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Abstract— This paper investigates the use of pricing mecha-
nisms as a means to achieve a desired feedback control strategy
among selfish agents in the context of HVAC resource allocation
in buildings. We pose the problem of resource allocation
as a linear-quadratic game with many dynamically coupled
zone occupants(agents) and an uncoupled social planner. The
social planner influences the game by choosing the quadratic
dependence on control actions for each agent’s cost function.
We propose a neighborhood-based simplification of the dynamic
game that results in a more realistic and scalable framework
than is considered in standard dynamic game theory. In
addition, we construct the pricing design problem as a convex
feasibility problem and apply our method to an eight zone
building model.

I. INTRODUCTION

Incentive theory is used to study problems with socioe-
conomic considerations such as resource allocation among
selfish agents. In such scenarios, the solution to which agents
converge naturally is often inefficient from a societal point
of view, and engineered systems exhibiting such behavior
are appearing more frequently in the literature as technology
becomes integrated into infrastructure [1]–[6]. It is impor-
tant to accurately model these systems and develop control
strategies that account for the interests of all the participating
agents while meeting an organizational objective which may
represent social welfare or common good.

Coordinating selfish agents to meet an organization ob-
jective through means such as prices, taxes, and rewards is
broadly called mechanism design [7], and there has been
considerable literature proposing the use of mechanisms as
a means to achieve a socially optimal solution [8]–[12]. Re-
lated literature considers the design of local utility functions
to achieve a socially optimal solution among cooperative
agents with local information [13]–[15]. Pricing mechanisms
allow for a social planner to shape the strategy of the agents
and close the gap between the centralized, socially optimal
cost and the decentralized cost arising from selfish individual
behavior.

In this paper, we consider pricing schemes for energy
management in buildings with multiple self-interested oc-
cupants. Energy consumption due to heating and cooling
of buildings accounts for approximately 40% of all energy
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usage in the U.S. [16]. Many control methods, such as model
predictive control, have been proposed as a means to improve
the efficiency of the heating and cooling process [17]–[19].
In addition, many economic solutions have been proposed
to reduce consumption through economic incentives such as
dynamic pricing and smart meter technology [20], [21].

We propose a combination of pricing mechanisms and
control as a means to improve efficiency by reducing energy
costs while maintaining a level of comfort in the building
that allows for maximum productivity. We study the pricing
problem in a dynamic setting where the zones are ther-
modynamically coupled. In addition, we propose a novel
approach to the noncooperative game formulation that allows
our results to scale well with the number of competing
agents.

In Section II, we formally define the pricing mechanism
design problem in the discrete time framework for energy
management in buildings. In Section III, we state and prove
our main result. In Section IV, we consider revenue neutral
pricing mechanisms, and in Section V, we apply the theory
developed to the problem of energy management for a
physics-based model of a building. In Section VI, we make
concluding remarks.

II. PROBLEM FORMULATION

A. Dynamical System

We consider a building with of p zones indexed 1, . . . , p.
We assume each zone has state xi ∈ R representing the
temperature of zone i and that each zone consists of a selfish
player that controls the input1 ui ∈ R representing input air
temperature. We denote vector transpose by ′ and write the
stacked state and input vectors as

x ,
[
x1 . . . xp

]′
, u ,

[
u1 . . . up

]′
.

The system evolves under the following dynamics:

x[k + 1] = A[k]x[k] +
∑p
i=1Bi[k]ui[k] + d[k] (1)

for matrices A[k] ∈ Rp×p, Bi[k] ∈ Rp×1, and disturbance
vector d[k] ∈ Rp for all i and k = 1, . . . , T . The disturbance
vector can include the effect of outside air temperature or
unmodeled dynamics and is defined in further detail in the
examples of Section V. We assume players have a desired
zone temperature xdes

i [k] ∈ R for all k and define xdes[k] ,[
xdes
1 [k] · · · xdes

p [k]
]′

.

1The analysis follows exactly the same with mild notational changes if
the zone state xi or input ui are multidimensional vectors representing other
quantities.



We consider a neighborhood Ni ⊂ {1, . . . , p} of each
player and define the Nash equilibrium in terms of a trun-
cated system defined relative to this neighborhood. For ex-
ample, Ni may consist of zones that are physically adjacent
to zone i. We assume i ∈ Ni.

We now associate the following truncated dynamical
system with each player. Let Oi = {1, . . . , p}\Ni. After
reordering players, we partition the players and inputs such
that (1) can be written as[

xNi
[k + 1]

xOi [k + 1]

]
=

[
ANi

[k] ANi,Oi
[k]

AOi,Ni [k] AOi [k]

] [
xNi

[k]
xOi [k]

]
+
∑
j∈Ni

[
Bj,Ni [k]
Bj,Oi

[k]

]
uj [k]

+
∑
j∈Oi

[
Bj,Ni

[k]
Bj,Oi

[k]

]
uj [k] +

[
dNi

[k]
dOi

[k]

]
where xNi

is a stacked column of states corresponding
to the set of players Ni, similarly for xOi

and the set
Oi, {ANi

[k], ANi,Oi
[k], AOi,Ni

[k], AOi
[k]} is an appropri-

ately formed partition of A[k], {Bj,Ni [k], Bj,Oi [k]} is an
appropriately formed partition of Bj [k] for each j, and
{dNi

[k], dOi
[k]} is an appropriately formed partition of d[k].

To be more explicit, we index the elements of Ni as
{li1, . . . , li|Ni|}. Without loss of generality, we assume li1 = i.
Let ej denote the jth standard basis vector and define

ΨNi
,
[
e′
li1
· · · e′

li|Ni|

]′
,

and similarly define ΨOi
for an indexing of Oi. Thus

xNi [k] , ΨNix[k], uNi [k] , ΨNiu[k], ANi [k] ,
ΨNiA[k]Ψ′Ni

, ANi,Oi [k] , ΨNiA[k]Ψ′Oi
, etc.

From this partitioned system, we extract the truncated
system

xNi
[k + 1] =ANi

[k]xNi
[k] +

∑
j∈Ni

Bj,Ni
[k]uj [k]

+ dNi [k] + wi[k] (2)

where wi[k] = ANi,Oi
[k]xOi

[k] +
∑
j∈Oi

Bj,Ni
[k]uj [k].

We assume agent i considers the dynamical system (2),
but rather than modeling wi explicitly, each agent assumes

wi[k] = ANi,Oi [k]x̄Oi [k] (3)

where x̄Oi
[k] is agent i’s belief about the states of the other

agents at time k. We assume

x̄Oi
[k] = xdes

Oi
[k] , ΨOi

xdes[k], (4)

although other choices exist and the theory extends to the
case where agents assume a statistical distribution for wi[k].

Equations (3) and (4) are reasonable when distant zones
have minimal thermal influence on a zone and its neighbors
and when uj [k] only directly affects xj [k]. Similar trunca-
tions or clustering can be found elsewhere in the literature,
e.g. [22]. Two important features of this truncation are:
• a more realistic assumption on the actions of each agent,

as we explicitly describe the neighborhood Ni used in
agent i’s model (2) of the dynamical system (1),

• a scalable solution concept, as the size of neighbor sets
will often be limited and relatively small, even for large
buildings with many zones.

B. Cost

We model the cost incurred by each agent i as a quadratic
cost Ji given by

Ji ,qi[T ](xi[T ]− xdes
i [T ])2 +

∑T−1
k=0 qi[k](xi[k]− xdes

i [k])2

+ (uNi
[k]− ufree

Ni
[k])′Ri[k](uNi

[k]− ufree
Ni

[k]) (5)

where qi[k] ∈ R≥0 represent discomfort costs, Ri[k] ∈
R|Ni|×|Ni|, Ri[k] � 0 represent heating and cooling
costs, ufree

Ni
[k] = ΨNiu

free[k] ∈ R|Ni| where ufree[k] =[
ufree
1 [k]′ . . . ufree

p [k]′
]′

and ufree
j [k] is the ambient outdoor

temperature.

C. Nash Equilibrium of Player Strategies

We assume each player’s strategy space is the class of
affine, memoryless state feedback strategies to (2), denoted
by Γi. We assume the zone occupants are rational and
collectively play a Nash equilibrium. A Nash equilibrium is
defined as a collection of zone control strategies (γ∗1 , . . . , γ

∗
p)

with γ∗i ∈ Γi such that the following holds:

Ji(γ
∗
i , γ
∗
−i) ≤ Ji(γi, γ∗−i) ∀γi ∈ Γi, ∀i

where γ∗−i denotes the set of actions taken by players other
than player i, i.e. −i , {1, . . . , i − 1, i + 1, . . . , p} and
γ∗−i , {γ∗j }j∈−i, and Ji(γ∗i , γ

∗
−i) indicates the cost (5) when

strategies γ∗i and γ∗−i are used. By restricting to the class
of memoryless state feedback control strategies, we ensure
that the Nash equilibrium is unique when Ni = {1, . . . , p},
see [23]. We conjecture uniqueness holds for general Ni as
well. Since γi is memory-less and affine, we always have
γi = {γi(·, k)}ki=1 where

ui[k] , γi(xNi
[k], k) = −Ki[k]xNi

[k]− κi[k]

for some collection of matrices Ki[k] ∈ R1×|Ni| and scalars
κi[k] ∈ R. By an abuse of notation, we sometimes refer to
ui[k] or {Ki[k], κi[k]}ki=1 as player i’s strategy.

D. Introducing a Social Planner

We now introduce a social planner whose goal is to
decrease the total cost incurred by the zone occupants and
can measure u but does not know xdes. Thus the social
planner influences the game by designing new cost matrices
R̂i[k] such that the new cost incurred by each agent is

Ĵi ,qi[T ](xi[T ]− xdes
i [T ])2 +

∑T−1
k=0 qi[k](xi[k]− xdes

i [k])2

+
∑T−1
k=0 (uNi

[k]− ufree
Ni

[k])′R̂i[k](uNi
[k]− ufree

Ni
[k]).

(6)

We refer to (5) as nominal costs, and refer to (6) as costs
under pricing scheme {R̂i[0], . . . , R̂i[T − 1]}pi=1, or simply
costs with pricing. We refer to the Nash equilibrium defined
in Section II-C as the Nash equilibrium under nominal costs,
and similarly define a new Nash equilibrium under pricing
using (6), and we denote this equilibrium by {γ̂∗i }

p
i=1.



Problem Statement. Design R̂i[k] for all i and k such that
the resulting Nash Equilibrium under pricing is

u∗i [k] = −Kdes
i [k]xNi [k]− κdes

i [k] + ufree
i [k] (7)

where Kdes
i [k] ∈ R1×|Ni| and κdes

i [k] ∈ R for all i and k are
desired feedback gains established by the social planner to
minimize JL ,

∑p
i=1 Ji (see Section III-A).

We let
K̄des
i ,

[
Kdes
i [k]

κdes
i [k]

]
(8)

and x̄Ni [k] ,
[
xNi

[k]′ 1
]′

, and we then write (7) as
u∗i [k] = −K̄des

i x̄Ni + ufree
i [k].

III. MAIN RESULTS

A. Social Planner’s Desired Control

To minimize JL =
∑p
i=1 Ji, the social planner considers

(1), rewritten as

x[k + 1] = A[k]x[k] +B[k]u[k] + d[k] (10)

with B[k] =
[
B1[k] · · · Bp[k]

]
. We now introduce the

following augmented vectors:

x̄[k] ,
[
x[k]′ 1

]′
, ū[k] , u[k]− ufree[k]. (11)

We then have x̄[k + 1] = Ā[k]x̄[k] + B̄[k]ū[k] where

Ā[k] ,

[
A[k] B[k]ufree[k] + d[k]

0 1

]
, B̄[k] ,

[
B[k]

0

]
. (12)

Furthermore,

JL = x̄[T ]′Q̄[T ]x̄[T ] +
∑T−1
k=0 (x̄[k]′Q̄[k]x̄[k]

+ū[k]′R[k]ū[k]) (13)

where

Q̄[k] ,

[
Q[k] −Q[k]xdes[k]

−xdes[k]′Q[k] xdes[k]′Q[k]xdes[k]

]
(14)

Q[k] , diag{q1[k], . . . , qp[k]}
R[k] ,

∑
i Ψ′Ni

Ri[k]ΨNi

and we assume R[k] � 0.
We solve the resulting optimal control problem using

standard linear-quadratic regulator theory, summarized in the
following lemma:

Lemma 1. Consider the dynamical system x[k + 1] =
A[k]x[k]+B[k]u[k] and assume R[k] � 0 for k = 0, . . . , T−
1, Q[T ] � 0, and

[
Q[k] N [k]
N [k]′ R[k]

]
� 0 for k = 0, . . . , T − 1.

If there exists matrices P [k] � 0 such that P [T ] = Q[T ] and

P [k] = Q[k] +A[k]′P [k + 1]A[k]

−K[k]′(B[k]′P [k + 1]B[k] +R[k])K[k] ∀k
K[k] , (B[k]′P [k + 1]B[k] +R[k])−1

· (B[k]′P [k + 1]A[k] +N [k]′) ∀k (15)

then the feedback law u[k] = −K[k]x[k] minimizes

J = x[T ]′Q[T ]x[T ] +
∑T−1
k=0 (x[k]′Q[k]x[k]

+u[k]′R[k]u[k] + 2x[k]′N [k]u[k]) .

The minimizing cost is J∗ = x[0]′P [0]x[0].

Proof: See e.g. [24] for a proof of the special case
when N [k] = 0 for all k. The general case follows straight-
forwardly.
We use Lemma 1 to minimize (13) subject to the dynamics
(10) using the augmentation technique (11)–(14). The result-
ing optimal controller is obtained via (15), and we denote
this controller by {K̄[k]}T−1k=0 . We can partition each K̄[k]
along rows and obtain the collection {K̄i[k]}T−1k=0 where K̄ =[
K̄1[k]′ . . . K̄p[k]′

]′
and ui[k] = −K̄i[k]x̄[k] + ufree

i [k] is
the team optimal control policy for (1) with total cost (13).

From the formulation given in Section II and equation (7)
from the Problem Statement, each agent uses feedback of the
truncated vector xNi rather than x. This amounts to a sparsity
constraint on the feedback gain matrix K̄[k] calculated by
the social planner. In this case, Lemma 1 does not apply.
Optimal control with such sparsity constraints is an active
area of research, see e.g. [25], [26]. However, we assume
the social planner has a technique for either computing this
optimal sparse controller, or a method for obtaining some
other, near-optimal desired sparse controller. For example,
the social planner could simply truncate the controllers K̄i[k]
described above. Empirically, this is often near optimal, and
this is the method used in the example of Section V. We
denote the desired set of controllers as

udes
i [k] = −K̄des

i [k]x̄Ni
[k] + ufree

i [k] (16)

where we partition K̄des
i as in (8). We also define

K̄des[k] ,
[
(Ψ′N1

K̄des
1 [k]ΨN1)′ · · · (Ψ′Np

K̄des
p [k]ΨNp)′

]′
so that udes[k] = −K̄des[k]x̄[k] + ufree[k].

B. Designing Prices

We now consider the design of prices {R̂[k]}pi=1 for all k
such that the social planner’s desired set of controllers (16)
constitutes a Nash equilibrium under pricing as described in
section II-C. To this end, we assume uj [k] = udes

j [k] for all
j ∈ −i and, substituting in (2),

x̄Ni [k + 1] = ĀNi [k]x̄Ni [k] +BNi [k]ūi[k] + w̄i[k]

where ĀNi
[k] is defined in (17) on the following page,

B̄Ni [k] ,

[
BNi [k]

0

]
, w̄i[k] ,

[
wi[k]−ANi,Oi [k]xOi [k]

0

]
ūi[k] , ui[k]− ufree

i [k], we assume (3) and (4), and

(BNj [k]K̄des
j [k])Ni = ΨNiΨ

′
Nj

(BNj [k]K̄des
j [k])ΨNjΨ′Ni

,

i.e. (BNj
[k]K̄des

j [k])Ni
is the matrix (BNj

[k]K̄des
j [k]) re-

ordered and truncated to match ANi
[k].

Let R̂is,t denote the (s, t)th entry of R̂i. With uj [k] =
udes
j [k] for j ∈ −i, we rewrite the cost under pricing (6) as

Ĵi =x̄Ni [T ]′Q̃i[T ]x̄Ni [T ] +
∑T−1
k=0 x̄Ni [k]′Q̃i[k]x̄Ni [k]

+
∑T−1
k=0 ūi[k]′R̂ii,i[k]ūi[k] + 2x̄Ni [k]′Ñ i[k]ūi



ĀNi
[k] ,

[
ANi

[k]−
∑
j∈(Ni\{i})(BNj

[k]K̄des
j [k])Ni

∑
j∈Oi

(BNj
[k]ufree

Nj
[k])Ni

+ANi,Oi
[k]xdes

Oi
[k] + dNi

[k]

0 1

]
(17)

Q̃i[k] ,

[
Qi −qi[k]xdes

i [k]
−qi[k]xdes

i [k] qi[k](xdes
i [k])2

]
+ ΨNi

(∑
s6=i,t 6=i Ψ′Ns

(K̄des
s [k]′R̂is,t[k]K̄des

i [k])ΨNs

)
Ψ′Ni

(18)

where Ñ i[k] , ΨNi

∑
s6=i Ψ′Ns

K̄des
s [k]′R̂is,i[k], Qi ,

diag{qi, 0, . . . , 0}, and Q̃i[k] is defined in (18).

Theorem 1. If matrices {R̂i[0], . . . , R̂i[T − 1]}pi=1 and
{Pi[1], . . . , Pi[T ]}pi=1 exists such that the convex feasibility
problem below is feasible for all i ∈ {1, . . . , p}, then
{u∗i [k] = udes

i [k] = −K̄des
i [k]x̄Ni

[k] + ufree
i [k]}pi=1 is a

Nash equilibrium of the game, thereby achieving the social
planner’s goal:

Pi[T ] =Q̃i[T ], R̂iii[k] � 0,

[
Q̃i[k] Ñ i[k]

(Ñ i[k])′ Riii[k]

]
� 0,

Pi[k] =Q̃i[k] + ĀNi
[k]′Pi[k + 1]ĀNi

[k]

−(K̄des
i [k])′(B̄i[k]′Pi[k + 1]B̄i[k] + R̂iii[k])K̄des

i [k],

(B̄′i[k]Pi[k]B̄i[k] + R̂iii[k])K̄des
i [k] =

(B̄i[k]′Pi[k]ĀNi [k] + (Ñ i[k])′).

Proof: This follows from applying Lemma 1 to the
system derived above and is a modification of Theorem 3
from [27].

IV. REVENUE NEUTRAL PRICING AS AN OBJECTIVE

The nominal costs often represent actual costs incurred
by the actions of the agents such as energy costs, loss
of productivity due to discomfort, etc. The social planner
imposes new costs with pricing, but often must ultimately
pay these nominal costs, thus it is desirable to minimize the
difference between the costs imposed/collected by the social
planner and the nominal costs.

Let x̄[k+1] = ĀCL[k]x̄[k] denote the closed loop dynamics
of (12) where

ĀCL[k]x̄[k] , Ā[k]x̄[k] + B̄[k]ū[k]

with ūi = K̄des
i [k]x̄Ni

[k]. Let Φ[k] = Πk
l=1ĀCL[l − 1] for

k = 1, . . . , T − 1, Φ[0] , Ip. Thus x̄[k] = Φ[k]x̄[0]. It then
follows from a straightforward induction argument that∑
i

Ĵi = x[0]′

(
Φ[T ]′Q̄[T ]Φ[T ] +

T−1∑
k=0

Φ[k]′S[k]Φ[k]

)
x[0]

(19)

with S[k] = Q̄[k]+K̄des[k]′
(∑p

i=1 Ψ′Ni
R̂i[k]ΨNi

)
K̄des[k].

Let C be the nominal cost to the leader when players use
the desired control. It is clear that

∑
i Ĵi defined in (19) is

an affine function of {R̂i[0], . . . , R̂i[T −1]}pi=1, and thus we
can add

min(C − |
∑
i Ĵi|)

as an objective to the convex feasibility problem of Theorem
1.

V. EXAMPLE: PRICING FOR ENERGY MANAGEMENT IN
BUILDINGS

We consider a physics-based thermodynamic model of a
building and apply the theory for pricing developed in the
previous sections.

A. Physics-Based Building Model Description

If we consider transient conduction and convection as well
as the flow of air injected into each zone by the HVAC
system, then the temperature in zone i, denoted Ti, evolves
according to the following dynamics:

ρviCp
dTi
dt

=
∑
j∈Ni

hi,jai,j(Tj − Ti) + hi,oai,o(T∞ − Ti)

+ ṁiCp(T
s
i − Ti)

where vi is the volume of air in the i-th zone, ai,j is the area
of the wall between zone j and i, ai,o is the total area of the
exterior walls and roof of zone i, hi,j and hi,o are the heat
transfer coefficients of the wall between zone j and i and
the heat transfer coefficient of the exterior walls (determined
by the material properties) respectively, ṁi is the mass flow
rate of air into zone i, T si is the supply air temperature for
zone i, T∞ is the outside ambient air temperature, Cp is the
specific heat of air and ρ is the density of air (see Table I
for a list of parameter values).

Define x = [x1 · · · xp]′ , [T1 · · · Tp]′ to be the
state vector of zone temperatures and u = [u1 · · · up]′ ,
[T s1 · · · T sp ]′ to be the control input, i.e. vector of supply air
temperatures. Then the system dynamics are

ẋ = Ax+
∑
i∈Nz

Biui + d

where di =
hi,oai,o
ρviCp

T∞, and A and B are defined entrywise:

Aij =


∑
j∈Ni

hi,jai,j
ρviCp

+ ṁi

ρvi
+

hi,oai,o
ρviCp

, if i = j
hi,jai,j
ρviCp

, if j ∈ Ni
0, otherwise

Bi =

{
ṁi

ρvi
, if i = j

0, otherwise.

The dynamics of the building are such that A is stable. We
use an exact discretization of the physics-based model with
a time step of one minute to obtain a discrete-time model.

B. Results

We solve the pricing design problem for the physics-
based model using code written in MATLAB that employs
YALMIP [29] to solve the optimization problem. The cost



TABLE I
PARAMETERS FOR NUMERICAL SIMULATIONS1

Parameter Value Parameter Value

V̇ 2 0.25 m3·s−1 ρ 1.18 kg·m−3

Cp 1000 W·s· kg−1·K−1 hi,o 8.9W·m−2·K−1

T∞ 18oC ṁ 0.295 kg·s−1

1 Values from [28].
2 V̇ is the volumetric flow and the value corresponds to 500 CFM.

functions are composed of comfort costs and energy costs
where we base comfort costs on the productivity relative to
comfort level [30], detailed below.

Considering the nominal costs (5), we assume qi[k] = q
for all i, k for some q and assume Ri[k] = diag{r, 0, . . . , 0}
for all i, k for some r. Thus we see that the cost savings
depends only on the ratio of q to r, which we call the Q : R
ratio. To develop a realistic ratio, we estimate the cost of
energy to be $0.13/kWh [31], and we use Qsys = ṁCp(∆T )
to calculate the amount of energy required to increase a
zone’s temperature by 1oC. To determine the comfort cost q,
we note that, empirically, the ratio of total employee cost
to building cost is roughly 13 to 1 [32], employees are
roughly valued at $25–$30 per hour [33], and that there
is a decrease of 2% in productivity per 1oC temperature
increase [34], [35]. Using these values, the Q : R ratio
is approximately 3 : 1. Motivated by this calculation, we
investigate Q : R ratios ranging from 1 : 1 to 10 : 1.

In addition, we remark that resource allocation in large
buildings can, in practice, be done very inefficiently due to
the noncooperative nature of the local zone controllers. It
is common for local controllers (thermostats) to use propor-
tional control schemes where the gains used are determined
based on heuristics. Hence, we compare the results under
the pricing scheme to a naive proportional controller scheme.
In the numerical examples presented, the naive proportional
controller scheme we use is formed by taking the diagonal
entries of the social planner’s desired controller. We compute
the Nash equilibrium under the nominal costs using the
method of Lyapunov iterations [36]. We refer to this Nash
equilibrium as the nominal Nash equilibrium and the result-
ing control law as the nominal Nash controller. We compute
the percent savings gained by using the pricing scheme
versus both the cost under the nominal Nash controller and
the cost under the proportional controller.

The floor plan for the numerical examples is provided
in Fig. 1, and the building height is assumed to be 5m,
from which values of ai,j and ai,o are inferred. In Table
II we report the percent savings gained by implementing
the pricing scheme {R̂i[0], . . . , R̂i[T − 1]}pi=1 versus the
naive proportional controller and nominal Nash controller.
In the numerical example we allow the interior walls to be
4” of concrete block with rectangular cores. As the ratio of
productivity cost to energy cost increases, the savings under
pricing as compared to the proportional controller increases.
The savings compared to the nominal Nash solution is
maximum at the 5 : 1 ratio.

In Table III, we report the savings using pricing versus the

TABLE II
PERCENT SAVINGS FOR VARIOUS Q : R RATIOS1

Q : R Ratio Proportional vs. Pricing2 Nominal Nash vs. Pricing2

1 : 1 5.49% 2.33%
2 : 1 12.0% 3.41%
3 : 1 18.3% 3.91%
4 : 1 24.1% 4.13%
5 : 1 29.3% 4.20%
6 : 1 33.7% 4.18%
7 : 1 37.7% 4.11%
8 : 1 41.1% 4.02%
9 : 1 44.1% 3.91%
10 : 1 46.7% 3.79%

1 Interior walls modeled as 4” concrete with heat transfer coefficient
hi,j = 10.89 [W\(m2K)].

2 We compare the cost under a naive proportional controller and the
nominal Nash cost to the cost with pricing over an eight hour day.

TABLE III
PERCENT SAVINGS FOR THREE TYPES OF INTERIOR WALLS1

Heat Transfer Coefficient Proportional Nominal Nash
(Values from [28]) vs. Pricing2 vs. Pricing2

Steel studded wall,
11.9% 1.52%batting, 1/4” Gypsum Board

hi,j = 5.4[W\(m2K)]
4” concrete block, rectangular 29.3% 4.20%
core, hi,j = 10.89[W\(m2K)]

Air (at atmosphere) 52.3% 9.15%
hi,j = 24[W\(m2K)]

1 We assume Q : R = 5 : 1
2 We compare the cost under a naive proportional controller and

the nominal Nash cost to the cost with pricing over an eight hour
day.

proportional controller as well as the nominal Nash controller
when the Q : R ratio is fixed at 5 : 1 and we vary the heat
transfer coefficient over three values corresponding to steel
studded walls with batting and 1/4” Gypsum board (standard
insulation), 4” concrete block with rectangular cores (poor
insulation), and air at atmospheric conditions (no insulation),
which is motivated by the common practice in buildings
with large open areas such as collaboratories where the
space is artificially divided into multiple zones with separate
thermostats. Based on these results, we conjecture that,
especially for poorly insulated buildings, the pricing scheme
we present could provide considerable energy savings.

Fig. 1. Floor Plan for Building Example

In all of the numerical examples, the solutions are revenue
neutral as described in Section IV. When the solution is
revenue neutral and the pricing scheme is implemented, the



total nominal cost incurred when players use the desired
strategy is redistributed across the players to prevent uni-
lateral deviations from the desired control.

VI. CONCLUSION

We provide a framework for designing prices in a building
energy management setting to incentivize socially desirable
control policies among the building occupants. We view the
building as a dynamical system with selfish occupants and
provide a novel approach whereby each agent considers a
simplified version of the system dynamics. This reduction
enables our results to be scalable and more realistic. We
define the Nash equilibrium in terms of this simplification
and show that designing prices to achieve a social planner-
specified control strategy is a convex feasibility problem.
We demonstrate our technique on an eight zone, physics-
based building model and show that our technique can
conservatively save 3–4% in costs. Our results also show
that, depending on the nominal control strategies employed,
savings can potentially be much higher.

Future directions of research include considering switched
linear systems to model heating/cooling modes or linearized
operating points. We are also working to apply our results
to a building on the UC Berkeley campus.
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