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Abstract— We consider a nonlinear system subject to an

unknown state-dependent disturbance input and assume avail-

ability of state-dependent upper and lower bounds on the

disturbance that hold with any user-prescribed probability

available from, e.g., Gaussian Process estimation. Using meth-

ods from mixed monotone systems theory, we then propose an

efficient technique for overbounding the probabilistic reachable

set of the system for any prescribed probability. Next, we

consider a reach-avoid control synthesis problem and propose

using a weighted sum of reachability quantiles as the control

objective to balance safety and performance. We show via a case

study of a kinematic bicycle vehicle model that this approach

generally outperforms using a single fixed probability bound.

I. INTRODUCTION

Control of systems with partially unknown dynamics
often requires compromising performance to satisfy safety
guarantees. This is generally because worst-case disturbance
behavior must be considered in order to maintain these guar-
antees. To achieve greater performance, it is advantageous
to consider not only the worst-case disturbance but also the
overall distribution of possible disturbance behavior.

For linear systems, it is possible to approximate the
effects of a disturbance modeled using, e.g., a Gaussian
distribution by evolving key parameters through the system
and then reconstituting the distribution to maintain safety [1].
However, for nonlinear systems, especially systems that are
nonlinear in the disturbance input, these nonlinearities distort
the impact of the disturbance behaviors through the system.
Motivated by this, we develop a method for overapprox-
imating multiple probability levels of the reachable sets
of the system. This allows us to capture the effects of
the nonlinearities on the disturbance behavior and utilize
them in an optimization framework for achieving greater
performance while maintaining safety.

Reachability-based methods are generally well-suited for
the problem of ensuring safe control of partially unknown
systems. For example, [1] achieves safety via ellipsoidal
overapproximations of the linearized system that account
for the unknown dynamics via Gaussian Processes (GPs),
and [2] utilizes Hamilton-Jacobi reachability tools to develop
a general safety framework for uncertain robotic systems.
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Alternatively, [3] develops a linearization-based reachabil-
ity overapproximation technique for systems with unknown
parameters and inputs which is demonstrated in a collision
avoidance scenario for autonomous vehicles in [4]. In [5],
the authors use GPs to learn the unknown components of
a control-affine system and form a reachability-based safety
metric for reinforcement learning, and [6] utilizes Hamilton-
Jacobi reachability to iteratively compute the safe set of a
system towards the same end.

Additionally, there exists a body of literature concern-
ing chance-constrained optimization that addresses similar
problems. For example, [7] introduces a probabilistic re-
solvability condition and develops a joint chance-constrained
model predictive controller that guarantees this condition for
robust control of systems with unbounded stochasticity, and
similarly, [8] presents a convex chance-constrained model
predictive controller for polynomial, discrete-time stochastic
systems. Meanwhile, [9] extends chance-constrained control
techniques to handle uncertainty in both the system state
and constraint parameters for linear discrete-time stochastic
systems, and [10] develops a distributionally robust data-
enabled predictive control algorithm for unknown stochastic
linear time-invariant systems. We note that these works
mainly concern the stochastic setting, while in this work we
consider the deterministic unknown setting.

In contrast to these works, we consider general nonlinear
systems and approximate multiple probability levels of the
unknown disturbance input to compute the optimal control
action that is both performant and safe. We achieve this by
utilizing previously developed computationally efficient and
scalable reachability techniques [11] to overapproximate the
different quantiles of the reachable set distribution. These
quantiles are able to capture asymmetries that arise from
propagating the distribution of possible disturbance inputs
through the nonlinear dynamics. Finally, we demonstrate that
using these overapproximations in a model predictive control
scheme leads to increased performance while maintaining
safety on a case study of a kinematic bicycle operating on
terrain with an unknown friction coefficient.

The rest of the paper is structured as follows: Section II
introduces key notation, and Section III formally defines the
problem. We provide preliminaries on mixed monotonicity
in Section IV, before utilizing it to estimate the probability
distribution of reachable sets in Section V. We insert this
estimation into a control algorithm that balances performance
and safety in Section VI and demonstrate this control al-
gorithm with our case study in Section VII. Finally, we
conclude with a short discussion in Section VIII.



II. NOTATION

Let (x, y) denote the vector concatenation of x, y → Rn,
i.e., (x, y) := [xT yT ]T → R2n. Additionally, ↑ denotes
the componentwise vector order, i.e., x ↑ y if and only if
xi ↓ yi for all i → {1, ..., n} where vector components are
indexed via subscript.

Given x, y → Rn such that x ↑ y, we denote the
hyperrectangle defined by the endpoints x and y using the
notation [x, y] := {z → Rn | x ↑ z and z ↑ y}. Also,
given a = (x, y) → R2n with x ↑ y, [[a]] denotes the
hyperrectangle formed by the first and last n components
of a, i.e., [[a]] := [x, y]. Finally, let ↑SE denote the southeast

order on R2n defined by (x, x→) ↑SE (y, y→) if and only if
x ↑ y and y→ ↑ x→. In particular, observe that when x ↑ x→

and y ↑ y→,

(x, x→) ↑SE (y, y→) ↔↗ [y, y→] ↘ [x, x→]. (1)

III. PROBLEM SETUP

We consider the continuous-time, nonlinear system

ẋ = f(x, u, w) (2)

with f Lipschitz continuous in its arguments, where x → Rn

is the system state, u → Rm is the system input, and w → Rp

is a deterministic unknown, state-dependent component of
the dynamics such that wi = gi(x) where gi is unknown.
We denote by ω(t, x0,ε) the resulting closed-loop state
trajectory of (2) under control strategy u = ε(t, x) when
w = g(x) and the system is initialized at x0 at time 0.

We assume that there exists a known subset of the state
space Xunsafe ≃ Rn which must be avoided, and a goal region
Xgoal ≃ Rn which we must drive the system into. Thus, we
formally define our problem statement as follows.

Problem Statement. Consider the system (2). Given known

goal region Xgoal, compute a feedback control strategy u =
ε(t, x) that reaches the goal in minimal timesteps while

avoiding known unsafe region Xunsafe.

We explored a similar problem setting in [11] where
we showcased an exploration-exploitation algorithm ensuring
safe control for all time until the goal was reached. How-
ever, we did not previously consider performance. Thus, in
this work, we develop a formulation for overapproximating
multiple probability quantiles of the distribution of reachable
sets, and show that accounting for this additional information
in the optimization problem that solves for the next control
action produces actions that are not only more aggressive
and reach the goal in fewer timesteps, but that are also safe.

IV. PRELIMINARIES ON MIXED MONOTONICITY

In this section we provide an overview of the mixed
monotonicity property of dynamical systems, which we build
upon throughout the rest of this work.

The system (2) is mixed monotone with respect to a

decomposition function ϑ if ϑ satisfies the following:
1) For all x, u, w, ϑ(x, u, w, x, w) = f(x, u, w)

2) For all x ↑ x̂, u, w ↑ ŵ, and all a → [x, x̂], c → [w, ŵ],

ϑ(x, u, w, x̂, ŵ) ↑ f(a, u, c) ↑ ϑ(x̂, u, ŵ, x, w) (3)

3) For all i → {1, ..., n},

ϑi(x, u, w, x̂, ŵ) ↓ ϑi(x
→, u, w→, x̂→, ŵ→) (4)

for all (x, x̂) ↑SE (x→, x̂→) such that xi = x→
i, u,

(w, ŵ) ↑SE (w→, ŵ→)

Additionally, ϑ is said to be tight if it is such that

ϑi(x, u, w, x, ŵ) = min
a↑[x,x],ai=xi

min
c↑[w,ŵ]

fi(a, u, c) (5)

ϑi(x, u, ŵ, x, w) = max
a↑[x,x],ai=xi

max
c↑[w,ŵ]

fi(a, u, c). (6)

For any system, there exists some decomposition function
ϑ satisfying the above conditions [12], although one may not
be readily available in closed form. In general, obtaining a
decomposition function is problem specific, but automated
tools exist for computing certain classes of decomposition
functions [13]. We demonstrate construction of a decom-
position function in the case study of Section VII. For
more examples of decomposition functions and practical
applications of mixed monotonicity, see [11], [14].

Given (2) and a corresponding decomposition function,
we then construct the embedding system with state (x, x) →
Rn ⇐Rn, input u → Rm, and disturbance (w, ŵ) → Rp ⇐Rp

defined by the dynamics
[
ẋ
ẋ

]
= ϖ(x, u, w, x, ŵ) :=

[
ϑ(x, u, w, x, ŵ)
ϑ(x, u, ŵ, x, w)

]
. (7)

Denote the state of (2) at time t when initialized at x0

under some input signal u : [0,⇒) ⇑ Rm and some
disturbance signal w : [0,⇒) ⇑ Rp by ω(t;x0, u, w), and
denote the state of (7) at time t initialized at (x0, x0) under
the same input signal u, and disturbance signal (w, ŵ) :
[0,⇒) ⇑ Rp ⇐Rp by !ω(t; (x0, x0), u, (w, ŵ)). The funda-
mental result of mixed monotone systems theory is that (7)
is a monotone control system with respect to the southeast
order on state and disturbance; that is, given a, a→ → Rn⇐Rn

and c, c→ : [0,⇒) ⇑ Rp ⇐ Rp such that a ↑SE a→ and
c(t) ↑SE c→(t) for all t ⇓ 0, then for all t ⇓ 0,

!ω(t; a, u, c) ↑SE !ω(t; a→, u, c→). (8)

In other words, provided that the system is initialized
within [x0, x0] and the disturbance signal is overapprox-
imated by [w, ŵ], then the hyperrectangle defined by
[[!ω(t; (x0, x0), u, (w, ŵ))]] overapproximates the true reach-
able set of (2), i.e.

ω(T, x0, u) ↘ [[!ω(T ; (x0, x0), u, (w, ŵ))]] (9)

for all T ⇓ 0 and x0 → [x0, x0].



V. OVERAPPROXIMATING THE PROBABILITY
DISTRIBUTION OF REACHABLE SETS

In this section, we provide an overview of how mixed
monotonicity enables efficient calculation of probabilistically
correct reachable set overapproximations for systems with
unknown components. We then introduce the capability of
estimating probability distributions for reachable sets via
nested bounding functions that hold with known probability.

If there exist known bounding functions ϱ
i
(x, x; ς) and

ϱi(x, x; ς), ϱi
, ϱi : Rn ⇐ Rn ⇔⇑ R, for all i → {1, . . . , p},

parameterized by ς → [0, 1], such that

ϱ
i
(x, x; ς) ↓ gi(x) ↓ ϱi(x, x; ς), x → [x, x], (10)

holds for all x, x → Rn, x ↑ x with probability at least
ς, then these functions can be inserted into the previously
described embedding system to produce valid reachable set
overapproximations. This is achieved by taking the embed-
ding system (7) and inserting ϱ(x, x; ς), ϱ(x, x; ς) into w, ŵ
to produce a new embedding system parameterized by ς as
[
ẋ
ẋ

]
= e(x, u, x; ς) :=

[
ϑ(x, u, ϱ(x, x; ς), x, ϱ(x, x; ς))
ϑ(x, u, ϱ(x, x; ς), x, ϱ(x, x; ς))

]
.

(11)
The resulting state of (11) at time T when initialized at some
initial condition x0, x0 is thus denoted by !ε(T ; (x0, x0), u).
Moving forward, we use ϱε, ϱε, eε as shorthand for the
respective equations with parameter ς. Likewise, we use
xε, xε to denote the resulting states of eε.

A key property of ϱε, ϱε is that, since they bound the
unknown disturbance behavior over the entire state space,
the probability that these functions are valid bounds directly
translates to the probability that the resulting reachable set
overapproximations are also valid [15]. In other words,
since ϱε, ϱε hold with probability ς, the resulting reachable
set overapproximations defined by [xε, xε] also hold with
probability at least ς.

The main insight of this work is that, by considering
multiple values of ς, we obtain richer information regarding
the potential future behavior of the system. We impose the
following mild assumption on the construction of ϱε, ϱε:

Assumption 1. For all ς1, ς2 → [0, 1], ς1 < ς2, it holds that

ϱε2(x, x) ↑ ϱε1(x, x) ↑ ϱε1(x, x) ↑ ϱε2(x, x) (12)

for all x, x → Rn
with x ↑ x.

Assumption 1 states that as ς increases, the bounding
functions always expand, and as ς decreases, the bounding
functions always contract.

Remark. We have shown in previous work [15] that it is

possible to construct bounds that fulfill Assumption 1 by

modeling the unknown functions gi(x) as GPs, though this

is not the only method to produce valid bounding functions,

as demonstrated in Section VII.

This leads to our first result.

Proposition 1. Consider the embedding system (11) with

initial condition x0, x0. For all ς1, ς2 → [0, 1], ς1 < ς2,

!ε2(T ; (x0, x0), u) ↑SE !ε1(T ; (x0, x0), u) (13)

holds for all T ⇓ 0.

The proof of the above follows from Assumption 1
and [15, Theorem 2] and is thus omitted.

We denote by φ an ordered finite sequence of discrete ς
percentile values chosen for the embedding system (i.e. the
(i)th component of φ is always less than or equal to the (i+
1)th component). We demonstrate in Section VII that having
more than one ς, and thus including a richer approximation
of the probability distribution of the unknown components,
enables control strategies that increase performance while
maintaining safety.

Finally, suppose the Lipschitz constants of the system are
known. In that case, it is possible to overapproximate quan-
tiles of the reachable set distribution which hold with some
probability ςo /→ φ without directly solving for the trajectory
!εo . This is encapsulated in the following assumption and
theoretical result.

Assumption 2. The system (2) is Lipschitz continuous with

respect to x,w with known Lipschitz constants Lx, Lw.

Additionally, the bounding functions ϱε, ϱε
are Lipschitz

continuous with respect to ς with Lipschitz constant Lε.

Proposition 2. Consider (2) and ϱε, ϱε
fulfilling Assump-

tions 1 and 2. Given ςo → [φi, φi+1], and the result-

ing tight hyperrectangular reachable set overapproximations

[xϑi , xϑi ] and [xϑi+1 , xϑi+1 ] at time t = T initialized from

[x0, x0], the hyperrectangular reachable set overapproxima-

tion [xεo , xεo ] where

xεo = max

{
xϑi+1 , xϑi ↖ Lw

Lx
(eLxT ↖ 1)Lε(ςo ↖ φi)

}

(14)

xεo = min

{
xϑi+1 , xϑi +

Lw

Lx
(eLxT ↖ 1)Lε(ςo ↖ φi)

}

(15)

overapproximates the true reachable set of (2) at time t = T
with probability at least ςo.

Proof. Consider (yεo , yεo) = !εo(T ; (x0, x0), u) with ϑ
tight. The hyperrectangle defined by [yεo , yεo ] overapproxi-
mates the true reachable set of (2) with probability at least
ςo via the properties of ϱε, ϱε.

We then consider the two possible values of xεo . In the
case where xεo = xϑi+1 , it holds that xεo ↙ yεo via
Proposition 1 as φi+1 > ςo. In the case where xεo =
xϑi + Lw

Lx
(eLxT ↖ 1)Lε(ςo ↖ φi), it holds that xεo ↙ yεo

via [16, Corollary 3.17]. Thus, it always holds that xεo ↙
yεo . Similar logic can be used to show that xεo ↑ yεo always
holds as well.

Consequently, since [yεo , yεo ] overapproximates the true
reachable set of (2) with probability at least ςo, it must hold
that [xεo , xεo ] overapproximates the true reachable set of (2)
with probability at least ςo. ↭



VI. A CONTROL ALGORITHM TO BALANCE
PERFORMANCE AND SAFETY

We now insert the previously developed approximation of
the probability distribution of the system’s reachable sets into
an optimization problem that, when solved, produces a con-
trol strategy that enables high performance while maintaining
safety. This optimization is then utilized in a model predictive
control framework to produce an algorithm that enables safe,
high-performance actions for all time.

We discretize both the original system and the crafted
embedding system via forward Euler and then design the
following optimization problem:

minimize
!={u[0],...,u[D↓1]}

J([xϑ[0], xϑ[0]], ..., [xϑ[D], xϑ[D]]) (16)

subject to:
(11), [xε[0], xε[0]] = [x[0], x[0]] given, u[d] → U
∝ς → φ, ∝d → {0, . . . , D ↖ 1}

where the cost function is defined as

J([xϑ[0], xϑ[0]], ...,[xϑ[D], xϑ[D]]) := (17)
∑

ε↑ϑ

d∑

d=0

(
a · dist([xε[d], xε[d]],Xgoal)

+ b · ς · inter([xε[d], xε[d]],Xgoal)

+ c · ς · inter([xε[d], xε[d]],Xunsafe)

)

where dist([xε[d], xε[d]],Xgoal) is the distance between
the center of each reachable set overapproximation and
the center of Xgoal, and inter([xε[d], xε[d]],Xgoal) and
inter([xε[d], xε[d]],Xunsafe) are the area of intersection be-
tween each overapproximation and Xgoal and Xunsafe.

The control strategy ” that solves (16) is such that
the overlap with the goal region is maximized while the
overlap with the obstacle is minimized, with a bias toward
driving closer to the goal region if the system is too far
from it to intersect. The constants a, b, c can be tuned to
prioritize performance or safety as needed. In Section VII-
A, we demonstrate that a richer approximation (i.e. including
multiple values of ς in φ) of the full probability distribution
is what enables synthesized control strategies to be both
performant and safe.

We then insert the optimization problem (16) into a model
predictive control scheme, where the problem is solved to
synthesize a control strategy ”, the first control action is
executed, and then the optimization problem is run again
at the resulting state. This process repeats until the system
arrives in the goal region.

We demonstrate in Section VII-B that, again, including
overapproximations of multiple quantiles of the probability
distribution produces control actions that are simultaneously
aggressive toward the goal and safe from the obstacle. This
results in the system taking fewer timesteps to reach the
goal while maintaining safety, showcasing that this controller
solves our problem statement.

Fig. 1: The kinematic bicycle model has positions X and Y ,
center-of-mass velocity v, heading angle ↼, side-slip angle
↽(ϑf ), front and rear distances from center of mass lf and
lr, and inputs acceleration u1 and steering angle u2 = ϑf .

VII. CASE STUDIES

In this section we present results showcasing the benefit
of considering a set of probabilistic reachability distributions
compared to exclusively enforcing safety or exclusively as-
suming best-case. We provide both a Monte-Carlo simulation
of a one-shot control scenario as well as a demonstration of
the model predictive control formulation1.

We consider the four-dimensional kinematic planar bicy-
cle, which has state x = [X,Y,↼, v]T and relates positional
coordinates X and Y , center-of-mass velocity v, heading
angle ↼, side-slip angle ↽(u2), and front and rear distances
from center of mass lf = 2.2m and lr = 3.3m as

Ẋ = v cos (↼ + ↽(u2)), Ẏ = v sin (↼ + ↽(u2)),

↼̇ =
v

lr
sin (↽(u2)), v̇ = u1, (18)

where
↽(u2) = arctan

(
lr

lf + lr
tan (u2)

)
, (19)

with inputs being the desired acceleration u1 and steer-
ing angle u2. The bicycle is subject to constraints U =
[(↖10,↖1.5), (10, 1.5)] and is also affected by an unknown
friction coefficient between the wheels and the surface of
the road. As a result, the actual velocity update dynamics
are given by v̇actual = (1 ↖ µ)u1, where µ → [0, 1]. This
system is visualized in Figure 1.

The associated decomposition function takes the form

ϑ(x, u, w, x̂, ŵ) =
[
dX dY dϖ dv

]T (20)

dv = db1b2
([

1↖ ŵ
u1

]
,

[
1↖ w
u1

])

where, for b, b̂ → R2,

db1b2(b, b̂) =

{
min{b1b2, b̂1b2, b1b̂2, b̂1b̂2}, if b ↑ b̂

max{b1b2, b̂1b2, b1b̂2, b̂1b̂2}, if b̂ ↑ b,

and dX , dY , dϖ take the same forms as in [15, Equation
73]. We then construct the associated embedding system
parameterized by ς as described by (11).

1Code for both case studies is available at https://github.com/
gtfactslab/Cao_ACC2025.



The distribution M which dictates the possible value of µ
is known and follows the probability density function

fM (µ) =






1.25 µ → [0.2, 0.6)

5 µ → [0.1, 0.2)

0 otherwise.
(21)

which was chosen to highlight the effect of nonlinearities on
the reachable sets. The bounding functions are

ϱ{0.25,0.5,0.75,1.0}(x, x) = {0.175, 0.15, 0.125, 0.1} (22)

ϱ{0.25,0.5,0.75,1.0}(x, x) = {0.3, 0.4, 0.5, 0.6}. (23)

The system is tasked with reaching a goal region defined
by X → [3.9, 4.9], Y → [↖0.5, 0.5] while also avoiding the
obstacle next to it defined by X → [5, 6], Y → [↖5, 5]. We
apply two different control synthesis strategies and compare
their performance when given full distribution information
(φ = [0.25, 0.5, 0.75, 1.0]), when only given a conservative
estimation of the worst-case friction values (φ = [1.0]),
and when given an overly confident underestimation of the
possible friction values (φ = [0.25]). We refer to these as
Full, Conservative, and Reckless, respectively.

A. One-Shot Monte Carlo

We first perform a Monte Carlo simulation to illustrate
the ability of the Full strategy to increase performance while
maintaining safety.

The system is randomly initialized within the hyperrect-
angle [x0, x0] = [(0.5,↖2.51, 0, 0), (0.51,↖2.5, 0, 0)] and is
tasked with synthesizing a one-shot input strategy that will
drive the system into the goal while avoiding the obstacle.
Specifically, the system is discretized using timesteps of 0.1
seconds and the one-shot control strategy will be run for
tf = 1.5 seconds, resulting in an overall control strategy
” = {u[0], ..., u[D ↖ 1]}, D = 15 obtained by solving (16)
with constants a = 0.005, b = ↖10, and c = 10.

The optimization problem is implemented in Python on a
personal laptop computer utilizing the immrax library [17],
and solved using IPOPT [18]. After a solution is found
for ”, 1000 Monte Carlo iterations are run by randomly
determining an initial state within [x0, x0] as well as drawing
a value of µ from the known distribution. We then apply the
synthesized strategy and count the number of instances where
the system hits the goal as well as the number of times it
hits the obstacle, and report these in Table I. We also report
the computation time to solve each optimization problem.

Case Hit Goal Hit Obstacle Comp. Time
Conservative 580 0 162 sec.

Reckless 719 256 154 sec.
Full 651 0 527 sec.

TABLE I: Results from 1000 runs in the Monte Carlo simulation.The Full strategy
performs better than the Conservative strategy while maintaing the same safety level.
While the Reckless strategy achieves the most goal hits, it is also the only strategy that
hits the obstacle. We also note that the Full strategy, despite considering four levels
of probability, takes less than four times the amount of computation time compared to
the other strategies.

By considering the full distribution of possible values
of µ, the solver finds a control strategy that results in

a higher percentage of goals reached without decreasing
the safety of the system. Additionally, in Figure 2 we
showcase the differences in behavior between each level of
information. With only one level of information, the solver
does not allow any intersection between the reachable set
overapproximations and the obstacle for the Conservative and
Reckless strategies. By contrast, the Full strategy captures the
nonlinear effects on the disturbance behavior, and allows the
outermost reachable set overapproximations to intersect the
obstacle as these represent the worst case scenario.

B. Model Predictive Control

We now implement the model predictive scheme outlined
in Section VI to demonstrate that the Full strategy is able to
make aggressive but safe maneuvers.

The system is initialized at x0 = [1.0, 2.0, 0.0, 0.0] and
must arrive at the same goal region while avoiding the
obstacle defined as the region X → [5, 6], Y → [↖10, 10]. We
instantiate ten simulation instances with differing values of µ
drawn from the same probability distribution, and record the
average computation time per step, the number of timesteps
needed to reach the goal, and the total amount of acceleration
input applied (i.e. the sum of all applied u1). The resulting
average values of each are listed in Table II.

Case Timesteps Total Acceleration Step Comp. Time
Conservative 16.2 40.15 11.6 sec.

Reckless 13.9 57.38 21.0 sec.
Full 12.3 63.02 75.3 sec.

TABLE II: Average step computation time, number of timesteps to goal, and total
acceleration applied from 10 runs in the MPC simulation. As shown, the Full strategy
arrives at the goal in the fewest number of timesteps and is able to apply the largest
amount of acceleration, while not being significantly more computationally expensive.

Overall, the Full strategy arrives at the goal in the fewest
timesteps, as it is able to make large moves toward the
goal while maintaining correct predictions as to avoid erratic
behavior. This is especially apparent in cases like the one
illustrated in Figure 3, where the value of µ = 0.485 is
outside the bounds utilized by the Reckless strategy. This
causes the resulting states from the controller applied by the
Reckless strategy to fall outside its predicted reachable sets,
causing the system to miss its desired state and producing
said erratic behavior. The Conservative bounds encapsulate
µ, but result in smaller movements due to the size of the
overapproximations. Thus, the Full strategy can make larger
movements like the Reckless strategy but still encapsulates
the true system behavior like the Conservative strategy.

VIII. CONCLUSION

We have presented a formulation to efficiently overap-
proximate the different probability levels of the reachable
set of a system with partially unknown components. This
formulation captures the effects of nonlinearities on the un-
known components and reflects the resulting behavior on the
distribution of reachable sets. We then developed a tunable
optimization problem using these overapproximations that
produces control actions that are both high performance
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avoid all overlap with the obstacle. In the Conservative case, this results in a loss of performance, while in the Reckless case,
this results in a loss of safety. By contrast, the Full strategy allows for some overlap between the worst-case hyperrectangles
and the obstacle, preserving safety while still achieving high performance.
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Fig. 3: Instantiation of the MPC Case Study, where the value
of µ is outside the bounds that the Reckless strategy utilizes,
causing its reachable set overapproximations to be incorrect
and producing erratic behavior. The Conservative strategy
has a smooth path, but takes longer than it needs to due to
the amount of overapproximation. The Full strategy performs
large movements akin to the Reckless strategy and maintains
the correct predictions of the Conservative strategy.

and safe. We implemented this optimization problem into a
model predictive control formulation that can produce safe,
aggressive movements toward the goal region, showcased in
a case study of a kinematic bicycle on a surface with an
unknown friction coefficient.
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