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Traffic Network Control from Temporal Logic
Specifications

Samuel Coogan, Ebru Aydin Gol, Murat Arcak, and Calin Belta

Abstract—We propose a framework for generating a signal
control policy for a traffic network of signalized intersections to
accomplish control objectives expressible using linear temporal
logic. By applying techniques from model checking and formal
methods, we obtain a correct-by-construction controller that
is guaranteed to satisfy complex specifications. To apply these
tools, we identify and exploit structural properties particular
to traffic networks that allow for efficient computation of a
finite state abstraction. In particular, traffic networks exhibit
a componentwise monotonicity property which allows reach set
computations that scale linearly with the dimension of the
continuous state space.

I. INTRODUCTION

State-of-the-art approaches to coordinated control of sig-
nalized intersections often focus on limited objectives such as
maximizing throughput [1] or maintaining stability of network
queues [2], [3]; see [4] for a review of the literature. However,
traffic networks are a natural domain for a much richer class
of control objectives that are expressible using linear temporal
logic (LTL) [5], [6]. LTL formulae allow control objectives
such as “actuate traffic flows such that throughput is always
greater than C1” where C1 is a threshold throughput, or such
that “traffic link queues are always less than C2” where C2

is a threshold queue length. LTL formulae also allow more
complex objectives such as “infinitely often, the queue length
on road ` should reach 0,” “anytime link ` becomes congested,
it eventually becomes uncongested,” or any combination of
these conditions. As these examples suggest, many objectives
that are difficult or impossible to address using standard
control theoretic techniques are easily expressed in LTL.

In this paper, we propose a technique for synthesizing a
signal control policy for a traffic network such that the network
satisfies a given control objective expressed using LTL. The
synthesized policy is a finite-memory, state feedback controller
that is provably correct, that is, guaranteed to result in a closed
loop system that satisfies the control objective.

Recent approaches to control synthesis from LTL specifica-
tions such as [7]–[21] allow automatic development of correct-
by-construction control laws; however, despite these promising
developments, scalability concerns prevent direct application
of existing results to large traffic networks.
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To overcome these scalability limitations, we identify and
exploit componentwise monotonicity [22] properties inherent
in flow networks such as traffic networks. These properties al-
low efficient computation of bounds on the one-step reachable
set from a rectangular box of initial conditions, which in turn
allows efficient computation of a finite state abstraction of the
dynamics, thereby mitigating a crucial bottleneck in the control
synthesis process. A related approach to abstractions of mono-
tone systems is suggested in [23], however the componentwise
monotonicity properties exploited in this work are much more
general and encompass monotone systems as a special case.
The present paper builds on our preliminary work in [24] by
defining componentwise monotonicity and identifying it as the
enabling property for efficient abstraction.

This paper is organized as follows: Section II gives nec-
essary preliminaries. Section III presents the model for sig-
nalized networks, and Section IV establishes the problem
formulation. Section V identifies componentwise monotonicity
properties of the traffic networks, and Section VI presents
scalable algorithms that rely on these properties to construct
a finite state representation of the traffic network. Section VII
describes the controller synthesis approach, and discusses the
computation requirements of our method. We present a case
study in Section VIII and conclude our work in Section IX.

II. PRELIMINARIES

The set I ⊆ Rn is a box if it is the cartesian product of
intervals, or equivalently, I is a box if there exists x, y ∈ Rn
such that I =

∏n
i=1{z ∈ R | xi ≺1

i z ≺2
i yi} where ≺1

i

,≺2
i∈ {<,≤} and xi, yi denote the ith coordinate of x and y,

respectively. Defining ≺1, {≺1
i }ni=1 and ≺2, {≺2

i }ni=1, we
may write I = {z ∈ Rn | x ≺1 z ≺2 y}. The vector x is the
lower corner of I, and likewise y is the upper corner.

When applied to vectors, <, ≤, >, and ≥ are interpreted
elementwise. The notation 0 denotes the all-zeros vector where
the dimension is clear from context. We denote closure of a set
Y by cl(Y ). Given an index set L and a set of values x` ∈ R
for ` ∈ L, {x`}`∈L denotes the collection of x`, ` ∈ L, but
we also interpret x = {x`}`∈L as an element of R|L|.

A transition system is a tuple T = (Q,S,→) where Q is
a finite set of states, S is a finite set of actions, and →⊂
Q×S×Q is a transition relation. We write q s→ q′ instead of
(q, s, q′) ∈→. Note that all transition systems in this paper are
finite [6]. The evolution of a transition system is described by
→. That is, a transition system is initialized in some state q0 ∈
Q, and, given an action s ∈ S, the next state of the transition
system is chosen nondeterministically from {q′ | q s→ q′}.
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Fig. 1. A typical traffic network with 11 links and 7 signalized intersections.
In the figure, Ldown

` = {`, 7, 8, 10}, Lup
` = {1, 2, 5}, and Ladj

` = {3, 4}. At
each time step, a signal actuates a subset of upstream links.

III. SIGNALIZED NETWORK TRAFFIC MODEL

A signalized traffic network consists of a set L of links and
a set V of signalized intersections. For ` ∈ L, let η(`) ∈ V
denote the downstream intersection of link ` and let τ(`) ∈
V ∪∅ denote the upstream intersection of link `. A link ` with
τ(`) = ∅ serves as an entry-point into the network, and we
assume η(`) 6= τ(`) for all ` ∈ L (i.e., no self-loops). Link
k 6= ` is upstream of link ` if η(k) = τ(`), downstream of link
` if τ(k) = η(`), and adjacent to link ` if τ(k) = τ(`). Roads
exiting the traffic network are not modeled explicitly. For each
v ∈ V , define Lin

v = {` | η(`) = v}, Lout
v = {` | τ(`) = v}

and for each ` ∈ L, define

Lup
` = {k ∈ L | η(k) = τ(`)} (1)

Ldown
` = {k ∈ L | τ(k) = η(`)} ∪ {`} (2)

Ladj
` = {k ∈ L | τ(k) = τ(`)}\{`} (3)

so that Ldown
` includes link ` and the links downstream of link

`, and Lup
` and Ladj

` are the links upstream and adjacent to
`, respectively, see Fig. 1. We have Ldown

` ∩ Ladj
` = ∅ and

Lup
` ∩L

adj
` = ∅, but note that it is possible for Ldown

` ∩Lup
` 6= ∅,

in particular, if there is a cycle of length two in the network.
Let Lloc

` = Ldown
` ∪ Lup

` ∪ L
adj
` be links “local” to link `.

Each link ` ∈ L possesses a queue x`[t] ∈ [0, xcap
` ]

representing the number of vehicles on link ` at time step
t ∈ N , {0, 1, 2, . . .} where xcap

` is the capacity of link `. We
allow x` to be a continuous quantity, thus adopting a fluid-like
model of traffic flow evolving in slotted time as in [1]–[3].

Movement of vehicles among link queues is governed
by mass-conservation laws and the state of the signalized
intersections. A link is said to be actuated if outgoing flow
from link ` is allowed as determined by the state of the traffic
signal at intersection η(`). At each intersection v,

Sv ⊆ 2L
in
v (4)

denotes the set of available signal phases, that is, each sv ∈ Sv ,
sv ⊆ Lin

v denotes a set of incoming links at intersection v that
may be actuated simultaneously. We define

S = {∪v∈Vsv | sv ∈ Sv ∀v ∈ V} ⊆ 2L (5)

so that each s ∈ S, s ⊆ L denotes a set of links in the network
that may be actuated simultaneously. We identify s ∈ S with
its constituent phases so that s = {sv}v∈V , and we interpret
S as the set of allowed inputs to the traffic network.

When a link is actuated, a maximum of c` vehicles are
allowed to flow from link ` to links Lout

η(`) per time step where

c` is the known saturation flow for link `, [4]. The turn ratio
β`k denotes the fraction of vehicles exiting link ` that are
routed to link k, [2]. Then β`k 6= 0 only if η(`) = τ(k), and∑

k∈Lout
η(`)

β`k ≤ 1. (6)

Strict inequality in (6) implies that a fraction of vehicles on
link ` are routed off the network via unmodeled roads that exit
the network. Traffic flow can occur only if there is available
capacity downstream. To this end, the supply ratio αsv`k denotes
the fraction of link k’s capacity available to link ` during phase
sv ∈ Sτ(k). That is, link ` may only send αsv`k(xcap

k − xk[t])
vehicles to link k in time period t under input sv . As the supply
is only divided among actuated incoming links, it follows that
for each k ∈ L∑

`∈sv

αsv`k = 1 ∀sv ∈ Sτ(k), sv 6= ∅. (7)

Constant turn and supply ratios are a common modeling
assumption justified by empirical observations; see [25] for
further discussion.

We are now in a position to define the dynamics of the link
queues. As we will see subsequently, the flow of vehicles out
of link ` is only a function of the state of links in Ldown

` , and
the update of link `’s state is only a function of links in Lloc

` .
Let x[t] = {x`[t]}`∈L, xdown

` [t] = {xk[t]}k∈Ldown
`

, and
xloc
` [t] = {xk[t]}k∈Lloc

`
. The outflow of link ` ∈ L is as follows:

f out
` (xdown

` , sη(`)) =
min

{
x`[t], c`,min k s.t.

β`k 6=0

{
α
sη(`)
`k

β`k
(xcap
k − xk[t])

}}
if ` ∈ sη(`)

0 else.

(8)

The interpretation of (8) is that the flow of vehicles exiting
a link ` when actuated is the minimum of the link’s queue
length, its saturation flow, and the downstream supply of ca-
pacity, weighted appropriately by turn and supply ratios. This
modeling approach is based on the cell transmission model
of traffic flow [26] which restricts flow if there is inadequate
capacity downstream. A consequence of (8) is that inadequate
capacity on one downstream link at an intersection causes
congestion that blocks incoming flow to other downstream
links. This phenomenon, sometimes called the first-in-first-
out property, has been widely studied in the transportation
literature and occurs even in multilane settings [27]1. The
number of vehicles in each link’s queue then evolves according
to the mass conservation equation

x`[t+ 1] =F`(x
loc
` [t], sloc

` [t], d`[t]) (9)

,min
{
xcap
` , x`[t]− f out

` (xdown
` [t], sη(`))

+
∑
j∈Lup

`

βj`f
out
j (xdown

j [t], sη(j)) + d`[t]
}

(10)

1Even if a turn pocket exists at an intersection, it is often too short to fully
mitigate this blocking property. Nonetheless, if the road geometry is such
that a sufficient number of dedicated lanes exist for a turning movement,
these lanes may be modeled with a separate link.



3

where d`[t] is the number of vehicles that exogenously enters
the queue on link ` in time step t, d = {d`[t]}`∈L, and sloc

` =
{sη(`), sτ(`)} if τ(`) 6= ∅, sloc

` = {sη(`)} otherwise; that is,
sloc
` is the state of the signals that are “local” to link `. The

minimization in (10) is only needed in case the exogenous
input d`[t] would cause the state of link ` to exceed xcap

` and
ensures that the network dynamics maps

X =
∏
`∈L

[0, xcap
` ] (11)

to itself. We interpet this as refusal of vehicles attempting to
exogenously enter the network when the link is full. Note
in particular that the supply/demand formulation prevents
upstream inflow from exceeding supply and thus for links with
no exogenous input, xcap

` is never the unique minimizer in (10).

Remark 1. An alternative to the above approach is to define an
auxiliary sink state Out in the transition systems T defined in
Section VI which captures any trajectories that exit the domain
X . The temporal logic specification can then incorporate the
requirement that the system never enters this Out state.

Assumption 1. We assume there exists D ⊂ RL such that

d[t] ∈ D ∀t (12)

and D satisfies D ⊂ ∪nDi=1Di where each Di is given by

Di = {d | di ≤ d ≤ di} (13)

for some di = {di`}`∈L, d
i

= {di`}`∈L.

In other words, we assume the disturbance is contained
within a union of boxes given by (13). This assumption is not
particularly restrictive, as any compact subset of RL can be
approximated with boxes to arbitrary precision [28], however
the number of boxes nD affects the computation time as
detailed in Section VII-B.

We let F (x, s,d) = {F`(xloc
` , s

loc
` , d`)}`∈L : X ×S ×D →

X so that

x[t+ 1] = F (x[t], s[t],d[t]). (14)

The set of states of system (14) that are reachable from a
set Y ⊂ X under the control signal s ∈ S in one timestep is
denoted by the Post operator and given by

Post(Y, s) = {x′ = F (x, s,d) | x ∈ Y,d ∈ D}. (15)

We call Post(Y, s) the one step reachable set from Y under
s. The main features of the queue-based modeling approach
proposed above such as finite saturation rates, finite queue
capacity, a set of available signaling phases, and fixed turn ra-
tios are standard in many modeling and simulation approaches
such as [2], [3], see also [4], [29] and references therein for
discussions of queue-based modeling of traffic networks.

IV. PROBLEM FORMULATION AND APPROACH

We now define and motivate the need for control objectives
expressible in LTL for traffic networks, and we outline a
control synthesis approach which relies on a finite state
representation of the traffic dynamics to meet these objectives.

LTL formulae are generated inductively using the Boolean
operators ∨ (disjunction), ∧ (conjunction), ¬ (negation), and
the temporal operators # (next) and U (until). From these, we
obtain a suite of derived logical and temporal operators such
as→ (implication), � (always), ♦ (eventually), �♦ (infinitely
often), finite deadlines with repeated #, and many others, see
[5], [6].

Formally, such formulae are expressed over a set of atomic
propositions, which we restrict to be indicator expressions
over subsets of X or predicates over the signaling state. For
example, the atomic proposition x` ≤ 10 is true for all x ∈ X
that satisfies the condition x` ≤ 10 (which constitutes a box
subset of X ), and the atomic proposition ` ∈ s is true for all
signals that actuate link `. We will see in Section V and Section
VI that restricting to atomic propositions corresponding to box
subsets of X offers significant computational advantages.

Semantically, LTL formulae are interpreted over a trajectory
x[t] and the corresponding input sequence s[t] for t = 0, 1, . . ..
For example, the state/input sequence (x[t], s[t]) satisfies the
LTL formula ϕ = �(x` ≤ 10) ∧ �♦(` ∈ s) if and only if
x`[t] ≤ 10 for all t and ` ∈ s[t] infinitely often (i.e., for
infinitely many t). Thus a trajectory satisfies a LTL formula
if and only if the formula holds for the corresponding trace
of atomic propositions that are valid at each time step. A
formal definition of the semantics of LTL over traces is readily
available in the literature, e.g., [5], [6], and is a natural
interpretation of the above Boolean and temporal operators.
For example, a trace satisfies ♦ϕ if and only if there exists a
suffix of the trace satisfying ϕ.

Examples of LTL formulae representing desired control
objectives relevant to traffic networks include those from the
Introduction, as well as:
• ϕ1 = ♦�(x` ≤ C) for some C

“Eventually, link ` will have less than C vehicles and this
will remain true for all time”

• ϕ2 = �♦(` ∈ s)
“Infinitely often, link ` is actuated”

• ϕ3 = �((` ∈ sv1)→#(k ∈ sv2))
“Whenever signal v1 actuates link `, signal v2 must actuate
link k in the next time step”

• ϕ4 = �(x` ≥ C1→ ♦(x` ≤ C2))
“Whenever the number of vehicles on link ` exceeds C1, it
is eventually the case that the number of vehicles on link `
decreases below C2.”

The main problem considered in this paper is as follows:

Control Synthesis Problem. Given a traffic network and an
LTL formula ϕ over a set of atomic propositions as described
above, find a control strategy that, at each time step, chooses a
signaling input such that all trajectories of the traffic network
satisfy ϕ from any initial condition.

To solve the control synthesis problem, we propose com-
puting a finite state abstraction that simulates (in a manner
to be formalized below) the traffic network dynamics. As we
discuss in Section VII-A, the result is a full-state feedback
controller which requires finite memory. We rely on dynamical
properties of the traffic network to compute the abstraction,
and then apply tools from automata theory and formal methods
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to synthesize a finite-memory, state feedback control strategy
solving the control synthesis problem.

V. COMPONENTWISE MONOTONICITY OF TRAFFIC
NETWORKS

To generate control strategies for the traffic network that
guarantee satisfaction of a LTL formula, we first construct a
finite state representation, or abstraction, of the model defined
in Section III. We now define a componentwise monotonicity
property that simplifies this task and next show that the model
in Section III possesses this property.

Definition 1. Consider the dynamical system

z[t+ 1] = f(z[t], w[t]) (16)

for z ∈ Z ⊆ Rn, w ∈ W ⊆ Rm with f : Z×W → Z contin-
uous. System (16) is componentwise monotone if there exists
a signature matrix ∆ = [δij ]

n
i,j=1 with each δij ∈ {−1, 1}

such that for all i,

δijξj ≤ δijξj and wj ≤ wj ∀j ∈ L (17)

implies f(ξ, w) ≤ f(ξ, w)) (18)

for any ξ, ξ ∈ Z , w,w ∈ W . That is, (16) is componentwise
monotone if fi is monotonic in each z variable and monoton-
ically increasing in each w variable.

A definition similar to Definition 1 appears in [22], but omits
dependence on a disturbance input.

We now give a characterization of componentwise mono-
tone systems which stipulates that ∂f/∂z be sign-stable, that
is, the sign structure of the Jacobian does not change as z, w
range over their domain.

Lemma 1. Consider dynamical system (16) and further sup-
pose that f(z, w) =

[
f1(z, w) . . . fn(z, w)

]T
is Lipschitz

continuous so that partial derivatives exist almost everywhere.
If for all i ∈ {1, . . . , n}:

∀j ∈ {1, . . . , n} ∃δij ∈ {−1, 1} : δij
∂fi
∂zj

(z, w) ≥ 0 a.e. (19)

and ∀j ∈ {1, . . . ,m} :
∂fi
∂wj

(z, w) ≥ 0 a.e. (20)

where a.e.(almost everywhere) implies the condition must hold
wherever the derivative exists, then (16) is componentwise
monotone.

Proof. Let [δij ]
n
i,j=1 be as in the hypothesis of the Lemma.

By the Fundamental Theorem of Calculus, for all w and for
almost all2 ξ, ξ satisfying δijξj ≤ δijξj for all j,

fi(ξ, w)− fi(ξ, w) = (21)(∫ 1

0

∑n
j=1

∂fi
∂ξj

(ξ + r(ξ − ξ), w)(ξj − ξj)dr
)
≥ 0 (22)

where nonnegativity follows because δij(ξj − ξ
j
) ≥ 0,

δij∂fi/∂ξj ≥ 0, and δ2ij = 1 for all i, j. Similarly, for almost

2Eq. (21) requires existence of ∂g/∂z almost everywhere along the line
segment connecting z and z, which holds for almost all z for fixed z [30,
Ch. 2]. Similarly, fi(ξ, w)− fi(ξ, w) holds for almost all w for fixed w.

all w ≥ w, fi(ξ, w) − fi(ξ, w) ≥ 0. It follows by continuity
of fi that fi(ξ, w) − fi(ξ, w) ≥ 0 for all ξ, ξ that satisfy
δijξj ≤ δijξj and all w ≤ w, for all i, completing the
proof.

The critical feature of componentwise monotone systems
we wish to exploit is that over approximating the one-step
reachable set from a box of initial conditions is computation-
ally efficient. In particular, the reach set is contained within
a box defined by the value of fi at two particular points for
each i, regardless of the dimension of the spaces Z and W:

Lemma 2. Let (16) be componentwise monotone with signa-
ture matrix ∆ = [δij ]

n
i,j=1 and assume Z is a closed box.

Given z, z ∈ Z and w,w ∈ W with z ≤ z and w ≤ w. Let
ξi ∈ Z and ξ

i ∈ Z be defined elementwise as follows for each
i:

ξi
j

=

{
zj if δij = 1

zj if δij = −1
, ξ

i

j=

{
zj if δij = 1

zj if δij = −1.
(23)

Then

fi(ξ
i, w) ≤ fi(z, w) ≤ fi(ξ

i
, w) ∀i (24)

for all z, w such that z ≤ z ≤ z and w ≤ w ≤ w.

Proof. Observe that δijξij ≤ δijzj for all i, j for all z ≤ z ≤ z,

and symmetrically, δijzj ≤ δijξ
i

j for all i, j for all z ≤ z ≤ z.
The Lemma then follows immediately from Definition 1.

This remarkable feature of componentwise monotone sys-
tems is analogous to well-known results for monotone systems
[31]–[33], but componentwise monotonicity allows consider-
ation of a much broader class of systems, including traffic
networks, which are generally not monotone.
Remark 2. Observe that the lower and upper bounds in (24)
are achieved for appropriate choice of z and w, thus the
approximation of the one-step reachable set is tight.

To prove that the traffic network dynamics developed in
Section III are componentwise monotone, we first require a
technical assumption:

Assumption 2. For all ` ∈ L,

c` ≤ xcap
` −

βk`
αk`

ck ∀k ∈ Lup
` . (25)

Assumption 2 is a sufficient condition for ensuring that if
a link has inadequate capacity and blocks upstream flow, then
this link’s queue will not empty in one time step. This effec-
tively is an assumption that the time step is sufficiently small
to appropriately capture the queuing phenomenon. Specifically,
the saturation flow rate c` of link ` is in units of vehicles per
time step and, thus, is implicitly a function of the chosen time
step. Physically, c` is required to decrease with decreased time
step and thus Assumption 2 is satisfied when a sufficiently
small time step is used for the model.

Theorem 1. The traffic network model is componentwise
monotone for any signaling input s ∈ S. In particular, F`
is increasing in xk for k downstream or upstream of link ` or
equal to `, and decreasing in xk for k adjacent to link `.
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Proof. For fixed s ∈ S, we show that F (x, s,d) satisfies
conditions (19) and (20) of Lemma 1 with x,d replacing
z, w. Observe that F is continuous and piecewise differentiable
by (8)–(10) and (14), thus it is Lipschitz continuous [34].
The minimum function in (8) implies that F is differentiable
almost everywhere. We first have ∂F`

∂d`
∈ {0, 1} a.e. by (10),

satisfying (20). Now consider ∂F`/∂xk. For (20), we consider
four exhaustive cases:
• Case 1, k ∈ (Ldown

` ∪ Lup
` )\{`}. From (8)–(10), link k may

block the outflow of link ` when k ∈ Ldown
` , or link k may

contribute to the inflow to link ` if k ∈ Lup
` , thus we have

∂F`
∂xk

∈ {0,−∂f
out
`

∂xk
, βk`

∂f out
k

∂xk
,−∂f

out
`

∂xk
+ βk`

∂f out
k

∂xk
} a.e. where

the fourth possibility occurs only if k ∈ Ldown
` ∩ Lup

` . But
∂f out
`

∂xk
∈ {0,−αsη(`)`k /β`k} a.e. and ∂f out

k

∂xk
∈ {0, 1} a.e., thus

∂F`
∂xk
≥ 0 a.e., satisfying (19).

• Case 2, k = `. We have ∂f out
`

∂x`
∈ {0, 1} a.e. and, for j ∈ Lup

` ,
∂f out
j

∂x`
∈ {0, αsη(j)j` /βj`} a.e., however, Assumption 2 ensures

that, a.e., either ∂f out
`

∂x`
= 0 or ∂f in

`

∂x`
= 0, i.e.,

∂f out
j

∂x`
= 0 for all

j ∈ Lup
` . Thus ∂F`

∂x`
∈ {0, 1, 1 +

∑
j∈Lup

`
βj`

∂f out
j

∂x`
} a.e. But∑

j∈Lup
`
βj`

∂f out
j

∂x`
≥ −

∑
j∈Lup

`
α
sη(j)
j` = −1 by (7) (recall

that η(j) = τ(`) for all j ∈ Lup
` ), that is, ∂f in

` /∂x` ≥ −1,
thus ∂F`

∂x`
≥ 0 a.e., satisfying (19).

• Case 3, k ∈ Ladj
` . In this case, inadequate capacity of link

k may block flow to link `, as discussed above. We have
∂F`
∂xk

=
∑
j∈Lup

`
βj`

∂f out
j

∂xk
. Since

∂f out
j

∂xk
∈ {0,−αsη(j)jk /βjk}

a.e., we have ∂F`
∂xk
≤ 0 a.e., satisfying (19).

• Case 4, k 6∈ Lloc
` . Then ∂F`

∂xk
= 0, trivially satisfying (19).

The following corollary implies that the one-step reachable
set of the traffic dynamics from a (closed) box I for any given
signaling input s is over-approximated by the union of boxes,
one box for each i = 1, . . . nD, where each of these boxes
is efficiently computed by evaluating F` at two particular
points for each ` ∈ L. The obtained over-approximation is
denoted with the Post operator. This critical result allows
efficient computation of a finite state representation of the
traffic dynamics, as detailed in Section VI.

Corollary 1. Consider the set I = {x | x ≤ x ≤ x̄}
for x,x ∈ X , and for each ` ∈ L, define ξ`(x,x) =

{ξ`
k
(xk, xk)}k∈Lloc

`
, ξ

`
(x,x) = {ξ`k(xk, xk)}k∈Lloc

`
where

ξ`
k
(xk, xk) =

{
xk if k ∈ Ldown

` ∪ Lup
`

xk if k ∈ Ladj
`

(26)

ξ
`

k(xk, xk) =

{
xk if k ∈ Ldown

` ∪ Lup
`

xk if k ∈ Ladj
` .

(27)

Then for all s ∈ S, Post(I, s) ⊆ Post(I, s) where

Post(I, s) :=
nD⋃
i=1

{x′ | F`(ξ`, sloc
` , d

i
`) ≤ x′` ≤ F`(ξ

`
, sloc
` , d

i

`) ∀` ∈ L}.

(28)

q9 q10 q11 q12

q5 q6 q7 q8

q1 q2 q3 q4

xmax
`

xmax
k

xmax
`

xmax
k

q1

q4
q5

q2 q3

q6

(a) (b)
Fig. 2. Stylized depictions of two box partitions. (a) A gridded box partition
with regularly sized intervals. (b) A nongridded box partition.

Proof. By substituting x,x for z, z and di`, d
i

` for w,w in
Lemma 2 and defining f(x,d) , F (x, s,d), we obtain {x′ =
F (x, s,d) | x ∈ I,d ∈ Di} ⊆ {x′ | F`(ξ`, sloc

` , d
i
`) ≤ x′` ≤

F`(ξ
`
, sloc
` , d

i

`) ∀` ∈ L} for all i = 1, . . . , nD. The corollary
follows from the trivial fact that Post(I, s) = ∪nDi=1{x′ =
F (x, s,d) | x ∈ I, d ∈ Di}.

VI. FINITE STATE REPRESENTATION

To apply the powerful tools of LTL synthesis, we require
a finite state representation of the traffic network model. In
general, obtaining finite state abstractions is a difficult problem
and existing techniques do not scale well. In this section, we
exploit the componentwise monotonicity properties developed
above and propose an efficient method for determining a finite
state representation of the traffic network dynamics.

A. Finite State Abstraction

Definition 2 (Box partition). For finite index set Q, the set
{Iq}q∈Q is a box partition of X (or simply a box partition),
if each Iq ⊆ X is a box, ∪q∈QIq = X , and Iq ∩ Iq′ = ∅ for
all q, q′ ∈ Q. For q ∈ Q, let xq = {xq,`}`∈L, xq = {xq,`}`∈L
denote the lower and upper corners, respectively, of Iq , that
is, Iq = {x | xq ≺1

q x ≺2
q xq} where ≺1

q= {≺1
q,`}`∈L,

≺2
q= {≺2

q,`}`∈L, and ≺1
q,`,≺2

q,`∈ {<,≤}.

For a box partition {Iq}q∈Q of X , let π : X → Q be
uniquely defined by the condition x ∈ Iπ(x), that is, π(·) is
the natural projection from the domain X to the (index set
of) boxes. A special case of a box partition of a rectangular
domain is the following:

Definition 3 (Gridded box partition). For X = {x =
{x`}`∈L | x` ≤ x` ≤ x`}, a box partition {Iq}q∈Q of X
is a gridded box partition if for each ` ∈ L, there exists
N` ∈ {1, 2, . . .} and a set of intervals {I`1, . . . , I`N`} such that
∪N`i=1I

`
i = [x`, x`] and for each q ∈ Q, there exists indices

q` ∈ {1, . . . , N`} such that Iq =
∏
`∈L I

`
q`

. For gridded box
partitions, we make the identification Q ∼=

∏
`∈L{1, . . . , N`}

for all ` ∈ L.

When a box partition is not a gridded box partition, we say
it is nongridded. Fig. 2 shows two examples of box partitions,
one of which is a gridded box partition. From a box partition
of the traffic network domain X , we obtain a finite state
representation, or abstraction, of the traffic network model as
follows. Each element of the box partition corresponds to a
single state in the resulting finite state transition system, and
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to obtain a computationally tractable approach, we propose a
method for efficiently obtaining a finite state abstraction using
the componentwise monotonicity properties developed above:

Definition 4 (CM-induced finite state abstraction). Given
a box partition {Iq}q∈Q of X , the nondeterministic com-
ponentwise monotonicity-induced (CM-induced) finite state
abstraction, or simply the finite state abstraction, of the traffic
model is the transition system T = (Q,S,→) where Q is
the index set of the box partition, S is the available signaling
inputs, and → is defined by:

(q, s, q′) ∈→ if and only if Iq′ ∩ Post(cl(Iq), s) 6= ∅.
(29)

Remark 3. We must take the closure of Iq in (29) as the Post

operator and relevant properties (e.g., (28)) assume a closed
box. This allows efficient algorithms for constructing → via
(29) as detailed below.

Note that the CM-induced finite state abstraction is nonde-
terministic. Nondeterminism arises from the disturbance input
d and from the fact that a collection of continuous states is
abstracted to one discrete state.

By the definition of the finite state abstraction above, for any
trajectory x[t], t ∈ N generated by the traffic model under
input sequence s[t], t ∈ N, there exists a unique sequence
q[t], t ∈ N with each q[t] ∈ Q such that x[t] ∈ Iq[t] and

q[t]
s[t]→ q[t+ 1]. A transition system satisfying this property is

said to be a discrete abstraction of the dynamical system (14).
A controller synthesized from the abstraction to satisfy an
LTL formula as described in Section V can be applied to the
original traffic network with the same guarantees because the
abstraction simulates the original traffic network [6]. However,
abstractions generally result in unavoidable conservatism, that
is, nonexistence of an appropriate control strategy from the
abstraction does not imply nonexistence of a control strategy
for the original traffic network.

The following corollary to Remark 2 implies that the finite
state abstraction suggested in Definition 4 does not introduce
excessive conservatism; specifically, Corollary 2 tells us that
if (q, s, q′) ∈→, then for each link `, it is possible for the state
of link ` to transition from a state in box Iq to a state in Iq′ .

Corollary 2. For the CM-induced finite state abstraction
defined above, (q, s, q′) ∈→ if and only if

∃d = {d`}`∈L ∈ D,∃x′ = {x′`}`∈L ∈ Iq′ such that (30)

∀` ∈ L,∃x ∈ cl(Iq) s.t. x′` = F`(x
loc
` [t], sloc[t], d`[t]).

(31)

Proof. (if). Suppose (30)–(31) holds for some q, q′ ∈ Q
and s ∈ S , and let d ∈ D and x′ ∈ Iq′ be a particular
solution such that (31) holds for all `. We will show that
x′ ∈ Post(cl(Iq), s). Let i∗ be such that d ∈ Di∗ , and let ξ`,

ξ
`

be as in Corollary 1. We must have

F`(ξ
`, sloc

` , d
i∗

` ) ≤ x′` ≤ F`(ξ
`
, sloc
` , d

i∗

` ) (32)

by Lemma 2 where we make the same substitutions as in the
proof of Corollary 1 because (24) holds for x satisfying (31)

1: function ABSTRACTION(network model, D, {Iq}q∈Q)
returns T

2: inputs: network model, a traffic network model with
update functions {F`}`∈L with domain X
and signal input set S

3: D, the disturbance set D = ∪nDi=1Di
4: {Iq}q∈Q, a box partition X
5: →:= ∅
6: for each s ∈ S do
7: for each q ∈ Q do
8: for i := 1 to nD do
9: ξ` := as in (26)

10: ξ
`

:= as in (27)
11: y := F`(ξ

`, sloc
` , d

i
`)

12: y := F`(ξ
`
, sloc
` , d

i

`)
13: Q′ := SUCCESSORS(y,y, {Iq}q∈Q)
14: →:=→ ∪(q × s×Q′)
15: end for
16: end for
17: end for
18: return T := (Q,S,→)
19: end function
Fig. 3. Algorithm for computing a finite state abstraction of the traffic
dynamics. The algorithm requires function SUCCESSORS, which can be
implemented using different algorithms, depending on the structure of the
box partition.

for each ` ∈ L. By (28), it follows that x′ ∈ Post(cl(Iq), s),
and thus (q, s, q′) ∈→.

(only if). Suppose (q, s, q′) ∈→, it follows that Iq′ ∩
Post(cl(Iq), s) 6= ∅, let x′ ∈ Iq′ ∩ Post(cl(Iq), s) and
let i∗ ∈ {1, . . . , nD} be such that F`(ξ`, sloc

` , d
i∗

` ) ≤ x′` ≤
F`(ξ

`
, sloc
` , d

i∗

` ) for all ` ∈ L. Remark 2 implies that for
each `, there exists x ∈ cl(Iq) and d†` ∈ [di

∗

` , d
i∗

` ] such that
x′` = F`(x

loc
` , s

loc
` , d

†
`). Indeed, suppose not, then

x̃` , sup
x∈cl(Iq),d`∈[di

∗
` ,d

i∗
` ]

F`(x
loc
` , s

loc
` , d`) < x′`, or (33)

x
˜
` , inf

x∈cl(Iq),d`∈[di
∗
` ,d

i∗
` ]

F`(x
loc
` , s

loc
` , d`) > x′`. (34)

If (33) holds, then F`(x, s,d) ≤ x̃` < x′` ≤ F`(ξ
`
, sloc
` , d

i∗

` )

for all xq ≤ x ≤ xq and all di
∗
≤ d ≤ di

∗

, which implies
the upper bound in (24) is not achieved, contradicting the first
statement of Remark 2. A symmetric argument shows that if
(34) holds, then Remark 2 is again contradicted. Defining d =
{d†`}`∈L for the particular collection {d†`}`∈L above implies
that (30)–(31) holds, completing the proof.

We remark that, in (31), the same choice of x ∈ cl(Iq) will
generally not work for all ` ∈ L due to the over-approximation
of the reachable set; see [24] for further discussion.

B. Constructing The Transition System T
We begin with the primary algorithm for calculating T

shown in Fig. 3, which relies on Corollary 1 to compute
Post and to construct the finite state abstraction as defined
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in Definition 4. This algorithm requires a function called
SUCCESSORS that takes the lower and upper corners of a
box Y as input, as well as a box partition of X , and returns
the indices of the box partitions which intersects Y . We first
present a generic algorithm for SUCCESSORS applicable to
any box partition. To this end, consider the nonempty box
Iq = {x | x ≺1

q x ≺2
q x} and let Y , {x | y ≤ x ≤ y}.

It is straightforward to show that Iq ∩ Y 6= ∅ if and only if
x ≺1

q y and y ≺2
q x.

The algorithm in Fig. 4 utilizes this fact to compute Q′,
the indices of the partitions that intersect a box defined by the
corners y and y. The algorithm is convenient because it works
for any box partition of X , however it requires comparing the
corners y, y to the corners of each box Iq , q ∈ Q. Thus,
computing T scales quadratically with |Q| since we must
determine if Post(s, Iq) intersects each box Iq′ , q′ ∈ Q for
each q ∈ Q.

However, the general algorithm in Fig. 4 fails to take into
account any structure in the partition itself. For example, for
gridded box partitions, we can identify Q′ by comparing the
corners y, y componentwise to the partition’s constituent co-
ordinate intervals. For simplicity of presentation, we consider
gridded box partitions {Iq}q∈Q where, for each ` ∈ L, there
exists a set of intervals {I`1, . . . , I`N`} of the form

I`1 = [η`0, η
`
1], I`j = (η`j−1, η

`
j ], j = 2, . . . , N` (35)

for 0 = η`0 ≤ η`1 < η`2 < . . . < η`N`−1 < η`N` = xcap
` such that

Iq =
∏
`∈L I

`
q`

for q = {q`}`∈L ∈ Q ∼=
∏
`∈L{1, . . . , N`}.

Define

j` =

1 if y` = 0

max
j∈{1,...,N`}

j s.t. η`j−1 < y` else (36)

j
`

= min
j∈{1,...,N`}

j s.t. y
`
≤ η`j (37)

and let Q′ = {{q`}`∈L | q` ∈ {j`, j` + 1, . . . , j`}}. Then
Iq ∩ Y 6= ∅ if and only if q′ ∈ Q′. Thus, to determine
the partitions Q′ that intersect a given box Y , we simply
identify the indices of the intervals that intersects Y along
each dimension. Finding j

`
and j` can be done in O(N`) time

for each `, thus solving for Q′ requires O(|L|max`∈L{N`})
time. Thus, for gridded box partitions, we can instead use the
implementation of SUCCESSORS found in Fig. 5.

The algorithm in Fig. 5 may be applied to nongridded box
partitions with some modification. In particular, a nongridded
box partition {Iq}q∈Q can be refined to obtain the coarsest
possible gridded box partition with the property that each box
Iq is the union of boxes from the refinement. This refinement
is used as an index set; to compute the possible transitions
from Iq for q ∈ Q under signaling s ∈ S, we compute y and y
as in lines 11 and 12 of the algorithm in Fig. 3, and then use the
refinement along with the algorithm in Fig. 5 to determine Q′,
the set of intersected boxes. The refinement does not introduce
additional states in the transition system or require addition
reach computations; it is only used to efficiently determine Q′.
For example, the coarsest refinement of Fig. 2(b) partitions the
box labeled q5 into four boxes, which are all labeled q5. This
method will be faster if the total number of intervals in the

1: function SUCCESSORS(y, y, {Iq}q∈Q) returns Q′
2: inputs: y and y, points in domain X
3: {Iq}q∈Q, an interval partition of X
4: initialize: Q′ = ∅
5: for each q′ ∈ Q do
6: if (xq ≺1

q y)∧(y ≺2
q xq) then

7: Q′ := Q′ ∪ {q′}
8: end if
9: end for

10: return Q′
11: end function
Fig. 4. A generic algorithm for overapproximating successor states applicable
to any box partition. The algorithm returns Q′, the set of indices of boxes
that intersect the box defined by the corners y, y, that is, q′ ∈ Q′ if and
only if Iq′ ∩ {x ∈ X | y ≤ x ≤ y} 6= ∅.

1: function SUCCESSORS(y, y, {Iq}q∈Q) returns Q′
2: inputs: y = {y

`
}`∈L and y = {y`}`∈L,

points in domain X
3: Q, a grid interval partition of X
4: for each ` ∈ L do
5: j` := as in (36)
6: j

`
:= as in (37)

7: end for
8: return Q′ := {(j`)`∈L | j` ∈ {j`, . . . , j̄`} ∀` ∈ L}
9: end function

Fig. 5. An algorithm for identifying successor states when Q is a gridded
box partition.

refinement is less than |Q|.

C. Augmenting the State Space with Signaling

To capture control objectives that include the state of the
signals themselves (which are modeled as inputs in the finite
state abstraction T ), we augment the discrete state space.
Examples of specifications that require this augmention in-
clude ϕ2 and ϕ3 above or the specifications “the state of an
intersection cannot change more than once per nmin time steps”
or “an input signal cannot remain unchanged for nmax time
steps.” In particular, we propose augmenting the finite state
abstraction to encompass both the current state of the finite
state abstraction and the current state of the traffic signals.

Definition 5 (Augmented finite state abstraction). The aug-
mented finite state abstraction of the traffic network is the
transition system Taug = (Q,S,→aug) where
• Q = Q×S is the set of discrete states consisting of the box

partition index set and the set of allowed input signals,
• S is the set of allowed input signals,
• →aug⊆ Q × S × Q is the set of transitions given by

((q,σ), s, (q′,σ′)) ∈→aug for (q,σ), (q′,σ′) ∈ Q if and
only if (q, s, q′) ∈→ and σ′ = s.

VII. SYNTHESIZING CONTROLLERS FROM LTL
SPECIFICATIONS

A. Synthesis Summary

We omit the details of how a control strategy is synthesized
from the nondeterministic transition system Taug for a given
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LTL control objective, as this is well-documented in the litera-
ture, see e.g. [14], [35]. Instead, we summarize the main steps
of this synthesis as follows: from the LTL control objective,
we obtain a deterministic Rabin automaton that accepts all and
only trajectories that satisfy the LTL specification using off-
the-shelf software. We then construct the synchronous product
of the Rabin automaton and Taug in Definition 5, resulting
in a nondeterministic product Rabin automaton from which a
control strategy is found by solving a Rabin game [35]. The
result is a control strategy for which trajectories of the traffic
network are guaranteed to satisfy the LTL specification.

As the discrete state space is finite, the signaling control
strategy takes the form of a collection of “lookup” tables
over the discrete states of the system, Q, and there is one
such table for each state in the Rabin automaton. Thus,
implementing the control strategy requires implementing the
underlying deterministic transition system of the specification
Rabin automaton, which is interpreted as a finite memory
controller that “tracks” progress of the LTL specification and
updates at each time step. Given the current state of the Rabin
transition system, the controller chooses the signaling input
dictated by the current state of the augmented system Q.
Thus, we obtain a state feedback, finite memory controller.
Additionally, the controller update only requires knowledge
of the currently occupied partition of Q, and thus does not
require precise knowledge of the state x.

B. Computational Requirements

For each q ∈ Q and each s ∈ S, determining the set
{q′ | q s→ q′} requires first computing Post(Iq, s), which
requires computing F`(·) at 2nD points for each ` ∈ L.
Since F`(·, s, ·) is only a function of the links in Lloc, each
computation of this function requires time O(1) assuming the
average number of links at an intersection does not change
with network size. Thus Post(Iq, s) is computed in time
O(|L|nD). Then, we identify the set Q′ of boxes that intersect
Post(Iq, s). As described in Section VI-B, this requires 2|Q|
comparisons of vectors of length |L| and thus is done in time
O(|Q||L|) via the algorithm in Fig. 4. However, for gridded
box partitions, Q′ is computed in time O(|L|max`∈L{N`})
by the algorithm in Fig. 5. Even for nongridded box partitions,
Q′ can be computed in time O(|L|max`∈L{N`}) where N` is
interpreted as the number of intervals of link ` resulting from
the coarsest refinement of the box partition that results in a
gridded box partition. For a gridded partition, |Q| =

∏
`∈LN`

and thus the number of boxes grows exponentially with
the number of links in the network. For a nongridded box
partition, the number of partitions can be substantially lower.
Since {q′ | q s→ q′} must be computed for each q and s,
constructing T requires time O(|Q|2|S||L|2nD) when using
the algorithm in Fig. 4 or time O(|Q||S|max`∈L{N`}|L|2nD)
for the algorithm in Fig. 5.

We briefly compare these computational requirements to
that of polyhedral methods such as those in [14]. As the
dynamics in (8)–(10) are piecewise affine, such methods can
in principle be applied here. Computing Post(Iq, s) requires
polyhedral affine transformations and polyhedral geometric

v1 v2 v3 v4

1 2 3 4
6

5

10

9

7

8

Fig. 6. Signalized network consisting of a major corridor road (links 1, 2, 3,
and 4) which intersects minor cross streets (links 5, 6, 7, 8, 9, and 10). The
gray links are not explicitly modeled.

sums, operations that scale exponentially in |L| [36], [37]. To
determine if Post(Iq, s) intersects another polytope, geomet-
ric differences are required, which again scales exponentially
with |L|.

VIII. CASE STUDY

We consider the example network in Fig. 6 which
consists of a main corridor (links 1, 2, 3, and 4)
with intersecting cross streets (links 5, 6, 7, 8, 9, and
10) and four intersections, a commonly encountered net-
work configuration. The gray links exit the network
and are not explicitly modeled. The network parameters
are (xcap

1 , . . . , xcap
10 ) = (40, 50, 50, 50, 40, 40, 40, 40, 40, 40),

(c1, . . . , c10) = (20, 20, 20, 20, 10, 10, 10, 10, 10, 10), β12 =
β23 = β34 = β62 = β52 = 0.5, β73 = β84 = 0.9,
α
{1}
62 = α

{1}
52 = 0.5, and all other supply ratios are one, where

the time step is 15 seconds. We assume

D ={d | 0 ≤ d ≤ [10 0 0 0 10 10 0 0 10 10]}
∪ {d | 0 ≤ d ≤ [10 0 0 0 10 10 10 10 0 0]}. (38)

We further assume the available signals are Sv1 =
{{1}, {5, 6}}, Sv2 = {{2}, {7}}, Sv3 = {{3}, {8}}, and
Sv4 = {{4}, {9, 10}}. We wish to find a control policy for
the four signalized intersections that satisfies the LTL property
ϕ = ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 where

ϕ1 =�♦(sv1 = {5, 6}) ∧�♦(sv2 = {7})
∧�♦(sv3 = {8}) ∧�♦(sv4 = {9, 10}) (39)

“Each signal actuates cross street traffic infinitely often”

ϕ2 =♦�
(
(x1 ≤ 30) ∧ (x2 ≤ 30) ∧ (x3 ≤ 30) ∧ (x4 ≤ 30)

)
(40)

“Eventually, links 1, 2, 3, and 4 have fewer than 30
vehicles on each link and this remains true for all time”

ϕ3 =�
(
¬(sv4 = {4}) ∧#(sv4 = {4})→##(sv4 = {4})

)
(41)

ϕ4 =�
(
¬(sv4 = {9, 10}) ∧#(sv4 = {9, 10})

→##(sv4 = {9, 10})
)

(42)
For ϕ3 (resp. ϕ4), “The signal at intersection v4 must
actuate corridor traffic (resp. cross street traffic) for at
least two sequential time-steps.”

Thus, ϕ2 reflects our preference for actuating corridor traffic
and ensures that eventually, links 2, 3, and 4 have “adequate
supply” because if the number of vehicles on these links is less
than 30, then these links can always accept upstream demand,
thus avoiding congestion (congestion occurs when demand is
greater than supply). Condition ϕ1 ensures that, despite the
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Fig. 7. (a) A sample trajectory of a naı̈ve strategy that alternately actuates
corridor traffic and then cross street traffic for four time steps each in
a synchronized fashion. This policy does not satisfy the desired control
objective, in particular, (40) is not satisfied. (b) A sample trajectory resulting
from the synthesized control policy that is guaranteed to satisfy the LTL policy
(39)–(42). In the lower plots of (a) and (b), green (resp., red) for the signal
trace indicates corridor traffic (resp., cross street traffic) is actuated.

preference for facilitating traffic along the corridor, we must
infinitely often actuate traffic at the cross streets. Conditions
ϕ3 and ϕ4 are needed if, e.g. there exists crosswalks at
intersection v4 and a minimum amount of time is required
to allow pedestrians to cross. Note that repeated application
of the # (“next”) operator allows us to consider finite time
horizons as in (41) and (42).

We partition the state space into 408 boxes that favors larger
boxes when there are fewer total vehicles in the network. There
are 16 signaling inputs, and thus, the number of states in the
transition system Taug is |Q| = 6528. The Rabin automaton
generated from ϕ contains 62 states and one acceptance pair.
Computing the finite state abstraction T took 22.4 seconds.
In contrast, the computation would be intractable using poly-
hedral methods. Computing the product automaton took 30.9
minutes and computing the control strategy took 15.5 minutes
on a Macbook Pro with a 2.3 GHz processor where we use
the Rabin game solver in conPAS2 [14], however conPAS2
is written in MATLAB and the synthesis process is likely
to be much more efficient if implemented in C or C++ and
optimized. Furthermore, all computations can be performed
offline and some are parallelizable, such as computing the
product automaton. Finally, we note that the computed control
strategy is implemented with minimal online costs.

Fig. 7(a) shows a sample trajectory of the network using a

naı̈ve coordinated signaling strategy whereby each intersection
actuates corridor traffic for three time steps and then cross
traffic for three time steps. The exogenous disturbance is
generated uniformly randomly from D. The trajectories are
not guaranteed to satisfy the control objective, in particular,
ϕ2 is violated. Fig. 7(b) shows a sample trajectory of the
system with a control strategy synthesized using the finite state
abstraction augmented with signal history and the LTL require-
ment above. The control strategy is correct-by-construction
and thus guaranteed to satisfy ϕ from any initial state.

We see that the synthesized controller reacts to increased
vehicles on the corridor by actuating the corridor links, thereby
preventing congestion (inadequate supply) along the corridor.
At the same time, the controller actuates cross streets when
doing so does not adversely affect conditions on the corridor
(i.e., cause congestion). In contrast, the fixed time controller
in Fig 7(a) is not able to react to the current conditions of the
network and fails to prevent congestion along the corridor; in
fact, links 2, 3, and 4 periodically reach full capacity.

IX. CONCLUSIONS

We have proposed a framework for synthesizing a control
strategy for a traffic network that ensures the resulting traffic
dynamics satisfy a control objective expressed in linear tem-
poral logic (LTL). In addition to offering a novel domain for
applying formal methods tools in a control theory setting, we
have identified and exploited key properties of traffic networks
to allow efficient computation of a finite state abstraction.

Future research will investigate systematic methods for
determining an appropriate box partition to further reduce the
number of states in the computed abstraction. Additionally,
traffic networks are often composed of tightly coupled neigh-
borhoods and towns connected by sparse longer roads, and
such networks may be amenable to a compositional formal
methods approach using an assume-guarantee framework [5].
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