for the planar multiro-
tor system described in Section 8. The system has a few
observations of the disturbance in the range Z ∈ [0, 4].
The red (Pessimistic) trajectory assumes worst-case
bounds and thus prioritizes exploitation of the known
disturbance behavior, while the blue (Optimistic) tra-
jectory assumes tighter confidence bounds, though they
may not correctly encapsulate the disturbance behav-
ior. Solving the optimal control problem for the true
disturbance behavior results in the black trajectory.

In the next sections, we provide a proof that the Opti-
mistic strategy incurs lower expected cost than the Pes-
simistic strategy for a simplified system, as well as em-
pirical results showing the same on a higher-dimensional
quadrotor system.

7.1 Theoretical Results from a Simplified Setting

The above algorithm applies to general nonlinear sys-
tems in continuous-time and, as we demonstrate in the
following sections, its benefits are supported empirically.
However, its generality prevents provable guarantees. In
this subsection, we explore a simplified setting under
which theoretical guarantees are available. These results
provide a degree of justification to the empirical suc-
cesses that follow in Section 8.

Consider the discrete-time system

x[k + 1] = x[k] + u[k] + w (28)

with state x, input u, and disturbancew = g(x) for some
unknown function g(x), from which observations can be
drawn. We task the controller with driving the system
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into a goal region XG ∈ [xG, xG] within two timesteps
while minimizing the total input used, i.e. we want to
solve

minimize
u[0],u[1]

|u[0]|+ |u[1]| (29)

subject to:

(28), x[0] given,

x[1] ∈ XG || x[2] ∈ XG.

At k ∈ {0, 1}, we assume that we can noiselessly observe
g(x[k]). Following the approach of Sections 6-7, we form
the associated embedding system of (28) and insert the
appropriate confidence bounds on g(x), resulting in

[
x[k + 1]

x̂[k + 1]

]
=

x[k] + u[k] + γ
β
(x[k], x̂[k])

x̂[k] + u[k] + γβ(x[k], x̂[k])

 (30)

Thus, as a proxy to (29), we solve

minimize
u[0],u[1],β,β

|u[0]|+ |u[1]| (31)

subject to:

(30), x[0] = x̂[0] given,

[x[1], x̂[1]] ⊆ XG or [x[2], x̂[2]] ⊆ XG

β, β ∈ [βMIN, βMAX].

Note that, in this case, we impose no minimum proba-
bility requirement; as there are only two timesteps, the
advantage of “looking ahead” is minimal.

Theorem 2. Given the optimization problem (29), the
Pessimistic strategy of solving (31) with β = β = βMAX

incurs greater expected cost than the Optimistic strat-
egy of solving (31) allowing β, β ∈ [0, βMAX].

PROOF. We note that for this system, as we impose
no minimum probability requirement, an option that
is always available to the Optimistic strategy is to set
β = β = 0, effectively modeling the disturbance directly
by the mean of the GP produced by the available obser-
vations. Moving forward, we assume that the Optimistic
strategy always exercises this option, as any trajectory
that is feasible for the Optimistic strategy when β, β ̸= 0

is also feasible when β = β = 0. Generally speaking, it
is safe to assume that the Optimistic strategy reduces
the bounds to the minimum probability requirement, as
there is never a disadvantage in doing so.

Denote by ujO[k], u
j
P [k] the control input proposed by

the Optimistic and Pessimistic strategies, respectively,
for timestep k calculated at timestep j, and denote by
uO[k], uP [k] the actual inputs applied by each strategy

at timestep k. Similarly, we utilize xj{O,P}[k], x̂
j
{O,P}[k]

to denote the proposed reachable set hyperrectangle
endpoints calculated by each strategy at timestep j for
timestep k, and x{O,P}[k] to denote the actual state
encountered by each strategy at timestep k. Finally, we
utilize Jj{O,P} to denote the cost of the proposed con-

trol actions of each strategy calculated at timestep j,
and J{O,P} to denote the actual incurred cost of each
strategy.

First, we note that, given a feasible Pessimistic strategy
u0P [0], u

0
P [1] with resulting reachable set approximations

[x0P [1], x̂
0
P [1]], [x

0
P [2], x̂

0
P [2]], it must hold that

(|u0P [0]|+ |u0P [1]|)− (|u0O[0]|+ |u0O[1]|) (32)

≥max {σ(x0P [1])βMAX, u
0
P [1]},

or, equivalently,

J0
P − J0

O ≥ max {σ(x0P [1])βMAX, |u0P [1]|} (33)

as the Optimistic strategy can simply take the feasible
control actions chosen by the Pessimistic strategy, and
trim the excess input proposed by that strategy needed
to overcome the uncertainty that Pessimism works with.
For example, if µ(x0P [1]) is such that

x0P [1] + µ(x0P [1]) ≤ xG, (34)

the Pessimistic strategy proposes

u0P [1] = xG− (x0P [1] +µ(x0P [1])− σ(x0P [1])βMAX) (35)

while the Optimistic strategy may propose

u0O[1] = xG − (x0P [1] + µ(x0P [1])). (36)

We then note that, per the problem setup, it holds that

u1{O,P}[1] = u{O,P}[1] (37)

as at timestep k = 1, the strategies have perfect knowl-
edge of g(x) at their current state and thus knows ex-
actly the value of u[1] needed to arrive at the goal. Simi-
larly, as the strategies have perfect knowledge of g(x[0])
at timestep k = 0, it holds that

x0{O,P}[1] = x{O,P}[1] (38)

Thus, the actual incurred cost of any given strategy is
equivalent to

J{O,P} = |u0{O,P}[0]|+ |u
1
{O,P}[1]|. (39)
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We then note that, as the Optimistic strategy estimates
the disturbance using µ(x) only, it holds that

E(u0O[1]− u1O[1]) = 0 (40)

which consequently means that

E(JO) = J0
O ≤ J0

P −max {σ(x0P [1])βMAX, |u0P [1]|}
(41)

Finally, we note that the Pessimistic strategy has a limit
to how much it can improve upon observing g(xP [1])
if it has correctly bounded the disturbance behavior
(i.e. g(xP [1]) ∈ [µ(xP [1]) − σ(x0P [1])βMAX, µ(xP [1]) +
σ(x0P [1])βMAX]), which is E(|u0P [1]| − |u1P [1]|) ≤
max {σ(x0P [1])βMAX, |u0P [1]|}. If the Pessimistic strat-
egy has incorrectly bounded the disturbance behavior,
then E(|u0P [1]| − |u1P [1]|) = 0, as the Pessimistic bounds
are formulated by taking the same deviation from the
mean towards either side.

Thus, for the Pessimistic strategy,

E(|u0P [1]| − |u1P [1]|) ≤ max {σ(x0P [1])βMAX, |u0P [1]|}.
(42)

As a result,

E(JP ) ≥ J0
P −max {σ(x0P [1])βMAX, |u0P [1]|}. (43)

Combining (41) and (43) gives

E(JO) ≤ E(JP ). (44)

■

Thus, theOptimistic Strategy outlined solves Problem 2.

While this theoretical result is only proven for the sys-
tem (28), in the next section we provide empirical results
that show that the Optimistic strategy outperforms Pes-
simism on a higher-dimensional system, suggesting that
this result is applicable to general systems.

8 Case Study Results

In this section we provide two case studies. In the first
case study, we demonstrate the safety and goal-reaching
capabilities of Algorithm 1 on a motorboat crossing a
river. Additional examples are presented in [10], where
we demonstrate this algorithm on a planar multirotor
in a wind field and an autonomous vehicle on an icy
road. In the second case study, we return to the pla-
nar multirotor operating in a wind field and perform a

Monte Carlo simulation comparing the Optimistic and
Pessimistic strategies outlined in Section 6. 1

8.1 Boat on a River: A Demonstration of Algorithm 1

We consider a case study of a motorboat crossing a river
where the exact flow behavior of the river is unknown.
The position of the boat is (x, y), the forward velocity of
the boat as v, the yaw angle as ψ. There exist two inputs:
thrust produced by the motor u1 and rudder position
u2. The resulting dynamics (adapted from [23]) are

v̇ = −v + u1

ψ̇ = 0.15vu2
ẋ = v cosψ + gx(x)

ẏ = −v sinψ − fy + gy(y)

(45)

where fy is the known average flow of the river in the
negative y direction and gx and gy denote the disturbed
flow of the river in the x and y directions, respectively.

The associated decomposition function takes the form

δ(x, u, w, x̂, ŵ) =
[
dv dψ dx dy

]T
(46)

dv = −v + u1

dψ =

{
0.15min {vu2, v̂u2}, v̂ ≥ v
0.15max {vu2, v̂u2}, v̂ ≤ v

dx = db1b2
([

v

dcos(ψ, ψ̂)

]
,

[
v̂

dcos(ψ̂, ψ)

])
+ wx

dy = −db1b2
([

v̂

dsin(ψ̂, ψ)

]
,

[
v

dsin(ψ, ψ̂)

])
− fy + wy

where db1b2 is defined as

db1b2(b, b̂) =

{
min{b1b2, b̂1b2, b1b̂2, b̂1b̂2}, if b ⪯ b̂
max{b1b2, b̂1b2, b1b̂2, b̂1b̂2}, if b̂ ⪯ b.

(47)
and dsin, dcos are the known tight decomposition func-
tions for sin and cos, respectively (see [9, Equations 74–
75]).

We define the safety set Xsafe as the hyperrectangle of
states [(−5000,−6π,−2,−5), (5000, 6π, 1, 15)] and task
the boat with crossing the river, i.e., reaching the goal set
[(−5000,−6π, 9,−5), (5000, 6π, 1, 12)]. We also want the
system to avoid several rocks that exist within the river,

1 A code repository for reproducing each of these case stud-
ies is available at https://github.com/gtfactslab/Cao_
OptimisticControl.
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Fig. 3. Execution of the river motorboat case study. The ar-
rows denote the river flow acting on the system. Addition-
ally, the set of states where x < −2 and x > 12 are consid-
ered part of Xunsafe.

denoted by the red dashed hyperrectangles in Figure 3,
as well as the riverbank, which we denote by the sets
of states where x < −2 and x > 12. We check that
five intermediate reachable sets between each timestep
satisfy [x(t), x̂(t)] ⊂ (Xunsafe)

∁, and solve (24) for D = 5
timesteps.

Our cost functions for each MPC scheme are as follows.
We define our cost function for reaching the goal as

Jk,goal(R̂0, ..., R̂D) =

D∑
d=0

||Cd − Cgoal||2 (48)

whereCd andCgoal denote the center points of the reach-
able and goal hyperrectangles, respectively, and we de-
fine our cost function for exploration as

Jk,safe(R̂0, ..., R̂D) = (49)

−
D∑
d=0

(
σx(xd)− ||xd − xgoal||e−σx(xd)

)

− 0.5

D∑
d=0

(
σy(yd)− ||yd − ygoal||e−σy(yd)

)

where xd, xgoal, yd, ygoal denote the x and y center points
of the reachable and goal hyperrectangles, and σx, σy de-
note the current estimated standard deviation of gx, gy.
This makes the MPC solver prioritize information gain,
similarly to the case study in [18], while biasing it toward
states that bring the system closer to the goal. Multiply-
ing the bias terms by e−σ allows the bias to be overcome
if the expected information gain is high enough, and the
exponential function is specifically chosen to mirror the
structure of the GP radial basis kernel.

As shown in Figure 3, the system is initially unable to
find a feasible control strategy that drives the boat to the
goal while avoiding the unsafe areas. Thus, it reverts to
exploring the river in order to gather observations of the
river flow behavior (first, second, and third plots). After
sufficient exploration, the system is able to find a feasible
strategy that ends in the goal region (fourth plot), at
which point the algorithm executes that strategy and
terminates. Thus, at all times, the boat either has a safe
path back to the side of the river it started on, or a safe
path to the other side.

For additional demonstrations involving an autonomous
vehicle navigating an icy road and a planar multirotor
in a wind field, see [10].

8.2 Comparing Optimism and Pessimism

We turn to the case study outlined in Section 1 of a
planar quadrotor flying in an unknown wind field. In
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this system, the horizontal and vertical position of the
multirotor are denoted y and z, and the roll angle is
denoted θ. There are also two inputs: thrust u1 acting at

the center of mass in the direction
[
− sin θ cos θ

]T
, and

the roll angular velocity u2. Thus, the resulting dynamics
with normalized mass and moment of inertia are

ÿ = −u1 sin θ + g1(z)

z̈ = u1 cos θ − ag + g2(z)

θ̇ = u2

(50)

where g1 and g2 constitute the unknown wind forces in
the horizontal and vertical directions, respectively. For
this case study, we note that both functions g1 and g2
are only dependent on z; this is a deliberate choice to
illustrate the risk/reward tradeoff, as flying to different
altitudes will naturally incur more cost in the short term
with the hope of reducing cost in the long term.

The associated decomposition function takes the form

δ(x, u, w, x̂, ŵ) =
[
vy d

vy vz d
vz ω u2

]T
(51)

dvy = −db1b2
([

u1

dsin(θ̂, θ)

]
,

[
u1

dsin(θ, θ̂)

])
+ w1

dvz = db1b2
([

u1

dcos(θ, θ̂)

]
,

[
u1

dcos(θ̂, θ)

])
− ag + w2

where db1b2 , dsin, and dcos are defined as before. Thus,
with this decomposition function we can craft our associ-
ated embedding system and MPC schemes accordingly.

We task the quadrotor with travelling to a known ob-
jective region while minimizing the sum of the absolute
value of the forces F1, F2 applied to the system through
the propellers; these are easily derived from u1 and u2
by solving the linear set of equations[

1 1

L
2 −

L
2

][
F1

F2

]
=

[
u1

u2

]
(52)

where L is the distance from the propeller to the center
of mass of the multirotor.

Thus, our final cost function becomes

J(Π) =

D−1∑
d=0

|F1,d|+ |F2,d|. (53)

We perform a Monte Carlo simulation, varying the un-
derlying disturbance functions g1 and g2 for each itera-
tion, and initializing the system with a few observations.
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Fig. 4. Empirical cumulative distribution function (cdf) of
the incurred cost of each strategy over 113 total runs. Each
curve represents the overall results of each strategy executed
in the Monte Carlo simulation. The horizontal axis denotes
the cost incurred to arrive at the goal, while the vertical axis
denotes the proportion of runs which incurred that cost or
lower. The closer to the left a curve is, the better. For ex-
ample, the Opt2 Strategy (green) incurred a cost of 150 or
lower in approximately 80% of its runs. From these results,
we can see that there is a tradeoff. Compared to the Pes-
simistic strategy (red), the Optimistic Strategies (gray) had
a larger proportion of runs incur a cost of 200 or lower. How-
ever, they generally had a smaller proportion of runs incur a
cost of 250 or lower. Only one strategy, Opt2 (green), which
has a minimum probability 1− η = 0.2, unambiguously out-
performs Pessimism. The respective minimum probabilities
1− η of each strategy are outlined in Table 1.

Strategy 1 - η Mean Std. Dev.

Pessimism ≥0.99 140.97 77.88

Opt5 ≥0.5 144.72 85.69

Opt4 ≥0.4 136.20 70.70

Opt3 ≥0.3 136.34 70.89

Opt2 ≥0.2 124.44 57.60

Opt1 ≥0.1 136.50 81.89

Opt05 ≥0.05 139.72 85.01

Opt01 ≥0.01 140.21 84.11

Table 1
Statistical summary of the incurred cost of the Pessimistic
strategy as well as the Optimistic strategies tested with dif-
ferent minimum required probabilities.

We then simulate each strategy and record the total cost
incurred once the multirotor has reached the objective.
Figure 2 showcases an instance of the Monte Carlo sim-
ulation and the resulting trajectories produced by some
of the strategies.

We plot the resulting empirical cumulative distribution
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function (cdf) of the incurred cost of each strategy over
113 runs in Figure 4 and provide statistics in Table 1.
Overall, the Optimistic strategies tended to outperform
the Pessimistic strategy, though as can be seen, the min-
imum probability requirement affects the performance
of the Optimistic strategy. It is especially important to
note that there seems to be an ideal tradeoff; the low-
est minimum probability does not necessarily translate
to the lowest incurred cost. This is in line with the idea
that a nonzero minimum probability ηo gives the MPC
scheme the ability to “look ahead” while retaining some
robustness.

These results suggest that Optimism is a step in the right
direction towards deriving the optimal theoretical strat-
egy. Allowing the controller to determine the best-case
disturbance bounds while still ensuring it keeps known
observations in mind is a good tradeoff between explo-
ration and exploitation, and the minimum probability
requirements can be tweaked as necessary.

9 Conclusion

We have presented a control scheme that is guaranteed
to be safe with high probability while enabling both ex-
ploration and goal reaching. This control scheme lever-
ages mixed monotonicity theory in an MPC formulation
that is capable of calculating hyperrectangular overap-
proximations of reachable sets that hold with high prob-
ability. This MPC formulation is then used in an al-
gorithm which produces a control strategy that is safe
with high probability. The proposed algorithm is tunable
for both exploration and goal reaching, incorporates un-
known disturbances nonlinearly, and is scalable to sys-
tems of moderately high dimension due to the efficiency
of the reachable set computations.

We then modified this control scheme into a cost-aware
controller formulation that can speculate on the exis-
tence of lower-cost trajectories than the one resulting
from assuming worst-case bounds on the disturbance be-
havior. By adjusting the confidence levels in the Gaus-
sian processes, possible trajectories can be calculated.
We formulated an Optimistic approach to selecting these
trajectories and showed that it incurs lower expected
cost than the nominal Pessimistic strategy, first with
theoretical results on a simplified system, and then with
empirical results on a planar multirotor system. Future
work includes deriving results for general nonlinear sys-
tems.
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