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Abstract

We propose a technique for synthesizing switching guards for hybrid systems
to satisfy a given state-based safety constraint. Using techniques from sum of
squares (SOS) optimization, we design guards defined by semialgebraic sets that
trigger mode switches, and we guarantee that the synthesized switching policy
does not allow Zeno executions. We demonstrate our approach on an example
of switched affine systems and on an application to traffic ramp metering.
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1. Introduction

Hybrid systems have emerged as a powerful modeling paradigm for complex
systems comprised of continuous and discrete components. Often, the discrete
mode at any given time can be chosen by a controller. Examples of such systems
include traffic networks where vehicle flow rate is modeled as a continuous-valued
variable whose evolution is governed by discrete choices of intersection signals
and ramp metering devices. An important task for such systems is to design
a policy for switching among the modes to satisfy a safety property whereby
the system is guaranteed not to enter an unsafe region of the state space (e.g.
to maintain a certain traffic throughput or to prevent queues from growing too
large).

Verifying safety properties and synthesizing safe control strategies for hybrid
systems has received considerable attention, e.g., [1], [2], [3], [4] [5], [6], [7], [8].
One common approach to the problem of controller synthesis is to calculate a
controlled invariant set via an iterative algorithm [9]. The algorithm is initialized
with the safe set and iteratively removes trajectories that may be forced to
exit the set due to disturbance inputs or system dynamics, thereby eliminating
choices for the discrete mode at each time. If the algorithm terminates at a fixed
point, this final set is the maximal controlled invariant set, and a least restrictive
controller is obtained as a byproduct of the computation [10]. Each step of
the iteration requires computing controllable and uncontrollable predecessors
and then solving a reach-avoid problem [9] from these predecessors. These
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subproblems are often formulated as the solution to a Hamilton-Jacobi (HJ)
equation (or a pair of coupled HJ equations) [11, 9, 12].

The primary difficulty of such methods is that the solution of the HJ equa-
tions is, in general, computationally taxing. In addition, solution approaches
often suffer from numerical difficulties caused by discontinuities in the Hamil-
tonian [11]. Finally, nearly all computational approaches, such as the prevalent
level-set method [2], require numerical approximation whose accuracy must be
considered. For example, if the numerical approximation is not contained within
the maximal controlled invariant set, the synthesis algorithm may identify un-
safe states as safe. For some classes of hybrid systems, solutions to HJ equations
is efficiently computable [13], however the class of such systems is very limited.

In this work, we synthesize switching guards that ensure the hybrid system
satisfies a state-based safety constraint using sum of squares (SOS) program-
ming. We consider hybrid systems with a finite number of modes in which the
state evolution is governed by a differential inclusion with no continuous control
input, and we synthesize guards that trigger transitions between modes. Guards
are assumed to be semialgebraic sets, i.e. a guard is a subset of the continuous
state space which satisfies a collection of polynomial inequalities and equalities.
Other applications of SOS programming to control theory include region-of-
attraction analysis and Lyapunov function calculation, [14], [15], hybrid system
verification, [6], and calculation of finite-time invariant regions, [16] (see [17] for
an overview).

Our switching guard synthesis procedure relies on knowing the reach set
from a given set in a particular mode, or at least an overapproximation of this
set. Finding such sets can be difficult and is an active area of research. The
focus of this paper is on classes of systems where the computation of reach
sets is amenable to analytical or numerical procedures, and the difficulty in
controller synthesis lies in choosing when to switch between discrete modes. We
offer a synthesis procedure for this task which relies on SOS programming and
demonstrate our approach on several examples.

Section 2 introduces notation and reviews hybrid systems and SOS pro-
gramming. Section 3 states the problem formulation, and Section 4 presents
the guard synthesis approach. In Section 5, we apply this method to onramp
metering for freeway traffic control. We offer directions for future research in
Section 6. This paper extends our conference paper [18]. Extensions include
specializing our results to the case of switched affine systems and full develop-
ment of an extensible application to freeway traffic control.

2. Preliminaries

2.1. Notation

The set R≥0 (resp. R≤0) is the set of nonnegative (resp. nonpositive) real
numbers. For a set X, 2X is the set of all subsets of X and cl(X) is the closure
of X. For a vector v, Dim(v) is the dimension of v. The notation 0n denotes
the n-dimensional vector of zeros, and if the dimension is evident, the subscript

2



is suppressed. We denote elementwise nonnegativity of a vector v by v � 0.
An asterisk (∗) used as a subscript denotes a placeholder to be replaced with
elements from an index set which is evident from context.

2.2. Hybrid Systems

A hybrid system is a tuple H = (Q,X, I, f, R,G) where the total state space
Q×X consists of a finite set Q of modes and a continuous state space X = Rn.
The system is initialized in a set I ⊆ Q×X, and we define I(q) , {x : (q, x) ∈ I}.
We consider differential inclusions such that

ẋ(t) ∈ f(q, x(t)) for almost all t (1)

where f(·, ·) : Q×X → 2X constrains the continuous evolution while in mode q.
Mild assumptions on f(q, ·) guarantee the existence and absolute continuity of
solutions [19, §3.3]. In particular, we further assume f(q, ·) is locally bounded.
This formulation is general and can accommodate, for example, parameter un-
certainty or disturbance inputs.

We define the reset map as follows: R(·, ·, ·) : Q × Q × X → 2X where
R(q, q′, x) ⊆ X is the set of continuous states which can be reached when the
system undergoes a transition from discrete state q to q′ while at x ∈ X. We
denote the domain of R for fixed q, q′ by Rq�q′ , Dom(R(q, q′, ·)) ⊆ X. For a

set M ⊆ Rq�q′ , we understand R(q, q′,M) ,
⋃
x∈M R(q, q′, x). Note that if a

transition from q to q′ is not possible, then Rq�q′ = ∅.
A set of guards G for a hybrid system is a collection of sets G = {Gq�q′}q,q′∈Q

such that

Gq�q′ ⊆ Rq�q′ . (2)

Each Gq�q′ is called a guard, and if x ∈ Gq�q′ , we say the guard from mode q to
q′ is active. Let

Gq ,
⋃
q′∈Q
Gq�q′ . (3)

The purpose of the guards is to trigger mode transitions and the corresponding
reset of the continuous state dictated by the reset map. In this work, we consider
synthesizing a set of guards so that the hybrid system satisfies a safety property.

An execution of a hybrid system H is a sequence of mode transition times
{τi}Ni=1 with τ0 = 0, τi ≤ τi+1 along with a state trajectory (q(t), x(t)) where
q(t) is constant and x(t) ∈ X\Gq(t) for all t ∈ [τi, τi+1) if τi < τi+1, and ẋ(t) ∈
f(q(t), x(t)) for almost all t ∈ [τi, τi+1) if τi < τi+1. We allow the case where
N = ∞ and the case where N < ∞, τN = ∞. We denote the continuous state
immediately prior to the ith transition by x(τ ′i−1), i.e. x(τ ′i−1) , limt→τ−i

x(t)

if τi−1 < τi, or x(τ ′i−1) , x(τi) if τi−1 = τi. We further require x(τ ′i) ∈
Gq(τi)→q(τi+1), and x(τi+1) ∈ R(q(τi), q(τi+1), x(τ ′i)) for i = 1, . . . , N − 2 and
for i = N − 1 if q(τN ) 6= q(τN−1). If N = ∞ but supi τi < ∞, the execution
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is called Zeno. For a detailed discussion of the types of executions possible in
hybrid systems, see [20].

2.3. Sum of Squares Programming

For a variable x taking values in Rn, we denote by R[x] the set of all poly-
nomials in x. Define

Σ[x] ,

{
σ(x) ∈ R[x] : σ(x) =

m∑
i=1

fi(x)2, fi(x) ∈ R[x]

}
. (4)

A polynomial σ(x) ∈ Σ[x] is called a sum of squares (SOS) polynomial. Given
{pi(x)}mi=0 with pi ∈ R[x], the problem of finding {qi(x)}mi=1 with qi(x) ∈ R[x]
(or qi(x) ∈ Σ[x], or a mix of constraints for different i’s) such that

p0(x) +

m∑
i=1

qi(x)pi(x) ∈ Σ[x] (5)

is a semidefinite program [17], and the MATLAB toolbox SOSTOOLS [21] trans-
forms SOS programs of the form (5) into semidefinite programs.

3. Problem Formulation

Consider an unsafe set U ⊆ Q × X which includes undesirable regions of
the state space. Given a hybrid system H, we call an execution of H unsafe if
(q(t), x(t)) ∈ U for some t ∈ [0, τN ]. We call H safe if there does not exist an
unsafe execution of H.

Guard Synthesis Problem. Given a hybrid system H with unspecified guards
and an unsafe set U ⊆ Q × X, synthesize a set of guards G = {Gq�q′}q,q′∈Q
such that H is safe.

For S ⊂ X, we call Φ ⊂ X an overapproximation of the reach set from (q, S)
if Φ contains all trajectories of the continuous dynamics in mode q that originate
in S until a guard is encountered. Specifically, Φ is an overapproximation of the
reach set from (q, S) if for all T > 0

x(0) ∈ S
ẋ(t) ∈ f(q, x(t)) for almost all t ∈ [0, T )

x(t) ∈ (X\Gq) for all t ∈ [0, T )

 implies
x(t) ∈ Φ ∀t ∈ [0, T ) and
limt→T− x(t) ∈ Φ.

(6)

As we only concern ourselves with overapproximations of reach sets in this work,
we will often refer to such overapproximations as simply reach sets. We define
the set-valued function Reach(·, ·) as follows:

Reach(q, S) , {Φ : Φ is a reach set from (q, S)}. (7)
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Note that if S ⊂ X is a positively invariant set for the dynamics ẋ ∈ f(q, x),
then S ∈ Reach(q, S).

A number of techniques exist for obtaining such overapproximations. For
example, in [6], the authors consider scalar-valued “barrier functions” Bq(x)
and use the fact that if

∇Bq(x)T v ≥ 0 for all v ∈ f(q, x), for all x ∈ (X\Gq) s.t. Bq(x) = 0 (8)

then {x : Bq(x) ≥ 0} ∈ Reach(q, {x : Bq(x) ≥ 0}). The authors of [6] propose
a technique for constructing such barrier functions from a basis set of functions
using an SOS program. This technique can be incorporated into our approach.
We discuss this approach and others for calculating reach sets in the examples
below, but otherwise do not concern ourselves with the computation of reach
sets.

We now characterize a sufficient condition for safety using reach sets that
serves as the foundation for our guard synthesis solution in Section 4.

Lemma 1. Given unsafe U ⊆ Q × X and a hybrid system H, if there exists
{Sq,Φq}q∈Q with Sq ⊆ X and Φq ⊆ X such that

Φq ∈ Reach(q, Sq) ∀q ∈ Q (9)

I(q) ⊆ Sq ∀q ∈ Q (10)

R(q, q′,Φq ∩ Gq�q′) ⊆ Sq′ ∀q, q′ ∈ Q (11)

Φq ∩ U(q) = ∅ ∀q ∈ Q (12)

then H is safe.

The conditions of Lemma 1 are depicted schematically in Fig. 3.

Proof. Suppose not. Then there exists a time t∗ and an execution such that
(q(t∗), x(t∗)) ∈ U . It must be that x(t∗) 6∈ Φq(t∗) by (12). Let i∗ , max{i :
τi ≤ t∗}. We have x(τi∗) 6∈ Φq(τi∗ ) since Φq(τi∗ ) = Φq(t∗) is a reach set for mode

q(τi∗). But x(τ0) ∈ Φq(τ0) by (9) and (10), thus i† , max{i : x(τi) ∈ Φq(τi)} is
well-defined. We have x(τi†) ∈ Φq(τ

i† )
=⇒ x(τ ′i†) ∈ Φq(τ

i† )
by the definition

of reach set and x(τ ′i†) ∈ Gq(τi† )�q(τi†+1
) by the definition of an execution. Also,

x(τi†+1) ∈ R(q(τi†), q(τi†+1), x(τ ′i†)). Thus

x(τi†+1) ∈ R(q(τi†), q(τi†+1),Φq(τ
i† )
∩ Gq(τ

i† )�q(τi†+1
)) ⊆ Φq(τ

i†+1
) (13)

by (9), (11) and the property Φ ∈ Reach(q, S) =⇒ S ⊂ Φ. But this contra-
dicts the definition of i†.

Note that while Lemma 1 ensures H is safe, it does not establish the nonex-
istence of Zeno executions. Below is a sufficient condition for ruling out this
phenomenon.
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Gq1�q2

Gq3�q1

Gq2�q3

Sq1

Sq2

Sq3

Φq1
Φq2

Φq3

U(q) ∀q

I(q1)

Figure 1: A schematic depiction of the conditions from Lemma 1 for a hybrid system that
cycles through modes q1 � q2 � q3 � q1 � · · · where we assume each reset map is the identity
map. In the figure, Φq is a reach set from (q, Sq) for q ∈ {q1, q2, q3} and satisfies (12). The
sets {Sq} satisfy (10)–(11). For simplicity, only the boundary of each guard is depicted.

Proposition 1. If conditions (9)–(11) of Lemma 1 hold, cl(∪qΦq) is compact,
and

cl(R(q, q′,Φq ∩ Gq�q′)) ∩ cl(Gq′) = ∅ ∀q, q′ ∈ Q (14)

then no executions of H are Zeno.

Proof. When cl(∪qΦq) is compact, we have cl(R(q, q′,Φq ∩ Gq�q′)) ⊂ Φq′ com-
pact, thus the distance between cl(R(q, q′,Φq ∩ Gq�q′)) and cl(Gq′) is strictly
greater than 0. Since this holds for all q, q′ ∈ Q and since f(q, ·) is locally
bounded for all q ∈ Q by assumption, there is a minimum dwell time and thus
Zeno executions are prevented.

We will primarily be interested in systems which do not allow trajectories
to become unbounded, thus the assumption that cl(∪qΦq) is compact is reason-
able. It is possible to extend Proposition 1 to the case when cl(∪qΦq) is not
compact by making additional assumptions on the reset map. Condition (14)
can also be relaxed by considering all cycles of the hybrid automaton instead of
all transitions, see [1]. It is not difficult to adjust the algorithm presented below
(specifically, (20)) for this more general case.

4. Guard Synthesis Algorithm

Consider the hybrid system H and unsafe set U ⊂ Q×X. Let U(q) , {x :
(q, x) ∈ U}. We assume I(q) can be over-approximated with a semialgebraic set,
that is, I(q) ⊆ {x ∈ X : λI(q)(x) � 0} where λI(q)(·) is a vector-valued, poly-
nomial function. We also assume each {Rq�q′} and U(q) can similarly be over
approximated with vector-valued polynomial functions λRq�q′ (x) and λU(q)(x).
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The output dimensions of each function need not be the same. Similarly, we
assume the reset map R(q, q′, ·) satisfies

R(q, q′, x) ⊆ {ξ : λRq�q′ (x, ξ) � 0} (15)

where λRq�q′ (x, ξ) is a vector-valued polynomial function in the variables x and
ξ for each q, q′ ∈ Q.

We now present a theorem which forms the basis of our guard synthesis
algorithm by converting conditions (9)–(14) into SOS constraints where feasi-
bility is sufficient for each condition. In particular, (16)–(18) below correspond
to (10)–(12), and (20) corresponds to (14). Equation (19) ensures that guard
transitions are only taken when in the domain of the reset map. These equations
can be interpreted as special cases of the Positivstellensatz condition [22].

Theorem 1. Given a hybrid system H and a set of bounded reach sets {Φq}
and sets {Sq} with Φq ∈ Reach(q, Sq) described by Φq , {x : φq(x) � 0} and

Sq(x) , {x : sq(x) � 0} with φq(x), sq(x) vector-valued, polynomial functions.
Consider a set {gq�q′(·)} of vector-valued, polynomial functions defining a

set of guards G , {Gq�q′}q,q′∈Q by Gq�q′ , {x : φq(x) � 0 and gq�q′(x) � 0}.
If there exists a set {σk,∗(x)}12k=1 where each σk,∗(x) is a vector of SOS

polynomials with ∗ replaced by elements from an appropriate index set such
that:

1. (Reach sets contain initial condition:)

s(i)q (x)− σ1,q,i(x)TλI(q)(x) ∈ Σ[x] (16)

for all i = 1, . . . ,Dim(sq(x)) for all q ∈ Q,

2. (When encountering a guard, reach sets transition into reach sets via the
reset map:)

s
(i)
q′ (ξ)− σ2,q�q′,i(x, ξ)Tφq(x)− σ3,q�q′,i(x, ξ)T gq�q′(x)

−σ4,q�q′,i(x, ξ)TλRq�q′ (x, ξ) ∈ Σ[x, ξ] (17)

for all i = 1, . . . ,Dim(sq′(x)) for all q, q′ ∈ Q,

3. (Reach sets do not intersect the unsafe set:)

−(1 + σ5,q(x)TλU(q)(x) + σ6,q(x)Tφq(x)) ∈ Σ[x] (18)

for all q ∈ Q,

4. (Transitions only occur within the domain of the reset maps:)

λ
(i)
Rq�q′

(x)− σ7,q�q′,i(x)Tφq(x)− σ8,q�q′,i(x)T gq�q′(x) ∈ Σ[x] (19)

for all i = 1, . . . ,Dim(λRq�q′ (x)) and for all q, q′ ∈ Q
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then H is safe.
Furthermore, if

−(1 + σ9,q′�q′′(x, ξ)T gq′�q′′(ξ) + σ10,q(x, ξ)
Tφq(x)

+σ11,q�q′(x, ξ)T gq�q′(x) + σ12,q�q′(x, ξ)TλRq�q′ (x, ξ)) ∈ Σ[x, ξ] (20)

for all q, q′, q′′ ∈ Q then no execution of H is Zeno.

Proof. We will show that (16)–(20) imply (2), (10)–(12), and (14), and then we
apply Lemma 1 and Proposition 1.

• (19) =⇒ (2). We have (19) implies[
φq(x)
gq�q′(x)

]
� 0 =⇒ λ

(i)
Rq�q′

(x) � 0. (21)

Indeed, suppose not for a particular x′. Then

λ
(i)
Rq�q′

(x′)− σ7,q�q′,i(x′)Tφq(x′)− σ8,q�q′,i(x′)T gq�q′(x′) < 0 (22)

since σ7,∗(x
′) ≥ 0 and σ8,∗(x

′) ≥ 0, contradicting (19). Since this holds for

all i = 1, . . . ,Dim(λRq�q′ (x)), we have Gq�q′ = {x :
[
φTq (x) gTq�q′(x)

]T �
0} ⊆ Rq�q′ and therefore G is a valid guard set.

• (16) =⇒ (10). Applying reasoning similar to (21), we conclude from (16)

that λI(q)(x) � 0 =⇒ s
(i)
q (x) � 0 for all q ∈ Q and for all i = 1, . . . ,Dim(sq).

This implies Sq ⊇ I(q) for all q ∈ Q.

• (17) =⇒ (11). Similarly, we conclude from (17) φq(x)
gq�q′(x)

λRq�q′ (x, ξ)

 � 0 =⇒ s
(i)
q′ (ξ) � 0 (23)

for all i and all q, q′ ∈ Q. Equivalently,

x ∈ Φq ∩ Gq�q′ and ξ ∈ R(q, q′, x) =⇒ ξ ∈ Sq′ , (24)

thus R(q, q′,Φq ∪ Gq�q′) ⊆ Sq′ .

• (18) =⇒ (12). We have (18) implies{
x :

λU(q)(x) � 0
φq(x) � 0

}
is empty. (25)

Indeed, suppose not and let λU(q)(x
′) � 0 and φq(x

′) � 0. Then −(1 +
σ5,q(x

′)TλU(q)(x
′) + σ6,q(x

′)Tφq(x
′)) < 0, a contradiction.

Applying Lemma 1, we have that H is safe.
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• (20) =⇒ (14). Finally, (20) impliesx :


φq(x)
gq�q′(x)
gq′�q′′(ξ)
λRq�q′ (x, ξ)

 � 0

 is empty ∀q, q′, q′′ ∈ Q (26)

which gives (14), thus preventing Zeno executions.

A number of remarks are in order:

Remark 1. It is sometimes more convenient or necessary to represent U(q) as

U(q) = {x : (λ1,U(q)(x) � 0) ∨ . . . ∨ (λJ,U(q)(x) � 0)}. (27)

For such U(q), we can simply verify (18) for each λj,U(q)(x), j = 1, . . . , J .

Remark 2. If a convenient vector-valued polynomial inequality description exists
for the safe set (i.e., Safe(q) = (q,X\U(q)) = {x : λSafe(q)(x) � 0}), we can
replace (18) with a constraint of the form:

λ
(i)
Safe(q)(x)− σT5,q,i(x)φq(x) ∈ Σ[x] ∀q ∈ Q,∀i = 1, . . . ,Dim(λSafe(q)(x)). (28)

Remark 3. If Φq is an invariant set for the dynamics in mode q, then we can let
sq(x) = φq(x).

Remark 4. If R(q, q′, ·) is a polynomial function rather than a set-valued map
as in (15), we can use the following two equations in place of (17) and (20),
respectively:

s
(i)
q′ (R(q, q′, x))− σ2,q�q′,i(x)Tφq(x)− σ3,q�q′,i(x)T gq�q′(x) ∈ Σ[x] (29)

−(1 + σ9,q′�q′′(x)T gq′�q′′(R(q, q′, x)) + σ10,q(x)Tφq(x)

+σ11,q�q′(x)T gq�q′(x)) ∈ Σ[x]. (30)

We use Theorem 1 as a guide for synthesizing guards. In particular, we fix
the degrees of the SOS variables and the guards. We also introduce an iterative
procedure solving a convex problem at each stage as is commonly done when
solving bilinear SOS problems related to control, see e.g. [15], [14], and [6],
and has been found to be effective despite lack of convergence guarantees. Our
proposed iterative procedure seeks a feasible solution to (16)–(20) and alternates
between the following two steps:

GS-1) Fix φq(x), sq(x) and gq�q′(x) and solve for the SOS variables {σk,∗(x)}12k=1.

GS-2) Fix all SOS variables except σ1,q(x), σ5,q(x) for all q. Solve for φq(x),
sq(x), gq�q′(x), σ1,q(x), and σ5,q(x) for all q, q′.
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We initialize the iteration by relaxing the synthesis requirements, e.g. consid-
ering a smaller unsafe region or smaller set of initial conditions, and initializing
with functions {φq(x)}q∈Q, {sq(x)}q∈Q and {gq�q′(x)}q,q′∈Q known to satisfy
this simpler problem. The algorithm then iteratively solves GS-1) and GS-2),
adjusting the problem constraints until a feasible solution is found for the orig-
inal problem.

4.1. Discussion

Our synthesis algorithm is similar in spirit to the nonconvex, worst-case
safety verification procedure proposed in [6], however there are some key dif-
ferences. Our proposed algorithm is a method for synthesizing safe control
strategies, while [6] seeks to verify that a given strategy is safe. In addition, [6]
verifies scalar-valued barrier functions by checking the flow of the vector field
along the boundary of the barrier, specifically condition (8). We do not specify
how the reach sets are obtained, and checking the vector field flow along the
barrier is a possible method. However, in principle, reach sets can be obtained
using other methods and we allow for vector-valued reach sets as in Section 5.

We remark that the above synthesis procedure only provides a sufficient con-
dition for verifying safety, however our control synthesis approach offers several
advantages over existing synthesis techniques. For example, our approach re-
quires over-approximation of (forward) reach sets rather than computation of
reach-avoid sets. Over-approximating reach sets is often more tractable and can
be easily incorporated in an SOS framework using barrier functions as described
above. Our approach does not require discretization of space or time and thus
does not suffer from the numerical approximation issues of the HJ approaches
as described in the Introduction. In particular, our approach is guaranteed to
be sound and “exact” guards in the form of polynomial functions are obtained.
Finally, while the improvements in computational time compared to HJ solu-
tions is highly problem dependent, steady progress in convex optimization and
in SOS program solutions [23, 24] suggests that our approach will be applicable
to ever larger systems.

4.2. Example

Consider a hybrid system with three modes Q = {A, B, C} where each mode
is an affine system governed by ẋ = Aq(x − x̄q) + w for q ∈ Q where x ∈ R2,

w ∈ W , {w : wTw ≤ 1} ⊂ R2, and

AA =

[
−4 2
1 −1

]
AB =

[
−2 −2
−1 −2

]
AC =

[
−2 0
0 −1

]
(31)

x̄A =
[
−1 −1.5

]T
x̄B =

[
0 −.5

]T
x̄C =

[
0 0.5

]T
. (32)

Assume RA�B = RB�C = RC�A = R2 and RA�C = RB�A = RC�A = ∅. Fig.
2 depicts the resulting hybrid automaton. Let the unsafe set be U(q) = {x :
xTx ≥ 4} for all q ∈ Q and assume the system is initialized near the origin with
I(q) = {x : xTx ≤ 0.0001} for all q ∈ Q.
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Mode A

ẋ = AA(x − x̄A) + w

Mode B

ẋ = AB(x − x̄B) + w

gA�B(x) ≥ 0

Mode C

ẋ = AC(x − x̄C) + w

gB�C(x) ≥ 0

gC�A(x) ≥ 0

Figure 2: Transition diagram for the example in Section 4.2. Transitions are taken when
guard functions become nonnegative.

We seek to design guard functions gA�B(x), gB�C(x), and gC�A(x) to ensure
that the system does not enter the unsafe region. Since the dynamics of each
mode are affine, we search for positive definite matrices Pq ∈ R2×2 such that

the ellipsoid Eq , {x | (x− x̄q)TPq(x− x̄q) ≤ 1} is a robustly invariant set [25].
We then define

sA(x) = φA(x) ,
[
1− (x− x̄A)TPA(x− x̄A) −gA�B(x)

]T
(33)

sB(x) = φB(x) ,
[
1− (x− x̄B)TPB(x− x̄B) −gB�C(x)

]T
(34)

sC(x) = φC(x) ,
[
1− (x− x̄C)TPC(x− x̄C) −gC�A(x)

]T
(35)

so that Φq ∈ Reach(q, Sq) where Φq and Sq are defined as in Theorem 1. In
(33), we include −gA�B(x) since the continuous state can only evolve in a region
where the guard from A to B is not active, and similarly for (34) and (35). We
restrict to guards that are half-planes and obtain

PA =

[
4.721 −2.574
−2.574 1.529

]
PB =

[
1.907 2.264
2.264 3.340

]
PC =

[
3.457 0.198
0.198 0.338

]
(36)

and

gA�B =
[
−1.529 −2.214

]T
x− 1.755 (37)

gB�C =
[
3.055 −1.318

]T
x− 1.561 (38)

gC�A =
[
−5.305 4.024

]T
x− 2.813. (39)

We thus certify safety for any initial condition within
⋃
q∈Q(q,Φq) shown in

Fig. 3. Note that none of the ellipsoids Eq in Fig. 3 are completely contained
within the safe region, thus mode switching is required to achieve safety.

The above example is easily extended to general switched affine systems with
an arbitrary number of modes.
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Figure 3: Positively invariant sets, reach sets, and guards for Example A generated by the
guard synthesis algorithm. In the figure, Vq(x) , 1− (x− x̄q)TPq(x− x̄q).

5. Application to Highway Onramp Metering

5.1. Model Definition

We now present an application of our technique to the cell transmission
model of freeway traffic flow [26]. We consider a freeway model consisting of
two segments, see Fig. 4 (adapted from Example 1, [27]). The number of vehicles
in segment 0 (resp. segment 1) at time t is n0(t) (resp. n1(t)). An onramp with

queue length nr(t) merges with segment 0. Let n(t) =
[
n0(t) n1(t) nr(t)

]T
.

Vehicles flow into segment 1 at a constant rate of I1 vehicles per hour (vph),
and vehicles join the onramp queue at a constant rate of Ir vph. In addition,
f1(n) vph flow from segment 1 to segment 0, f0(n) vph flow out of segment 0,
and vehicles also exit segment 1 via an offramp at a rate βf1(t) vph for some
β ∈ (0, 1) where f0(·) and f1(·) are defined subsequently.

The maximum flow rate from the onramp to segment 0 can be controlled via
metering of traffic using, e.g., traffic lights, and thus the discrete state space is
Q , {FF, M} where

• Mode FF is the ramp free-flow mode and

• Mode M is the ramp metered mode.
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n0(t)

nr(t)

n1(t)
f0(n) f1(n)

fr(n, q)

Ir

I1

βf1(n)

onramp
metering

Figure 4: Cell transmission model of a freeway consisting of two segments and a merging
onramp.

The resulting mode-dependent flow from the onramp is fr(n, q), defined subse-
quently.

The cell transmission model results in the following dynamics:

ṅ0 = −f0(n) + f1(n) + fr(n) (40)

ṅ1 = −(1 + β)f1(n) + I1 (41)

ṅr = −fr(n, q) + Ir. (42)

The flow rates are defined by the following:

f0(n) , min{vn0(t), F0} (43)

f1(n) , min{vn1(t), F1,−w(n0(t)−Nc)} (44)

fr(n, q) , min{vnr(t), Fr(q)} (45)

where v is the free-flow speed of vehicles in miles per hour, Nc is the maximum
number of vehicles that can occupy segment 0, w is the congestion wave speed
(see [26]), Fi for i ∈ {0, 1} represent maximum flow rates, and Fr(q) is the
onramp maximum flow rate in mode q. Equations (43)–(45) follow from the
fundamental diagram of traffic flow, see [28] and references therein.

The discrete mode q ∈ {FF, M} affects the maximum flow rate from the
onramp, i.e

• Fr(FF) is the maximum free-flow rate from the onramp, and

• Fr(M) is the maximum metered rate obtained by metering traffic flow from
the onramp.

For the numerical results presented, we use the values in Table 1, for which
n1 is nondecreasing1. We assume n1(0) ≥ F1/v and therefore

n1(t) ≥ F1/v ∀t ≥ 0 (46)

1This situation may arise, for instance, during “rush hour” when total freeway input ex-
ceeds capacity.
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Figure 5: Trajectories of (40)–(42) in the (n0, nr)-plane using values in Table 1 for the case
when n1(t) ≥ F1/v ∀t ≥ 0. The shaded region is unsafe.

F0 = 6000 v = 60 I1 = 9000

F1 = 6000 w = 20 Ir = 2000

Fr(FF) = 4500 β = 1/2 Nr = 300

Fr(M) = 1500 Nc = 400 Θ = 1500

δ = 8 αr = 3/4

Table 1: Parameter values for Example B

for which

(ne0, n
e
r) , (−(F0 − Ir)/w +Nc, Ir/v) (47)

= (200, 100/3) (for values in Table 1) (48)

is an equilibrium occupancy for segment 0 and the onramp in the ramp free-
flow mode. Furthermore, f1(n) reduces to min{F1,−w(n0(t) − Nc)} and then
(ṅ0, ṅr) is a function of the metering mode and (n0, nr) only. Fig. 5 shows
trajectories projected in the (n0, nr)-plane assuming (46). We seek to design a
strategy for switching between ramp free-flow mode and ramp metered mode to
achieve a safety and performance condition, defined in the following subsection.

5.2. Safety Condition

We impose two constraints characterizing desirable characteristics of the free-
way model derived above. We first assume that the onramp has finite capacity
Nr, and thus we wish to ensure

nr(t) ≤ Nr ∀t ≥ 0. (49)

The practical implications of exceeding this maximum capacity may be an un-
desirable increase in congestion on streets near the onramp entrance. We also
wish to maintain a minimum freeway exit throughput βf1(t) ≥ Θ. Assuming
(46), this results in an upper bound on n0(t), thus we have the second safety
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condition

n0(t) ≤ N0 ∀t ≥ 0 (50)

where N0 = −Θ/(βw)+Nc. We refer to (49) and (50) as the safety constraints.
Numerical values for Nr and Θ are given in Table 1, which gives N0 = 250.

Thus we see that the equilibrium at (ne0, n
e
r) in ramp free-flow mode satisfies

our safety constraint, however not all trajectories initialized in ramp free-flow
mode remain safe before reaching the equilibrium.

5.3. Guard Synthesis

We seek a strategy for switching between ramp free-flow and ramp metered
mode such that trajectories converge to the equilibrium (ne0, n

e
r) while remaining

within the safe region, and do so with a “reasonable” number of switches. We
make this precise in the following problem statement:

Guard Synthesis Statement. Design guard sets GFF→M and GM→FF for transition-
ing from ramp free-flow mode to ramp metered mode and from ramp metered
mode to ramp free-flow mode, respectively, such that

C1) the safety conditions (49) and (50) are satisfied for all trajectories ini-
tialized in the free-flow mode with nr(0) ≤ αrNr and n0(0) ≤ N0 where
αr ∈ [0, 1) (we use the value in Table 1),

C2) trajectories converge to the equilibrium (ne0, n
e
r) in ramp free-flow mode,

and

C3) the ramp queue length decreases by at least δ vehicles (given in Table
1) between subsequent switches to ramp metering mode. This imposes
an upper bound on the number of switches required to safely reach the
equilibrium point.

Fig. 6(a) demonstrates the naive strategy of switching immediately before
reaching the unsafe set, i.e. GFF→M = {(n0, nr) : n0 ≥ N0} and GM→FF =
{(n0, nr) : nr ≥ Nr}, which results in trajectories that do not converge to
the equilibrium, motivating the need for the guard synthesis algorithm.

As the safety condition is a function of n0 and nr only, we define n̄(t) ,
(n0(t), nr(t)) to be the state of the freeway system and let

S(FF) = S(M) , {n̄ : γS(n̄) � 0}, γS(n̄) ,
[
N0 − n0 Nr − nr

]T
(51)

be the safe set. We define guards as follows:

GFF→M , {n̄ : gFF→M(n̄) ≥ 0} (52)

GM→FF , {n̄ : gM→FF(n̄) ≥ 0} (53)

for polynomial functions gFF→M(·) and gM→FF(·). We choose gM→FF(n̄) = c0 −
n0 where c0 is a design parameter obtained using the SOS guard synthesis
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Figure 6: (a) A naive strategy of switching modes immediately before reaching the unsafe
set, initialized from the point (n0, nr) = (170, 200). The trajectory does not converge to
the equilibrium (200, 100/3). (b) A switching strategy synthesized using the guard synthesis
algorithm. The trajectory converges to the equilibrium (200, 100/3) with only four mode
switches.

algorithm, and we fix gFF→M(n̄) , n0 − N0. We will see that this formulation
is sufficient to obtain guards that guarantee safety, but if it were not, we could
allow for higher order guards in the synthesis algorithm.

Let ne , (ne0, n
e
r) denote the equilibrium in the free-flow mode. To ensure

C3), we establish reach sets φFF(n̄, l) and φM(n̄, l) with

φq(n̄, l) ,
[
V 1
q (n̄)− l V 2

q (n̄) −gq→q′(n̄) nr − cr
]T

(54)

for (q, q′) ∈ {(FF, M), (M, FF)} where the purpose of l is described below. We limit
our scope to the case where {nr ≥ cr} for some cr < ner (we choose cr = 25) to
facilitate the SOS procedure as we can see that {n̄ : nr ≥ cr} is invariant and
all trajectories with nr(0) ≤ ner and n0(0) ≤ N0 converge to the equilibrium
along safe trajectories. Furthermore, we choose V 2

q (n̄) , −gq′→q(n̄).
We can in fact establish a family of reach sets by encoding the following

expression into the SOS guard synthesis algorithm:

nr ≥ cr
−gq′→q(n̄)≥ 0
−gq→q′(n̄)≥ 0

 =⇒ f(n̄, q)T∇V 1
q (n̄) ≤ 0 (55)

where

f(n̄, q) ,

[
−f0(n) + f1(n) + fr(n)

−fr(n, q) + Ir

]
. (56)

The assumption (46) ensures f(·, q) is only a function of n̄. The advantage of
(55)–(56) is that we have guaranteed

{n̄ : φq(n̄, l) � 0} ∈ Reach(q, {n̄ : φq(n̄, l) � 0}) for each l. (57)
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We choose to parameterize V 1
q (n̄) as piecewise linear, and Fig. 7 shows V 1

FF(n̄)−
l = 0 and V 1

M (n̄) − l = 0 designed from the final guard synthesis algorithm for
several values of l. To achieve C3), we impose additional constraints on φFF and
φM for a specific value of l. In particular, we impose

φFF(n̄, 0)� 0
gFF→M(n̄)� 0

}
=⇒ V 1

FF(n̄) ≤ 0 (58)

φM(n̄, 0)� 0
gM→FF(n̄)� 0

}
=⇒ V 1

M (n0, nr + δ) ≤ 0. (59)

Equations (58) and (59) ensure that each time the freeway switches from metered
to free-flow and back to metered mode, the ramp queue decreases by at least δ
vehicles. We use l = 0 in (58)–(59), but any choice would work.

To ensure C2), we search for a quadratic function φe(n) = (n̄−ne)TPe(n̄−ne)
where Pe ∈ R2×2 is a design parameter with the restriction Pe � 0 such that
Φe , {n̄ : φe(n̄) ≤ 1} ⊂ S(FF) and Φe is invariant. We then ensure {n̄ :
φM(n̄, 0) � 0} ⊂ Ve(n̄), thereby implying that for trajectories within Φe at time
t, the next switch to free-flow mode will converge to the equilibrium with no
further switching. Finally, we must ensure that trajectories initialized with large
queue length nr remain in the safe region so that C1) holds. To this end, we
verify {n̄ : nr ≤ αrNr} is invariant in the free-flow mode and ensure that there
exists l∗ such that

nr ≤ αrNr
n0 ≤N0

gFF→M(n̄) ≥ 0

 =⇒ φM(n̄, l
∗) � 0 (60)

φM(n̄, l
∗) � 0 =⇒ nr ≤ Nr. (61)

Equations (60) and (61) ensure that upon switching to metered mode, trajecto-
ries cannot become unsafe before first switching again to free-flow mode, thereby
guaranteeing safety.

We provide results from the guard synthesis algorithm in Fig. 6(b) and
Fig. 7. The guard synthesis algorithm iteratively increases δ from −3 to 8 and
solves for new guards and reach sets at each step. The final guard guaranteeing
C1)–C3) is gM→FF = 201.5306− n0.

6. Conclusions

We have presented a technique for synthesizing switching guards for hybrid
systems. Our approach synthesizes guard sets as semialgebraic sets that trigger
transitions between modes of the hybrid system to guarantee a state-space safety
constraint. Lemma 1 and Proposition 1 present the requirements on guard
sets and reach sets to ensure safety and prevent Zeno executions. Theorem 1
encodes these requirements into an SOS program which can be solved using an
iterative algorithm. As is the case for all bilinear optimization problems widely
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Figure 7: (a) and (b) show V 1
q (n̄) − l for q ∈ {FF, M} for several values of l and the guards,

(c) indicates that φFF and φM ensures the onramp queue nr reduces by at least δ vehicles
when switching from free-flow to metered and back to free-flow mode, and (d) shows Φe and
V 1
M (n̄) = 0. A trajectory that switches to free-flow mode within Φe will converge to the

equilibrium safely with no more switching. Note the axes scales.

used in practice, convergence to a solution is not guaranteed. Nonetheless, we
demonstrate successful use of this approach on several examples.

In the theoretical development of our approach, we assume reach sets are
readily available. In the examples, we compute reach sets by ensuring invariance
of the reach set. While this approach is particularly suited for inclusion in the
SOS guard synthesis algorithm, many other approaches to reach set computation
exists as discussed in the Introduction. Future research should investigate how
these approaches can be incorporated in the SOS approach. In addition, we were
able to obtain certain performance guarantees in the application to highway
onramp metering via slight modification of the conditions in Theorem 1. It
would be beneficial to generalize such performance guarantees to broader classes
of systems. Finally, it is often desirable to achieve a liveness condition whereby
the system is guaranteed to reach a certain region of the state space. Techniques
similar to those presented in this paper using underapproximations of reach sets
may be applicable to this liveness problem.
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