
Formal Methods for Control of Traffic Flow
Automated control synthesis from finite-state transition models

Samuel Coogan, Murat Arcak, and Calin Belta

POC: Sam Coogan (scoogan@ucla.edu)

September 13, 2016

Today’s increasingly populous cities require intelligent transportation systems that make
efficient use of existing transportation infrastructure. However, inefficient traffic management is
pervasive [1], [2], costing US$160 billion in the United States in 2015, including 6.9 billion
hours of additional travel time and 3.1 billion gallons of wasted fuel [3]. To mitigate these
costs, the next generation of transportation systems will include connected vehicles, connected
infrastructure, and increased automation. In addition, these advances must coexist with legacy
technology into the foreseeable future. This complexity makes the goal of improved mobility
and safety even more daunting.

To address this complexity, scalable and automated verification and synthesis techniques
for transportation systems are required. Methods from formal verification and synthesis of control
systems are highly promising for providing automated tools that guarantee safety and improve
mobility. Formal methods were originally developed for specifying and verifying the correct
behavior of software and hardware systems, as well as for synthesis of such systems. An
important research task now is to ensure these approaches are scalable, adaptable, and reliable
for transportation systems.

The first aim of this article is to review a broad technique from formal methods for
synthesizing correct-by-design controllers for dynamical systems by first obtaining a finite-state
abstraction and then applying a game-based algorithm for synthesizing a control strategy to satisfy
a linear temporal logic specification. The primary goal is to give an accessible introduction to
formal methods for control systems. The second objective is to review vehicular traffic-flow
models and to characterize a general model amenable to formal control synthesis. The dynamics
of traffic-flow networks are shown to exhibit considerable structure that enables efficient finite-
state abstraction. In doing so, the importance of identifying and exploiting inherent structural
properties is emphasized. The contents of this tutorial article are based on results presented in
[4], [5], [6].

1

Formal Methods For Control Synthesis

Control techniques often focus on limited objectives of system behavior such as stabilizing
a system around an equilibrium point or ensuring that the system does not enter an unsafe
operating condition. In contrast, formal methods have been developed in the field of computer
science to verify that software and hardware systems satisfy rich objectives expressed in temporal
logic. Examples of properties easily expressed in temporal logic include fairness (whenever some
condition occurs, another condition is guaranteed to eventually occur), repeated reachability (a
certain condition occurs infinitely often), and sequentiality (a condition only occurs after another
condition). For example, a safety requirement may be relaxed to a requirement that if the system
enters an unsafe condition, it eventually exits the unsafe condition.

Researchers from the control theory and computer science communities are increasingly
interested in combining control-theoretic tools for complex physical systems with formal methods
for accommodating complex specifications. A major difference is that, typically, formal methods
for software and hardware verification rely on finite-state models whereas control-theoretic
approaches to system analysis usually consider continuous state spaces. A full review of the
rapidly growing literature in this area is beyond the scope of this article, but some work that is
particularly relevant is highlighted. Certain classes of systems allow finite bisimulations such that
the dynamics are exactly represented by a finite-state transition model [7], [8], or are amenable to
a related notation of approximate bisimilarity [9], [10], [11], [12], [13]. When a finite bisimulation
is not possible, methods exist to approximate the behavior of the underlying system with finite
abstractions; [14], [15], [16], [17], [18], [19], [20] are particularly relevant to the ideas presented
in this article. Applications and special cases include robotic path planning [21], [22], [23], [24],
switched continuous-time systems [25], piecewise-linear systems [26], [27], model predictive
control formulations [28], [29], and control of Markov decision processes [30], [31], [32], [33].

In this article, the focus is on a particular approach for applying formals methods to
control systems and defining finite-state abstractions for discrete-time dynamical systems that
overapproximate the behavior of the underlying dynamics. The overapproximation is such that,
by considering the possible evolution of the finite abstraction for given inputs, properties of
the behavior of the original dynamical system are guaranteed subject to these inputs. Using
the finite-state abstraction, an automatic controller-synthesis procedure is proposed to guarantee
that the abstraction and the underlying system satisfy an objective given in temporal logic. The
synthesis algorithm, illustrated schematically in Figure 1, relies on automata theory and fixed-
point algorithms to compute a finite-memory control strategy.

2

Traffic-Flow Networks

Next, the formal control synthesis approach presented in this article is specialized to traffic-
flow networks. First, a model that consists of links interconnected at junctions is defined. Vehicles
flow from link to link through the junctions depending on physically and phenomenologically
motivated flow properties. The state of the network at a given time is the number of vehicles
occupying each link. This model captures the salient features of both networks of signalized
intersections and freeway traffic networks.

The theory of monotone dynamical systems is then used for the finite abstraction of
traffic-flow networks. Trajectories of monotone systems maintain a partial order on the state
of the system, which restricts the possible transient and long-term behavior of such systems
[34], [35], [36]. Congestion propagation precludes the dynamics of traffic-flow networks from
being monotone; however, a generalization called mixed monotonicity [5], [37] is shown to be
applicable. Mixed monotone systems are those that can be decomposed into increasing and
decreasing components. Pairs of links in traffic-flow networks naturally exhibit mixed monotone
dependencies whereby an increase in the state of one link causes an increase or a decrease in
the flow to another link. Whether the flow increases or decreases depends on the topological
relationship of the links under consideration.

Mixed monotonicity allows efficient computation of finite-state abstractions because one-
step reachable sets may be approximated efficiently by evaluating a decomposition function at
two extreme points. This approach is particularly attractive since the computational cost is limited
to two function evaluations and does not increase with the dimension of the state space.

The article concludes by applying the techniques and results of the prior sections to a case
study for which a control strategy is efficiently computed using the mixed monotone property
of the traffic-flow dynamics. An alternative abstraction procedure that assumes piecewise affine
dynamics is discussed.

A Dynamic Model for Traffic-Flow Networks

The traffic-flow model considered in this article takes a macroscopic view by considering
aggregate conditions of the network such as occupancy of vehicles on each road segment
and traffic-flow rate rather than considering movement of individual vehicles. This model was
proposed in [4] and [38] and encompasses the cell-transmission model of freeway traffic flow
[39], [40] and queue-forwarding models as in [41], which further account for the finite capacity
of queues.

3

General Model

A traffic network consists of a set of links L interconnected at a set of nodes V , as in
Figure 2. In freeway networks, the nodes represent junctions where, for example, onramps enter,
offramps exit, two freeways merge, a freeway diverges to two freeways, or a node serves to
divide a longer link into two smaller links. In signalized networks, the nodes are signalized
intersections. Let σ : L → V map each link to the node immediately downstream (the head) of
link `, and let τ : L → V ∪ ε map each link to the node immediately upstream (the tail) of link
`; the symbol ε denotes that no upstream node is modeled in the network, thus links for which
τ(`) = ε direct exogenous flow onto the network.

Although this article presents a discrete-time model, the results easily extend to continuous
time; see [6], [42]. The state of link ` ∈ L at discrete time t is denoted by

x`[t] ∈ [0, xcap
`], for all ` ∈ L,

and represents the number of vehicles occupying link `, where xcap
` ∈ R≥0 is the maximum

number of vehicles accommodated by link `. For freeway networks, xcap
` is called the jam density.

Note by adopting a fluid-like model of traffic flow x`[t] is not restricted to integer values. The
domain is

X ,
∏
`∈L

[0, xcap
`].

The main premise of the cell-transmission model and queue-forwarding models is that
traffic flow from one link to another downstream link through a junction is restricted by the
demand of vehicles to flow along the link as well as the supply of road capacity downstream.
To this end, each link ` ∈ L possesses an increasing demand function D`(·) and a decreasing
supply function S`(·). The following are assumed for each ` ∈ L:

• The demand function D` : [0, xcap
`] → R≥0 is strictly increasing and Lipschitz continuous

with D`(0) = 0.
• The supply function S` : [0, xcap

`] → R≥0 is strictly decreasing and Lipschitz continuous
with S`(x

cap
`) = 0.

Prototypical demand and supply functions are shown in Figure 3. The demand function
models the number of vehicles on a link that would flow through a junction in one time step if
unimpeded by downstream congestion, while the supply function models the available capacity
on a link to accept incoming flow. Thus, outgoing flow of a link does not exceed demand, and
incoming flow does not exceed supply.

4

Junctions may be signalized so that the movement of vehicles through a junction v from
an incoming link ` is allowed only if the link is actuated by the signal. Let

U ⊂ 2L

be a collection of sets of links that may be simultaneously actuated where 2L denotes the set of
all subsets of L. An element u ∈ U is an actuation. Since signalized intersections are typically
operated independently, the set U is often the Cartesian product of collections of subsets of
incoming links for each intersection.

An important element of modeling transportation networks is to characterize the routing
properties for junctions with multiple incoming and/or outgoing links that captures phenomeno-
logical properties of traffic flow. In particular, the routing policy must appropriately distribute the
demand of links incoming to a junction among the outgoing links, and symmetrically, distribute
supply of outgoing links among incoming links. For the former requirement, the turn ratio
β`k ≥ 0 is introduced for each `, k ∈ L denoting the fraction of link `’s outgoing flow that
routes to link k for links ` and k connected at a junction. Conservation of mass implies∑

k∈L

β`k ≤ 1, for all ` ∈ L, (1)

where β`k 6= 0 only if σ(`) = τ(k) and strict inequality in (1) implies that a nonzero fraction
of the outgoing flow from link ` exits the network along, for example, unmodeled roads or
driveways.

Symmetrically, the supply ratio α`k is introduced for each `, k ∈ L denoting the fraction
of link k’s supply available to link `. For all u ∈ U ,∑

{`∈u|σ(`)=τ(k)}

α`k = 1, for all k ∈ L,

that is, the total supply of link k is divided among upstream, actuated links for each possible
actuation u ∈ U . For freeway networks, rather than assuming discrete actuation values so that
a link is either actuated or not, it may be more appropriate to consider a controlled metering
rate for links that represent onramps to the network. In this case, the controlled metering rate
serves to threshold a link’s demand at some upper limit; see [43] for a formalization of such an
extension.

The outflow of vehicles from a link is defined as a function of the state x ∈ X and a
chosen actuation u ∈ U . The outflow of link ` is

f out
` (x, u) =

min

{
D`(x`), min

k s.t. β`k 6=0

α`k
β`k

Sk(xk)

}
if ` ∈ u,

0 else,
(2)

5

that is, the flow exiting link ` is as close to the demand of link ` as allowed by downstream
supply. Conservation of mass completes the model so that

x`[t+ 1] = F`(x[t], u[t], d[t]) , x`[t]− f out
` (x[t], u[t]) +

∑
k∈L

βk`f
out
k (x[t], u[t]) + d`[t], (3)

where d`[t] is an exogenous flow entering link `. It is assumed that the exogenous flow is
truncated, and therefore d`[t] is such that x`[t + 1] ≤ xcap

` always. In general, it is further
assumed that d[t] ∈ D for disturbance set D ⊆ (R≥0)L for all time. Note that (2) minimizes over
all downstream links so that lack of downstream supply on one link reduces flow to other links.
This phenomenon of downstream traffic blocking flow to other downstream links at a diverging
junction is referred to as the first-in-first-out (FIFO) property, [40], [44], and it is a feature of
traffic flow that has been observed even on wide freeways with many lanes [45], [46].

Example 1. Consider the network shown in Figure 4(a) with L = {1, 2, 3} and β12 = β13 = 0.5,
α12 = α13 = 1. Assume the intersection is not signalized so that the input set is U = {uall},
uall , {1, 2, 3}, indicating flow along all links is allowed. Then

f out
1 (x, uall) = min

{
D1(x1),

1

0.5
S2(x2),

1

0.5
S3(x3)

}
,

f out
` (x, uall) = D`(x`), ` ∈ {2, 3}.

Special Case: Piecewise-Affine Model

Of particular importance is the case when the demand and supply functions are assumed
to be piecewise linear. In particular,

D`(x`) = min{v`x`, qmax
` }, (4)

S`(x`) = w`(x
cap
` − x`), (5)

for constants v` > 0, w` > 0, and qmax
` > 0. For freeway networks, v` and w` are the free-flow

speed and congested wave speed [47]. For signalized networks, x` is interpreted as the queue
length and v` = w` = 1. Then qmax

` is the saturation flow rate [48], D`(x`) is the minimum of
the queue length x` and the saturation flow rate, and S`(x`) is the unoccupied queue capacity
of link `.

When the demand and supply functions have the form (4) and (5), respectively, the
dynamics are piecewise affine, that is, there exists a set of polytopes P = {Xq}q∈Q for some
index set Q such that ∪q∈QXq = X and Xq ∩ Xq′ = ∅, for all q, q′ ∈ Q, and such that, for each
q ∈ Q,

F (x, u, d) = Aq,ux+ bq,u + d, for all x ∈ Xq (6)

6

for some Aq,u ∈ RL×L, bq,u ∈ RL. In other words, the traffic dynamics are affine within each
polyhedral partition. The polytopes arise from the min{·} functions in (2) and (4). Below, a
finite-state abstraction is constructed using the tools in [26], [49] that exploit the piecewise
affine nature of the dynamics.

Overapproximating Finite Abstractions

Next, a methodology for computing a finite-state abstraction that overapproximates, in a
particular sense, the dynamics of a discrete-time dynamical system is described. The motivation
for such an abstraction is two fold. First, for many physical systems, satisfactory performance
is often defined in terms of a finite set of properties such as “no road segment becomes
congested” for traffic networks, “temperature remains below a given threshold” for a chemical
process, or “the power network can withstand one generator failure” for power networks. That is,
performance is not based on a precise, continuous measurement of the state. Second, a finite-state
abstraction is amenable to formal synthesis methods as described in the next section.

Consider a discrete-time dynamical system of the form

x[t+ 1] = F (x[t], u[t], d[t]), (7)

for u[t] ∈ U with U a finite set, x[t] ∈ X ⊆ Rn, for all t, and d[t] ∈ D ⊆ Rm. Note that the traffic-
network model proposed above satisfies these stipulations; however, the ideas presented here
apply generally. This system is called the real system, in contrast to the finite-state abstraction
developed subsequently.

Consider a partition of X with index set Q, that is, the collection of nonempty sets P =

{Xq}q∈Q satisfies X = ∪q∈QXq and Xq ∩ Xq′ = ∅, for all q, q′ ∈ Q. Let

πP : X → Q,

πP(x) = q, when x ∈ Xq,

be the projection map from X to Q. For a trajectory x[·] of the dynamical system (7), let πP(x[·])
denote the sequence q[0]q[1]q[2] · · · ∈ QZ≥0 , where Z≥0 denotes the nonnegative integers. Note
that, for some set W , W Z≥0 denotes the set of infinite sequences of elements from W . In this
article, this notation is exclusively used to represent a time sequence. Therefore, w ∈ W Z≥0 is
indexed with brackets and w = w[0]w[1]w[2] · · · , where w[t] ∈ W , for all t. To emphasize the
time dependence, the notation w = w[·] is also used.

Definition 1 (finite-state abstraction). Given a partition P = {Xq}q∈Q of X for (7), T = (Q,U , δ)

7

with δ : Q× U → 2Q is a finite-state abstraction of (7) if

for all x ∈ X and d ∈ D, x ∈ Xq and F (x, u, d) ∈ Xq′ implies q′ ∈ δ(q, u), (8)

for any q, q′ ∈ Q, u ∈ U . δ is called the transition map. An execution of the finite-state
abstraction is a pair of sequences q[·], u[·] with each q[t] ∈ Q and each u[t] ∈ U for t ≥ 0 for
which q[t+ 1] ∈ δ(q[t], u[t]), for all t ≥ 0.

Figure 5 illustrates how a finite-state abstraction is obtained for a dynamical system. A
finite-state abstraction of (7) captures the underlying dynamics at a level of granularity dependent
on the partition P . A finite-state abstraction is thus a transition system with a finite set of states
Q and finite input set U inherited from the real system. Each input u ∈ U enables a set of
transitions as determined by δ(q, u). From this set of transitions, the transition that is executed
by the system is not controlled, and thus the abstraction is nondeterministic. The notion of state
will be used to refer both to an element q ∈ Q in the finite-state abstraction and an element
x ∈ X of the real system when it is clear that no confusion will arise.

Note the direction of implication in (8) allows the situation where q′ ∈ δ(q, u) yet
F (x, u, d) 6∈ Xq′ for any x ∈ Xq, d ∈ D. When this holds, there exists a spurious one-
step transition from q to q′ under input u. Thus the transition function δ overapproximates
the underlying dynamics and there may exist executions of the transition system that do not
correspond with any trajectory of the original dynamical system. See “Spurious Transitions in
Finite Abstractions” for details about how such spurious trajectories arise and techniques for
mitigating their effects.

Even in the presence of spurious transitions, overapproximating finite-state abstractions
are sufficient for control synthesis for linear temporal logic specifications, as discussed below.
That is, a controller obtained algorithmically from the finite-state abstraction is applicable to
the original real system with the same guarantees of performance. The drawback of excessive
spurious transitions is that the synthesis algorithm may fail to find a feasible solution. In this
article, spurious transitions are judiciously allowed for in order to obtain computational savings
in the abstraction step without undermining the synthesis algorithm.

Specifying System Behavior

This article focuses on specifications for system behavior given in linear temporal logic
(LTL), an extension of propositional logic that allows for temporal modalities. The expressive
power of LTL captures many objectives relevant for control of transportation networks, such
as “link 1 eventually enters an uncongested state and remains in this condition, for all future

8

time.” LTL formulae comprise a finite set of observations, denoted by O, the standard Boolean
connectives, and temporal modalities such as � (“always”) and ♦ (“eventually”), and a LTL
formula is usually denoted by ϕ. See “Linear Temporal Logic Specifications of System Behavior”
for an overview of the syntax and semantics of LTL and its use for specifying behaviors of finite
systems. Specification and objective are used interchangeably to refer to the desired behavior of
a finite system.

The synthesis approach for LTL specifications presented here relies on a finite-state
abstraction of the underlying continuous system that overapproximates the system’s dynamics as
described in the previous section. The synthesis algorithm is then posed as a two-player game
between a controller and the environment where the controller seeks control actions to ensure
satisfaction of the behavior specification and the environment seeks to prevent satisfaction of the
specification. First, a notion of LTL satisfaction for discrete-time dynamical systems is defined.

The dynamical system (7) with partition P = {Xq}q∈Q is labeled if there exists a set of
observations O and a labeling function H : X → 2O that satisfies x, y ∈ Xq =⇒ H(x) = H(y),
that is, elements in the same partition are labeled with the same observations. The corresponding
finite-state abstraction T is then said to be labeled and the same notation is used to denote the
well-defined labeling function L : Q → 2O such that H(q) = H(x), for all x ∈ Xq.

For a trajectory x[·] of a labeled dynamical system (7), the sequence
H(x[0])H(x[1])H(x[2]) · · · ∈ (2O)Z≥0 is the trace of the trajectory. This sequence is
abbreviated H(x[·]). Similarly, for an execution q[·], u[·] of a finite-state abstraction, the trace
of the execution is the sequence H(q[0])H(q[1])H(q[2]) · · · , abbreviated as H(q[·]).

Consider a labeled finite-state abstraction T of a labeled dynamical system (7) with
partition P . Equation (8) guarantees that, for a trajectory x[·] of the dynamical system (7)
generated by the input sequence u[·], the pair πP(x[·]), u[·] is an execution of T .

LTL satisfaction for trajectories of dynamical systems and executions of finite-state
abstractions is defined in the natural way: x[·] satisfies ϕ if its trace H(x[·]) satisfies ϕ, and
likewise for q[·] and H(q[·]).

Formal Controller Synthesis From Abstractions

Consider the labeled dynamical system x[t + 1] = F (x[t], u[t], d[t]) as in (7) with
observations O and a partition P of the domain X , along with a LTL objective ϕ. Informally,
the objective is to find a feedback control strategy such that the resulting closed-loop trajectories
satisfy ϕ. To make this formal, the objective is instead defined in terms of a labeled finite-state

9

abstraction T (Q,U , δ) for the dynamical system; it will be shown below that synthesizing a
controller from the finite-state abstraction is sufficient for obtaining a feedback controller for the
real system.

let W+ denote the set of nonempty, finite-length sequences of elements from W , that is,
w ∈ W+ takes the form w = w[0]w[1] · · ·w[n], where w[t] ∈ W for t = 0, . . . , n for some
n ≥ 0.

A feedback control strategy γ for a labeled finite-state abstraction T is a map

γ : (2O)+ → U (9)

that prescribes a control input for each finite history q[0]q[1] · · · q[n].

Control synthesis objective. The objective is to find a control strategy γ of the form (9) and
a set of initial conditions Q0 ⊆ Q for the finite-state abstraction T = (Q,U , δ) such that ϕ
holds for any execution q[·] satisfying q[0] ∈ Q0 and, for all t ≥ 0, q[t + 1] ∈ δ(q[t], u[t]) with
u[t] = γ(q[0]q[1] · · · q[t]). �

The initial condition is not considered to be fixed a priori because the employed synthesis
algorithm identifies all acceptable initial conditions for the finite-state abstraction. If it is known
that the abstraction will initiate in some subset of states, then the set of acceptable states as
determined by the synthesis algorithm is compared to the specified set of initial conditions.

Definition 2 (Finite-memory control strategy). The control strategy γ is said to be finite-memory
if there exist:

• M , a finite set of modes,
• m0 ∈M , an initial mode,
• ∆ : M ×Q →M , a mode transition map,
• g : M ×Q → U , a control selection map,

defining a transition system that describes the behavior of u[t] = γ(q[0] · · · q[t]). Specifically, a
finite-memory controller (abbreviated controller) is initialized so that m[0] = m0 ∈ M is the
initial state of the controller. Then, inductively, u[t] = g(m[t], q[t]) and m[t+ 1] = ∆(m[t], q[t])

for t ≥ 0 where q[t+ 1] is obtained via the abstraction T = (Q,U , δ).

For a finite-memory control strategy, g selects an action based on the current state of
the finite-state abstraction and mode of the controller, and ∆ updates the finite mode (that is,
memory) of the controller. Thus, γ(q[0]q[1] · · · q[t]) = g(m[t], q[t]), where m[t] is computed as

10

described in the above definition. As will be seen below, finite-memory controllers suffice for
control synthesis from LTL specifications.

To synthesize a finite-memory controller for a LTL specification, consider a finite-state
automaton that tracks progress towards the LTL specification using a finite set of modes.
The automaton’s transitions are labeled with the observations O so that an infinite trace of
observations generates an infinite execution of the automaton. This article considers a particular
class of automata, called Rabin automata, that accept infinite traces of observations if a certain
set of modes are visited infinitely often and another set of modes are visited only finitely often.

Rabin automata serve two key purposes. First, there exist automated methods and off-the-
shelf software for converting any LTL objective to a Rabin automaton that accepts all (and only)
those traces that satisfy the LTL objective. Second, there exist algorithms for obtaining a control
strategy for a finite-state abstraction from the Rabin automaton generated by the desired LTL
specification. Moreover, the obtained control strategy is finite-memory, and the structure of the
finite-memory controller is inherited from the structure of the Rabin automaton. For details on
how a control strategy is synthesized from a Rabin automaton by playing a Rabin game, see
“Controller Synthesis for LTL Specifications from Rabin Games.”

A finite-memory controller of the form given in Definition 2 is applied to the original
real system in the natural way. Specifically, let u[t] = g(m[t], πP (x[t])) at each time step t, and
update the controller mode as m[t+ 1] = ∆(m[t], πP (x[t])). The following Proposition implies
that the overapproximating finite-state abstraction is sufficient for formal control synthesis.

Proposition 1. Given the finite-memory control strategy γ and a set of initial states Q0 ⊆ Q,
if q[·] satisfies ϕ, for all executions of T for which q[0] ∈ Q0 and u[t] = γ(q[0]q[1] · · · q[t]),
then x[·] satisfies ϕ, for all trajectories x[·] of the real system for which x[0] ∈ ∪q∈Q0Xq and
u[t] = γ(q[0]q[1] · · · q[t]) where q[t] = πP (x[t]), for all t.

The proof follows readily from the overapproximating nature of T as specified in (8). In
particular, consider any trajectory x[·] of the real system induced by the input sequence u[·] for
which x[0] ∈ ∪q∈Q0Xq and u[t] = γ(q[0]q[1] · · · q[t]) = g(m[t], q[t]), for all t ≥ 0. The projected
sequence πP (x[·]) = q[·] = q[0]q[1]q[2] · · · is such that q[0] ∈ Q0 and q[t+ 1] ∈ δ(q[t], u[t]), that
is, q[·], u[·] is an execution of T . By assumption, q[·] satisfies ϕ so that also x[·] also satisfies ϕ.

The importance of Proposition 1 is that a controller for the real system is obtainable by
first constructing a finite-state abstraction and then computing a controller for the abstraction
based on the automated synthesis approach of a Rabin game.

11

The resulting controller is symbolic, meaning that it only requires knowledge of πP (x[t]),
the currently occupied partition of the system. At each step t, the controller, which has internal
state m[t], receives the coarse measurement q[t] = πP (x[t]) and applies the input g(m[t], q[t]).
The controller’s internal state is then updated by the finite mapping ∆(m[t], q[t]).

Furthermore, the online memory and processing requirements are modest because the
controller essentially consists of two lookup tables, each of dimension |M |× |Q|, corresponding
to g and ∆. Even for very large Q, the online computation time is low. The tradeoff is that
the offline computation of g and ∆ can be costly. Figure 6 illustrates how a finite-memory
controller obtained from a Rabin automaton provides feedback control of a dynamical system
from its finite-state abstraction.

For more general abstraction techniques that accommodate, for example, continuous input
sets, a controller obtained from the abstraction may not be applicable to the original real system.
Furthermore, if the relationship between the abstraction and the real system is not taken advantage
of fully, a controller may be obtained that is not symbolic and, moreover, requires significantly
more online computational resources. These intricacies have been the focus of recent research
[50], [51].

Finally, Proposition 1 is based on the abstraction T , which overapproximates the behavior
of the real system. While this overapproximation is sufficient for ensuring correctness when a
controller for the abstraction exists, attempts to synthesize a controller from the abstraction may
fail due to spurious trajectories that are nonexistent in the real system. This conservatism is
unavoidable for all but a few limited classes of dynamical systems that are amenable to finite
bisimulation [13].

Finite Abstractions of Traffic-Flow Networks from Mixed Monotonicity

Thus far, it has been assumed that a finite-state abstraction is available so that a control
strategy is synthesized for the real system from the overapproximating abstraction. This section
addresses the difficulties of computing the finite-state abstraction.

Mixed Monotone Dynamical Systems

Again consider the dynamical system x[t+ 1] = F (x[t], u[t], d[t]) as in (7) and a partition
P = {Xq}q∈Q that will be used to construct a finite-state abstraction T = (Q,U , δ). If it is
possible to calculate an overapproximation of the one-step reachable set from Xq under input u,

Rq,u ⊇ {F (x, u, d) | x ∈ Xq, d ∈ D}, (10)

12

then it is possible to construct a transition map δ satisfying (8) from

q′ ∈ δ(q, u) if and only if Xq′ ∩Rq,u 6= ∅. (11)

That is, an overapproximation of the one-step reachable set from each partition for each input
is used to construct a finite-state abstraction.

Certain classes of dynamical systems exhibit structure that allows efficient reachable-
set computation. The well-studied class of monotone systems possess a partial order over the
state-space that is maintained along the trajectories of the system [34], [35], [52]. Ignoring
disturbances, the system x[t+ 1] = F (x[t]) is monotone if

x1 ≤ x2 implies F (x1) ≤ F (x2), (12)

for all x1, x2. Throughout this article, inequalities are interpreted elementwise so that ≤
characterizes the partial order induced by the positive orthant, although the definition of
monotonicity extends readily to general partial orders. The ordering on trajectories implied by
(12) allows sets of trajectories to be bounded by considering appropriate extremal trajectories.
For example, (12) implies that for any x such that x1 ≤ x ≤ x2, F (x1) ≤ F (x) ≤ F (x2).
Therefore, an overapproximation for the reachable set of the hyperrectangle with extreme points
x1 and x2 is another hyperrectangle with extreme points F (x1) and F (x2).

In this article, the focus is on computing one-step reachable sets for a class of mixed
monotone systems that generalize monotone systems. A dynamical system is mixed monotone
if the dependence of the update map F on x and d can be decomposed into increasing and
decreasing dependencies as made precise in the definition below. It is then shown that traffic-
flow networks are mixed monotone, allowing efficient computation of finite-state abstractions
for traffic networks.

Definition 3 (Mixed monotone system). The system (7) is mixed monotone if there exists a
function f : X 2 × U ×D2 → X such that the following conditions hold, for all u ∈ U :

C1) for all x ∈ X and d ∈ D: F (x, u, d) = f((x, x), u, (d, d)),
C2) for all x, x, y ∈ X and d, d, e ∈ D, it holds that x ≤ x and d ≤ d implies

f((x, y), u, (d, e)) ≤ f((x, y), u, (d, e)),
C3) for all x, y, y ∈ X and d, e, e ∈ D, it holds that y ≤ y and e ≤ e implies

f((x, y), u, (d, e)) ≤ f((x, y), u, (d, e)).

Mixed monotonicity may be extended to general partial orders of X and D [5]. Conditions
C2–C3 imply that f((x, y), u, (d, e)) is nondecreasing in x and d and nonincreasing in y and e.

13

A function f satisfying C1–C3 above is called a decomposition function for F (x, u, d).

If f is differentiable, then C2 and C3 is equivalent to the following conditions:

C2b) ∂f
∂x

((x, y), u, (d, e)) ≥ 0 and ∂f
∂d

((x, y), u, (d, e)) ≥ 0, for all x, y ∈ X and d, e ∈ D,
C3b) ∂f

∂y
((x, y), u, (d, e)) ≤ 0 and ∂f

∂e
((x, y), u, (d, e)) ≤ 0, for all x, y ∈ X and d, e ∈ D.

If f((x, y), u, (d, e)) = F (x, u, d) constitutes a decomposition function satisfying C1–C3
above, then the standard characterizations of monotone systems with disturbances is recovered;
see [36]. Note that a notion of monotonicity with respect to the controlled input u is not required
since U is a finite set and C1–C3 holds for each input u ∈ U .

Finding a decomposition function to show mixed monotonicity is often not straightforward.
Below,it is shown that a simple decomposition function exists when the Jacobian matrices ∂F/∂x
and ∂F/∂d are sign-constant, that is, the sign of each entry of the Jacobian matrices does not
change as x and d varies.

Proposition 2 ([5, Proposition 1]). Consider system (7) and assume F is continuously differen-
tiable, and further assume X and D are hyperrectangles, that is, there exists x1, x2 ∈ Rn such
that X = {x | x1 ≤ x ≤ x2}, and similarly for D. If, for all u ∈ U and all i ∈ {1, . . . , n},

for all j ∈ {1, . . . , n}, there exists µi,j ∈ {−1, 1} such that µi,j
∂Fi
∂xj

(x, u, d) ≥ 0, for all x, d,

and

for all j ∈ {1, . . . ,m}, there exists νi,j ∈ {−1, 1} such that νi,j
∂Fi
∂dj

(x, u, d) ≥ 0, for all x, d,

then (1) is mixed monotone.

The construction of the decomposition function from the sufficient condition given in
Proposition 2 follows naturally from the sign-constant structure of the Jacobian matrices. In
particular, the ith element of the decomposition function fi is defined to be the ith element of
the update map Fi where yj is exchanged for xj if ∂Fi/∂xj ≤ 0, for all x ∈ X , d ∈ D, and,
similarly, ej is exchanged for dj if ∂Fi/∂dj ≤ 0, for all x ∈ X , d ∈ D.

Proposition 2 is analogous to the well-known Kamke condition for monotone systems
whereby (12) holds if and only if ∂Fi/∂xj ≥ 0, for all i, j [35, Section 3.1], although the
condition given in Proposition (2) is only a sufficient condition for mixed monotonicity. Finally,
while Proposition 2 assumed F to be continuously differentiable, the results in fact hold if F is

14

continuous and piecewise differentiable, and thus nondifferentiable on a set of measure zero as
is the case for traffic networks.

One Step Reachable Set of Mixed Monotone Systems

One of the most important properties of mixed monotone systems is that reachable sets
are overapproximated by evaluating the decomposition function at only two points. In particular,
given a hyperrectangle of initial conditions and a hyperrectangular disturbance set, the set of states
reachable in the next step lies within a hyperrectangle defined by evaluating the decomposition
function f at two extreme points, as illustrated in Figure 7 and made precise in Theorem 1.

Theorem 1. Let (7) be a mixed monotone system with decomposition function f((x, y), u, (d, e))

and consider x, x ∈ X and d, d ∈ D with x ≤ x and d ≤ d. Then, for all u ∈ U ,

f((x, x), u, (d, d)) ≤ F (x, u, d) ≤ f((x, x), u, (d, d)),

for all x ∈ {x | x ≤ x ≤ x}, for all d ∈ {d | d ≤ d ≤ d}.

Returning to Figure 5(a), mixed monotonicity allows efficient computation of a hyperrect-
angle that bounds the darkly shaded one-step reachable set from the indicated partition.

Example 1 (continued). Consider again the network in Figure 4(a) with β12 = β13 = 1/2,
α12 = α13 = 1, and let D`(x`) = min{c`, x`} where (c1, c2, c3) = (20, 5, 30), for all `, S`(x`) =

50 − x`, for all `, and D = {d | d ≤ d ≤ d}, where d = [0 5 0]T and d = [0 8 5]T . Let
Iq = {x | x ≤ x ≤ x}, where x = [40 15 30]T and x = [40 30 45]T . Then

f((x, x), u, (d, d)) = [20 20 10]T ,

f((x, x), u, (d, d)) = [30 43 25]T .

Then, by Theorem 1,

{F (x, u, d) | x ∈ Iq d ∈ D} ⊆ R,

where

R , {x′ | f((x, x), u, (d, d)) ≤ x′ ≤ f((x, x), u, (d, d))}.

Figure 4(b) plots Iq, R, and the actual reachable set projected in the x2 vs. x3 plane.

The partition P = {Xq}q∈Q is said to be a hyperrectangular partition if each Xq is a
hyperrectangle, that is, for all q ∈ Q there exists aq` ≤ bq` , for all ` ∈ L such that

Xq =
∏
`∈L

[aq` , b
q
`]

15

as in Figure 5. Let aq = {aq`}`∈L and bq = {bq`}`∈L and assume D has the form

D = {d | d ≤ d ≤ d}

for some d, d ∈ Rm; the results extend readily to the case where D is the union of hyperrectangles.

The restriction to finite abstractions induced by hyperrectangular partitions for mixed
monotone systems is justified by the reachability result of Theorem 1. In particular, given a
hyperrectangular partition of a mixed monotone system, let

Rq,u ,{x′ | f((aq, bq), u, (d, d)) ≤ x′ ≤ f((bq, aq), u, (d, d))}. (13)

Then, by Theorem 1, Rq,u satisfies (10).

Theorem 2 ([5, Theorem 2]). Consider the mixed monotone system (7) with hyperrectangular
partition P = {Xq}q∈Q. Let δ : Q×U → 2Q be defined as in (11) with Rq,u given by (13). Then
T = (Q,U , δ) is a finite-state abstraction of (7).

For hyperrectangular partitions, it is computationally straightforward to identify whether
Rq,u∩Xq′ = ∅ by performing two componentwise comparisons of vectors of length |L|, namely,
comparing f((aq, bq), u, (d, d)) to bq

′ (resp. f((bq, aq), u, (d, d)) to aq
′). Thus, it is simple to

compute δ(q, u) for each q and u from (11). See [5] for details regarding the computational
requirements of obtaining a finite-state abstraction from a hyperrectangular partition using
Theorem 2.

Mixed Monotonicity in Traffic Networks

We return to the traffic network dynamics (3). Under a mild technical assumption that
∂F`

∂x`
(x) ≥ 0, for all x ∈ X and all ` ∈ L, that is, the diagonal elements of the Jacobian are

nonnegative (see [4], [5] for conditions on α`k, β`k, D`(x`), and S`(x`) that guarantee this
assumption), the following theorem establishes mixed monotonicity.

Theorem 3. Assume the traffic network dynamics are such that ∂F`

∂x`
(x) ≥ 0, for all x ∈ X and

all ` ∈ L. Then the traffic network dynamics are mixed monotone.

Theorem 3 is proved for the special case when S`(x) and D`(x) are piecewise linear in
[4, Theorem 1], and a more general case in [5, Proposition 3]. The proofs of [4, Theorem 1]
and [5, Proposition 3] demonstrate sign constancy of the entries of the Jacobians ∂F/∂x and
∂F/∂d and then apply Proposition 2.

The significant step in the proof is establishing that ∂F`

∂xk
(x) ≤ 0, for all x if ` 6= k and

16

τ(`) = τ(k). This can be observed in (3) by noting that the incoming flow to link ` depends
on the outgoing flow of upstream links, which in turn may be limited by the supply of another
downstream link k 6= `. The physical interpretation of this case is as follows. When the supply
of downstream link k is less than upstream demand due to congestion, link k inhibits flow
through the junction. Therefore, an increase in the number of vehicles on link k would worsen
the congestion (decrease supply), and vehicles destined for link k would further block flow to
other outgoing links (in particular, link `), causing a reduction in the incoming flow to these
links. That is, the derivative of incoming flow to a downstream link ` 6= k with respect to link
k is nonzero and, in particular, is negative since Sk is a decreasing function.

Because ∂F`

∂xk
≤ 0 for `, k at a diverging junction, the traffic dynamics are not monotone in

general since, for monotone systems, each entry of the Jacobian matrix is nonnegative. Some of
the recent literature in dynamical flow models propose alternative modeling choices for diverging
junctions, for example, [53], [54], that ensures the resulting dynamics are monotone but do not
exhibit this FIFO property.

Abstraction from Piecewise Linearity

Consider again the special case for which the supply and demand functions are piecewise
linear, resulting in the piecewise-affine dynamics (6). It has already been shown that a finite-state
abstraction can be constructed by exploiting the mixed monotonicity of the dynamics. However,
as noted above, one-step reachable sets that are overapproximations introduce conservatism in
the abstraction. This section proposes an alternative abstraction technique that relies on the
piecewise-affine dynamics.

For piecewise-affine dynamical systems, it is possible compute the exact one-step reachable
set from a polytope as the image of the polytope under an affine transformation, which is itself
a polytope, as suggested in Figure 5. From this observation, a modification to the above finite
abstraction is considered as developed in [26].

Recall the formulation for the piecewise-affine case for which a partition P = {Xq}q∈Q
is identified such that each Xq is a polytope and the dynamics are affine in Xq. To construct
a finite-state abstraction, begin again with a partition of the domain X . For convenience of
notation, consider the same partition P induced by the dynamics, however, it is straightforward
to consider a refinement P ′ = {Xq}q∈Q′ of P satisfying Xq′ ⊆ Xq for some q ∈ Q, for all
q′ ∈ Q′. Consider the same finite input set U as before and now assume D is an arbitrary
polytope. The exact one-step reachable set Rexact

q,u for each q ∈ Q and u ∈ U is then computed
using polyhedral operations. Defining δ(q, u) , {q′ | Xq′∩Rexact

q,u 6= ∅} completes he construction

17

of the finite-state abstraction. This approach is used to compute finite abstractions of freeway
network models in [43].

There are several advantages to this approach; first, it is possible to consider arbitrary
polyhedral partitions P . Similarly, D is assumed to be a general polytope. In addition, the
exact reachable set computation ensures that there are no spurious one-step transitions in the
finite-state abstraction. However, there are several drawbacks. Most seriously, computing the one-
step reachable set and determining the set of intersected partitions requires operations that scale
exponentially with the dimension of the state space of the real system [55], [56], which is |L| for
traffic networks. For low-dimensional systems, this computation is efficient as compared to more
general reachable-set computation techniques, but quickly becomes intractable even for systems
of modest size. In contrast, over-approximating the reachable set using mixed monotonicity
always requires evaluating the decomposition function at only two points, regardless of the
dimension of the state space. Additionally, while exact reachable sets eliminate one-step spurious
trajectories, more general spurious trajectories remain, as discussed in “Spurious Transitions in
Finite Abstractions”. Furthermore, as mentioned above, it is trivial to modify the abstraction
algorithm for mixed monotone systems to allow D to be a union of hyperrectangles that suitably
approximates more general disturbance sets. Finally, this alternative abstraction approach requires
piecewise-affine dynamics, while the mixed monotone approach applies to a broad class of
nonlinear systems.

Case Study

As a case study, consider the network in Figure 8 with five links, L = {1, 2, 3, 4, 5}, and
three signalized intersections that are denoted by “L”, “C”, and “R” for the left, center, and
right intersections as they appear in Figure 8. The signal in the center either actuates link 1
(“green” mode), or actuates links 4 and 5 simultaneously (“red” mode). The left (respectively,
right) signal actuates link 2 (resp. link 3) in “green” mode, and actuates no links in “red” mode
(for example, some unmodeled link(s) are actuated in this mode). It follows that |U| = 8 to
capture the 8 possible combinations of red/green for the three signals. Time is discretized so
that one time step is 15 seconds.

Links 1, 4, and 5 direct exogenous traffic onto the network. To this end, assume the
disturbance d[t] = [d1 d2 d3 d4 d5]

T [t] is such that, for all t ≥ 0,

d[t] ∈ D ,{d | [0 0 0 0 0]T ≤ d ≤ [15 0 0 0 0]T} (14)

∪ {d | [0 0 0 0 0]T ≤ d ≤ [0 0 0 15 15]T},

that is, at each time step, up to 15 vehicles arrive at the queue on link 1, or up to 15 vehicles

18

each arrives at the queues on links 4 and 5. Assume that traffic divides evenly from link 1 to
links 2 and 3 so that β12 = β13 = 0.5, and further assume β52 = β43 = 0.6. Furthermore,
α52 = α43 = α12 = α15 = 1. The queue capacity is 40 vehicles so that xcap

` = 40, for all `.

We take

D`(x`) = min{x`, c`},

S`(x`) = xcap
` − x`,

where it is assumed that c` = 20 is the saturation flow, for all `. Thus

x1[t+ 1] = x1[t]− 1(1 ∈ u) min

{
D1(x1),

1

0.5
S2(x2),

1

0.5
S3(x3)

}
+ d1[t],

x2[t+ 1] = x2[t]− 1(2 ∈ u)D2(x2) + 1(1 ∈ u) min {0.5D1(x1), S2(x2), S3(x3)}

+ 1(5 ∈ u) min {0.6D5(x5), S2(x2)} ,

x4[t+ 1] = x4[t]− 1(4 ∈ u) min

{
D4(x4),

1

0.6
S3(x3)

}
+ d4[t],

where

1(` ∈ u) =

1 if ` ∈ u,

0 else,

and the update equations for x3[t + 1] and x5[t + 1] are analogous to x2[t + 1] and x4[t + 1],
respectively.

Akin to Example 1, the flow from links 1, 4, and 5 may be blocked by the queues on links
2 and 3. Therefore the dynamics are not monotone but are mixed monotone as in Theorem 3.

The objective is to find a traffic signal control strategy so that the closed-loop dynamics
satisfy the LTL objective

ϕ = ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4, (15)

where

ϕ1 = �♦(left signal is “red”), (16)

ϕ2 = �♦(right signal is “red”),

ϕ3 = ♦�

 ∧
i∈{1,4,5}

(xi ≤ 30)

 ,

ϕ4 = �
(
(x2 > 30 ∨ x3 > 30) =⇒ ♦(x2 ≤ 10 ∧ x3 ≤ 10)

)
. (17)

19

We interpret (16)–(17) as follows: ϕ1 (resp. ϕ2) is “infinitely often, the left (resp. right) signal
is red”, ϕ3 is “eventually, the queue on links 1, 4, and 5 have fewer than 30 vehicles and this
remains true, for all future time,” and ϕ4 is “whenever the queue on link 2 or link 3 exceeds 30
vehicles, at some future time, both queues have less than 10 vehicles.”

To synthesize a control strategy, a hyperrectangular partition of the state space is first
obtained by introducing a gridding of X =

∏
`∈L[0, xcap

`] ⊂ R5. Specifically, [0, xcap
`] is divided

into the sets of intervals

Q` = {[0, 15], (15, 20], (20, 25], (25, 30], (30, 35], (35, 40]} for ` ∈ {1, 4, 5}, (18)

Q` = {[0, 10], (10, 20], (20, 30], (30, 40]}, for ` ∈ {2, 3}.

Then take

Q =
∏
`∈L

Q`

to index the induced hyperrectangular partition so that, for q = (q1, q2, q3, q4, q5) ∈ Q with
q` ∈ Q`,

Xq = q1 × q2 × q3 × q4 × q5 ⊆ R5.

Note that the intervals are compatible with the specification ϕ so that a labeling function exists
mapping each observation that appears in ϕ to a set of partitions. For example, each q ∈ Q for
which q2 = (30, 40] or q3 = (30, 40] is labeled with the observation (x2 > 30 ∨ x3 > 30). The
resulting transition system has |Q| =

∏
`∈L |Q`| = 3456 states. Building the transition system

using the mixed monotone properties of the dynamics takes 35 seconds on a Macbook Pro with
a 2.3 GHz Intel Core i7 processor and 8GB of RAM. The average number of transitions from
a given partition under a particular input is 73.9. Notice that ϕ includes specifications on the
input, specifically, ϕ1 and ϕ2 impose conditions on the left and right signals. To accommodate
specifications over U , the transition system must be augmented to include the last applied input
as a state variable; the details are omitted but are straightforward and the procedure may be
found in [4]. The final transition system that models the behavior of the real system then has
8× 3456 = 27 648 states.

The LTL specification is transformed into a Rabin automaton with 29 modes and one
acceptance pair using the ltl2dstar tool [57]. Solving the resulting Rabin game takes 43
minutes and results in a control strategy such that the specification is satisfied from any initial
condition. Figure 9 plots a resulting trace of the traffic network dynamics. To produce the traces,
a random disturbance input is synthesized satisfying (14) for which larger disturbances were
favored.

20

Figure 9(a) shows a resulting trace using the synthesized, correct-by-design control strategy.
The figure shows that ϕ1 and ϕ2 are both satisfied since the left and right signals repeatedly
switch to the “red” mode; the switching is done in such a way to ensure that ϕ4 is satisfied. To
accommodate ϕ3, the signaling mode at the center intersection responds to the present conditions
that depend on the particular realization of the disturbance input.

In Figure 9(b), a naı̈ve control strategy is used that satisfies ϕ1 and ϕ2 by using a cyclic
control strategy with period 4. This strategy may be considered reasonable since it spends limited
time in the “red” mode at the left and right signals, and evenly divides the time between “green”
and “red” modes at the center signal. However, this fixed strategy is unable to react to the
realized disturbance and does not satisfy ϕ3. Furthermore, even if this naı̈ve strategy happens to
satisfy ϕ4, it is difficult to verify this with certainty. The same initial condition and disturbance
input is used in both cases in Figure 9.

In principle, the alternative abstraction method that relies on the piecewise-affine dynamics
could be used. However, even with the relatively modest state-space dimension of |L| = 5,
computing the finite-state abstraction would be cost prohibitive because it would require |U||Q| =
27 648 one-step reachable-set computations and as many as |U||Q|2 ≈ 9.6 × 107 polyhedral
intersection operations to compute δ. In contrast, computing the finite-state abstraction using
mixed monotonicity as above takes less than one minute, negligible compared to the Rabin
game synthesis computation, and the mixed monotonicity technique has been applied to traffic
networks with as many as ten links [4]. Ongoing research for further scalability is discussed in
the next section.

Discussion

This article described a formal methods approach to control of traffic-flow networks. First,
a dynamical model that captures important traffic-flow phenomena such as blocked flow due to
congestion is considered. Several simplifying assumptions were made to arrive at this model;
for example, a “single commodity” perspective is adopted whereby all vehicles are assumed to
behave similarly. In reality, multiple populations of drivers exist. For instance, truck and freight
traffic occupy more physical space and thus links can accommodate fewer vehicles of this type.
Accommodating such additions increases model complexity. Moreover, the aggregate model does
not capture the interactions of individual vehicles or guarantee, for example, safety from collision,
in contrast to [58], [59]. Developing traffic-flow models that are simple enough for computation
and analysis yet capture required physical considerations is an important research domain. Many
existing approaches to traffic-flow control do not provide guarantees of performance and often

21

rely on heuristics [60]. When theoretical guarantees are available, it is usually for simplified
traffic models. For example, [41], [61] provides an approach to traffic-signal control that achieves
optimal throughput but assumes link capacity is infinite.

Next, the article reviewed a general approach to formal synthesis of finite-memory
controllers for discrete-time dynamical systems that relies on a finite-state abstraction that
overapproximates the underlying dynamics. Specifically, for each input, the abstraction enables
at least the transitions that are possible in the real system. This approach ensures that a controller
synthesized for the abstraction guarantees that the real system satisfies the same specifications.

The general paradigm of abstracting physical control systems to finite-state transition
systems for formal synthesis and verification is an important and active area of research.
Numerous extensions and alternative approaches have been developed that accommodate a broad
range of cases including continuous-time dynamics, continuous inputs, overlapping/uncertain
state and input quantization, and probabilistic systems. Each of these cases poses unique
challenges, and care must be taken to ensure that a controller synthesized from the abstraction
can be effectively and efficiently applied to the real system.

An overarching concern is scalability; many abstraction and formal synthesis techniques
do not apply to systems with more than two or three state dimensions due to the need to compute
reachable sets. This article has shown that structural properties of the dynamics, such as mixed
monotonicity and piecewise linearity, ameliorate some of these issues. Mixed monotonicity is a
particularly powerful structural property since the one-step reachable set is overapproximated by
computing the decomposition function at only two points regardless of the state-space dimension.
This approach has been applied to systems with up to ten state dimensions.

Nonetheless, reachable-set computation is only one of the difficulties in efficient finite-state
abstraction; for example, the size of the state-space partition generally increases exponentially
with the state-space dimension. An important future direction of research is computing relatively
small partitions that are still sufficient for formal synthesis. One approach is to compute the
partitions online so that only a relevant subset of the state space is partitioned. Another approach
is to methodically adjust the granularity of the partition; for example, in traffic-flow networks, it is
plausible that regions of the state space corresponding to few vehicles in the network do not need
to be finely partitioned. This idea appears to a degree in the case study, where the first interval of
Q` in (18) is the relatively large interval [0, 15]. Other approaches include avoiding partitioning
the state space altogether [62], [63], [64], [65]. Furthermore, as seen in the case study, solving
the Rabin game takes much longer than computing the abstraction. While Rabin automata can
accommodate any LTL expression, “Linear Temporal Logic Specifications of System Behavior”

22

observed that restricted classes of LTL enable more efficient synthesis algorithms. It is a future
direction of research to explore classes of specifications that enable efficient synthesis for traffic
networks and other physical control systems. For example, directed specifications appear to be
particularly relevant for monotone systems (however, these techniques do not yet extend to mixed
monotone systems) [66].

Another consideration for scalability is compositionality, in which a composite system is
viewed as the interconnection of a collection of subsystems. A controller for the composite
system is then obtained by synthesizing controllers for each subsystem. Compositional synthesis
has emerged as an important method for software verification and synthesis [67], [68]. One
successful approach is the assume-guarantee framework [69] whereby each subsystem assumes
a certain behavior from neighboring systems and symmetrically guarantees a prescribed behavior
to its neighbors. These assumptions and guarantees reduce the synthesis task to decoupled
subproblems of manageable complexity and yields local controllers rather than a single,
centralized controller. Such an approach is well-suited for traffic networks that may be naturally
divided into neighborhoods or towns interconnected via a few roads. This approach is currently
being explored [70].

This article considers LTL as the specification language. LTL allows consideration of
specific time horizons using repeated application of the “next” operator, however, this approach
often results in large Rabin automata. Other temporal logics, such as signal temporal logic (STL),
allow direct inclusion of time horizons, for example, by specifying that a certain observation
occurs within a specified time horizon [71]. Additionally, it is possible to consider probabilisitic
specifications and to include optimality constraints when synthesizing a controller [31], [32],
[72]. Probabilistic guarantees are particularly appropriate for domains such as transportation
management where correct control is desirable but not absolutely critical. For example, the
specification may be “with 95% probability, the traffic link remains uncongested.”

A key thesis of this article is that to obtain tractable and scalable formal methods for
physical systems, the underlying structure of the systems must be identified and exploited. It is
shown that traffic networks are a particularly rich example of physical systems with extensive
structure induced by topology, physics, and phenomenological properties. By articulating key
structural properties inherent to traffic networks with system-theoretic notions, general theory
and algorithms were developed that are more broadly applicable.

From a practical perspective, the confluence of three distinct trends makes the methodology
proposed in this article attractive for implementation. First, as already discussed, the rapidly
expanding field of formal methods in controls provides ample new theoretical and algorithmic

23

tools for approaching complex engineering challenges. Second, rapid expansion of dense urban
areas has given rise to an unprecedented need for efficient traffic management with systematic
guarantees of performance rather than ad hoc approaches. The third enabling trend is the ubiquity
of inexpensive and distributed sensors within and around infrastructure systems. Indeed, much of
the sensing and control infrastructure required to implement the feedback controllers suggested
here already exists. For example, wireless sensors embedded in roads are able to estimate the
length of queued vehicles at an intersection and this information is often shared with nearby
intersections or aggregated in real time at a centralized location.

Despite these encouraging developments, implementation of new traffic-control technolo-
gies requires overcoming many obstacles. For example, existing legacy traffic-control systems
often provide little flexibility for new control strategies without expensive hardware upgrades.
Furthermore, political barriers are often challenging due to the fact that traffic management
responsibilities may be shared among various agencies. For instance, a state or regional agency
may be responsible for freeway ramp metering while a local agency is responsible for traffic
signal control on the adjacent arterial roads, requiring coordinated efforts among agencies with
potentially conflicting interests. Nonetheless, it is becoming clear that there exists a need for
smarter, better-engineered cities that take advantage of increasingly connected, societal-scale
systems such as transportation infrastructure. As more resources are made available to improve
the efficiency, resilience, and sustainability of cities, formal techniques for analysis and control
will play a vital role.

Acknowledgements

This research was supported in part by the NSF under grants CNS-1446145 and CNS-
1446151.

24

References

[1] A. A. Kurzhanskiy and P. Varaiya, “Traffic management: An outlook,” Economics of
Transportation, vol. 4, no. 3, pp. 135–146, 2015.

[2] R. Dowling and S. Ashiabor, “Traffic signal analysis with varying demands and capacities,
draft final report,” Tech. Rep. NCHRP 03-97, Transportation Research Board, 2012.

[3] D. Schrank, B. Eisele, T. Lomax, and J. Bak, “2015 annual urban mobility scorecard,”
2015. http://mobility.tamu.edu/ums/report/.

[4] S. Coogan, E. A. Gol, M. Arcak, and C. Belta, “Traffic network control from temporal
logic specifications,” IEEE Transactions on Control of Network Systems, vol. 3, pp. 162–
172, June 2016.

[5] S. Coogan and M. Arcak, “Efficient finite abstraction of mixed monotone systems,” in
Proceedings of the 18th International Conference on Hybrid Systems: Computation and
Control, pp. 58–67, 2015.

[6] S. Coogan and M. Arcak, “A compartmental model for traffic networks and its dynamical
behavior,” IEEE Transactions on Automatic Control, vol. 60, no. 10, pp. 2698–2703, 2015.

[7] E. Haghverdi, P. Tabuada, and G. J. Pappas, “Bisimulation relations for dynamical, control,
and hybrid systems,” Theoretical Computer Science, vol. 342, pp. 229–261, Sept. 2005.

[8] P. Tabuada and G. Pappas, “Linear time logic control of discrete-time linear systems,” IEEE
Transactions on Automatic Control, vol. 51, no. 12, pp. 1862–1877, 2006.

[9] A. Girard and G. J. Pappas, “Approximation metrics for discrete and continuous systems,”
IEEE Transactions on Automatic Control, vol. 52, no. 5, pp. 782–798, 2007.

[10] G. Pola, A. Girard, and P. Tabuada, “Approximately bisimilar symbolic models for nonlinear
control systems,” Automatica, vol. 44, no. 10, pp. 2508–2516, 2008.

[11] A. Girard, G. Pola, and P. Tabuada, “Approximately bisimilar symbolic models for
incrementally stable switched systems,” IEEE Transactions on Automatic Control, vol. 55,
no. 1, pp. 116–126, 2010.

[12] M. Zamani, P. Mohajerin Esfahani, R. Majumdar, A. Abate, and J. Lygeros, “Symbolic
control of stochastic systems via approximately bisimilar finite abstractions,” IEEE Trans-
actions on Automatic Control, vol. 59, pp. 3135–3150, Dec 2014.

[13] P. Tabuada, Verification and control of hybrid systems: A symbolic approach. Springer,
2009.

[14] T. Moor and J. Raisch, “Supervisory control of hybrid systems within a behavioural
framework,” Systems & control letters, vol. 38, no. 3, pp. 157–166, 1999.

[15] T. Moor and J. Raisch, “Abstraction based supervisory controller synthesis for high order
monotone continuous systems,” in Modelling, Analysis, and Design of Hybrid Systems,
pp. 247–265, Springer, 2002.

25

[16] M. Kloetzer and C. Belta, “Dealing with nondeterminism in symbolic control,” in Hybrid
Systems: Computation and Control, pp. 287–300, Springer, 2008.

[17] G. Reissig, “Computing abstractions of nonlinear systems,” IEEE Transactions on Auto-
matic Control, vol. 56, no. 11, pp. 2583–2598, 2011.

[18] J. Liu and N. Ozay, “Abstraction, discretization, and robustness in temporal logic control
of dynamical systems,” in Proceedings of the 17th international conference on Hybrid
systems: computation and control, pp. 293–302, ACM, 2014.

[19] A.-K. Schmuck and J. Raisch, “Asynchronous `-complete approximations,” Systems &
Control Letters, vol. 73, pp. 67–75, 2014.

[20] A. Schmuck, P. Tabuada, and J. Raisch, “Comparing asynchronous `-complete approxima-
tions and quotient based abstractions,” arXiv preprint, arXiv:1503.07139, 2015.

[21] H. Kress-Gazit, G. Fainekos, and G. Pappas, “Temporal-logic-based reactive mission and
motion planning,” IEEE Transactions on Robotics, vol. 25, pp. 1370–1381, Dec 2009.

[22] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas, “Temporal logic motion
planning for dynamic robots,” Automatica, vol. 45, no. 2, pp. 343–352, 2009.

[23] M. Kloetzer and C. Belta, “Automatic deployment of distributed teams of robots from
temporal logic motion specifications,” IEEE Transactions on Robotics, vol. 26, pp. 48–61,
Feb 2010.

[24] J. Fu, N. Atanasov, U. Topcu, and G. J. Pappas, “Optimal temporal logic planning in
probabilistic semantic maps,” arXiv preprint, arXiv:1510.06469, 2015.

[25] J. Liu, N. Ozay, U. Topcu, and R. Murray, “Synthesis of reactive switching protocols from
temporal logic specifications,” IEEE Transactions on Automatic Control, vol. 58, pp. 1771–
1785, July 2013.

[26] B. Yordanov, J. Tůmová, I. Černá, J. Barnat, and C. Belta, “Temporal logic control of
discrete-time piecewise affine systems,” IEEE Transactions on Automatic Control, vol. 57,
no. 6, pp. 1491–1504, 2012.

[27] B. Yordanov and C. Belta, “Formal analysis of discrete-time piecewise affine systems,”
IEEE Transactions on Automatic Control, vol. 55, no. 12, pp. 2834–2840, 2010.

[28] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon control for temporal
logic specifications,” in Proceedings of the 13th ACM International Conference on Hybrid
Systems: Computation and Sontrol, pp. 101–110, ACM, 2010.

[29] E. A. Gol, M. Lazar, and C. Belta, “Temporal logic model predictive control,” Automatica,
vol. 56, pp. 78–85, 2015.

[30] E. Wolff, U. Topcu, and R. Murray, “Robust control of uncertain Markov decision processes
with temporal logic specifications,” in Proceedings of the 51st IEEE Conference on Decision
and Control, pp. 3372–3379, 2012.

26

[31] J. Fu and U. Topcu, “Probably approximately correct MDP learning and control with
temporal logic constraints,” in Proceedings of Robotics: Science and Systems, 2014.

[32] X. C. Ding, S. L. Smith, C. Belta, and D. Rus, “Optimal control of Markov decision
processes with linear temporal logic constraints,” IEEE Transactions on Automatic Control,
2014.

[33] D. Sadigh, E. S. Kim, S. Coogan, S. S. Sastry, and S. A. Seshia, “A learning based approach
to control synthesis of Markov decision processes for linear temporal logic specifications,”
in IEEE Conference on Decision and Control, pp. 1091–1096, 2014.

[34] M. W. Hirsch, “Systems of differential equations that are competitive or cooperative II:
Convergence almost everywhere,” SIAM Journal on Mathematical Analysis, vol. 16, no. 3,
pp. 423–439, 1985.

[35] H. L. Smith, Monotone dynamical systems: An introduction to the theory of competitive
and cooperative systems. American Mathematical Society, 1995.

[36] D. Angeli and E. Sontag, “Monotone control systems,” IEEE Transactions on Automatic
Control, vol. 48, no. 10, pp. 1684–1698, 2003.

[37] H. Smith, “Global stability for mixed monotone systems,” Journal of Difference Equations
and Applications, vol. 14, no. 10-11, pp. 1159–1164, 2008.

[38] S. Coogan, E. Aydin Gol, M. Arcak, and C. Belta, “Controlling a network of signalized
intersections from temporal logical specifications,” in Proceedings of the 2015 American
Control Conference, pp. 3919–3924, 2015.

[39] C. F. Daganzo, “The cell transmission model: A dynamic representation of highway traffic
consistent with the hydrodynamic theory,” Transportation Research Part B: Methodological,
vol. 28, no. 4, pp. 269–287, 1994.

[40] C. F. Daganzo, “The cell transmission model, part II: Network traffic,” Transportation
Research Part B: Methodological, vol. 29, no. 2, pp. 79–93, 1995.

[41] P. Varaiya, “Max pressure control of a network of signalized intersections,” Transportation
Research Part C: Emerging Technologies, vol. 36, pp. 177–195, 2013.

[42] S. Coogan and M. Arcak, “Stability of traffic flow networks with a polytree topology,”
Automatica, vol. 66, pp. 246–253, April 2016.

[43] S. Coogan and M. Arcak, “Freeway traffic control from linear temporal logic specifications,”
in Proceedings of the 5th ACM/IEEE International Conference on Cyber-Physical Systems,
pp. 36–47, 2014.

[44] A. A. Kurzhanskiy and P. Varaiya, “Active traffic management on road networks: A
macroscopic approach,” Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, vol. 368, no. 1928, pp. 4607–4626, 2010.

[45] J. C. Munoz and C. F. Daganzo, “The bottleneck mechanism of a freeway diverge,”

27

Transportation Research Part A: Policy and Practice, vol. 36, no. 6, pp. 483–505, 2002.

[46] M. J. Cassidy, S. B. Anani, and J. M. Haigwood, “Study of freeway traffic near an off-
ramp,” Transportation Research Part A: Policy and Practice, vol. 36, no. 6, pp. 563–572,
2002.

[47] G. Gomes, R. Horowitz, A. A. Kurzhanskiy, P. Varaiya, and J. Kwon, “Behavior of the cell
transmission model and effectiveness of ramp metering,” Transportation Research Part C:
Emerging Technologies, vol. 16, no. 4, pp. 485–513, 2008.

[48] Transportation Research Board, “Highway capacity manual,” 2000.

[49] J. Tůmová, B. Yordanov, C. Belta, I. Černá, and J. Barnat, “A symbolic approach to
controlling piecewise affine systems,” in 49th IEEE Conference on Decision and Control
(CDC), pp. 4230–4235, Dec 2010.

[50] G. Reissig, A. Weber, and M. Rungger, “Feedback refinement relations for the synthesis
of symbolic controllers,” arXiv preprint, arXiv:1503.03715, 2015.

[51] G. Reissig and M. Rungger, “Feedback refinement relations for symbolic controller
synthesis,” in IEEE Conference on Decision and Control, pp. 88–94, Dec 2014.

[52] M. Hirsch and H. Smith, “Monotone maps: a review,” Journal of Difference Equations and
Applications, vol. 11, no. 4-5, pp. 379–398, 2005.

[53] G. Como, E. Lovisari, and K. Savla, “Throughput optimality and overload behavior of
dynamical flow networks under monotone distributed routing,” IEEE Transactions on
Control of Network Systems, vol. 2, pp. 57–67, March 2015.

[54] E. Lovisari, G. Como, and K. Savla, “Stability of monotone dynamical flow networks,” in
Proceedings of the 53rd Conference on Decision and Control, pp. 2384–2389, 2014.

[55] A. Kurzhanskiy and P. Varaiya, “Computation of reach sets for dynamical systems,” in The
Control Systems Handbook, ch. 29, CRC Press, second ed., 2010.

[56] M. Herceg, M. Kvasnica, C. Jones, and M. Morari, “Multi-Parametric Toolbox 3.0,” in
Proceedings of the European Control Conference, (Zürich, Switzerland), pp. 502–510, July
17–19 2013. http://control.ee.ethz.ch/∼mpt.

[57] J. Klein, “ltl2dstar-LTL to deterministic Streett and Rabin automata,” 2005.
http://www.ltl2dstar.de/.

[58] T. T. Johnson and S. Mitra, “Safe and stabilizing distributed multi-path cellular flows,”
Theoretical Computer Science, vol. 579, pp. 9–32, 2015.

[59] H. Roozbehani and R. D’Andrea, “Adaptive highways on a grid,” in Robotics Research,
pp. 661–680, Springer, 2011.

[60] M. Papageorgiou, C. Diakaki, V. Dinopoulou, A. Kotsialos, and Y. Wang, “Review of road
traffic control strategies,” Proceedings of the IEEE, vol. 91, no. 12, pp. 2043–2067, 2003.

[61] P. Varaiya, “The max-pressure controller for arbitrary networks of signalized intersections,”

28

in Advances in Dynamic Network Modeling in Complex Transportation Systems, pp. 27–66,
Springer, 2013.

[62] M. Zamani, A. Abate, and A. Girard, “Symbolic models for stochastic switched systems: A
discretization and a discretization-free approach,” Automatica, vol. 55, pp. 183–196, 2015.

[63] E. Le Corronc, A. Girard, and G. Goessler, “Mode sequences as symbolic states in
abstractions of incrementally stable switched systems,” in Proceedings of the 52nd IEEE
Conference on Decision and Control, pp. 3225–3230, 2013.

[64] S. Karaman, R. G. Sanfelice, and E. Frazzoli, “Optimal control of mixed logical dynamical
systems with linear temporal logic specifications,” in IEEE Conference on Decision and
Control, pp. 2117–2122, IEEE, 2008.

[65] E. M. Wolff, U. Topcu, and R. M. Murray, “Optimization-based trajectory generation with
linear temporal logic specifications,” in IEEE International Conference on Robotics and
Automation (ICRA), pp. 5319–5325, IEEE, 2014.

[66] E. S. Kim, M. Arcak, and S. Seshia, “Directed specifications and assumption mining for
monotone dynamical systems,” in ACM Conference on Hybrid Systems: Computation and
Control, 2016.

[67] E. M. Clarke, O. Grumberg, and D. A. Peled, Model checking. MIT press, 1999.
[68] S. Berezin, S. Campos, and E. M. Clarke, Compositional reasoning in model checking.

Springer, 1998.
[69] O. Grumberg and D. E. Long, “Model checking and modular verification,” ACM Transac-

tions on Programming Languages and Systems, vol. 16, pp. 843–871, May 1994.
[70] E. S. Kim, M. Arcak, and S. A. Seshia, “Compositional controller synthesis for vehicular

traffic networks,” in IEEE Conference on Decision and Control, 2015.
[71] O. Maler and D. Nickovic, “Monitoring temporal properties of continuous signals,” in

Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems, pp. 152–
166, Springer, 2004.

[72] E. M. Wolff, U. Topcu, and R. M. Murray, “Optimal control with weighted average costs
and temporal logic specifications.,” in Robotics: Science and Systems, 2012.

29

Nonlinear Dynamics x[t+ 1] = F (x[t], u[t], d[t])

Finite-State Abstraction Formal Synthesis
from Rabin Game

Reach Gi Avoid Bi

Controller

Figure 1. A schematic depiction of the traffic-control synthesis procedure presented in this article.
The traffic-flow dynamics are modeled as a discrete-time dynamical system that is approximated
with a finite-state abstraction obtained by partitioning the original (continuous) domain. Tran-
sitions in the abstraction are obtained from reachability computations and overapproximate the
behavior of the system. A finite-memory controller is obtained by solving a Rabin game with a
Rabin automaton generated by the specified objective given in linear temporal logic.

30

(a)

(b)

Figure 2. Traffic networks are modeled as interconnected links. (a) A standard freeway network
consisting of one freeway with a diverge to a second freeway along with a schematic depiction of
the resulting model where each link models a freeway segment. (b) A typical signalized network
and its model. The greyed links are not explicitly modeled since they exit the network. At each
time step, the signaling input actuates a subset of the incoming traffic. Each link is an incoming
road; long links may be subdivided into multiple links, and roads with multiple lanes that are
actuated independently may be subdivided into parallel links.

31

xjam
`

x`

D`(x`)
S`(x`)

Figure 3. Plot of prototypical supply and demand functions S` and D`.

32

1

2

3

10 20 30 40 50
0

10

20

30

40

50

Iq

x

x
f((x, x), u, (d, d))

f((x, x), u, (d, d))

Vehicles on link 2

V
eh

ic
le

s
on

lin
k
3

(a) (b)

Figure 4. Approximating the one-step reachable set of traffic states using mixed monotonicity.
(a) A simple network with three links. (b) The one-step reachable set from the initial box Iq
is bounded by evaluating the network dynamics of each link at two particular extreme points
that depend on the topology of the network. The actual reachable set is shaded in light blue; the
approximation R is outlined with a dashed line, and the results are plotted in the plane of Link
2 vs. Link 3.

33

q1

q4

q5

q2 q3

q6

(a) (b)

Figure 5. Schematic depiction of a finite-state abstraction. The lightly shaded region represents
the domain X . (a) The transition map captures all possible transitions from one partition of
the state space under each possible input. Here, only one input is assumed for illustration. The
darkly shaded region denotes one partition and its image under the state-update map F , that is,
the corresponding one-step reachable set. (b) A finite-state abstraction represents the dynamics
with a finite set of states and transitions between these states.

34

Finite-State Abstraction

Rabin Automaton from LTL ObjectiveControl Selection
g M

Q

Finite-Memory Controller

q[t]u[t]

m[t]

Figure 6. Control of a dynamical system from its finite-state abstraction using a finite-memory
controller. An objective given in linear temporal logic (LTL) is converted to a finite Rabin
automaton, the modes of which serve as the memory of the controller. The synthesis algorithm
produces the control-selection map g, which acts as a finite look-up table mapping a pair
(q[t],m[t]) to a control action u[t], where q[t] is the state of the system’s finite-state abstraction
and m[t] is the mode of the Rabin automaton at time t. When this control action is applied to
the system, the closed-loop execution is guaranteed to satisfy the LTL objective.

35

F
(

x

x

d

d)
, u , ⊆

F (x, u, d)

F (x, u, d)

Monotone System
(a)

F
(

x

x

d

d)
, u , ⊆

f((x, x), u, (d, d))

f((x, x), u, (d, d))

Mixed Monotone System
(b)

Figure 7. Mixed monotonicity enables efficient overapproximation of reachable sets. (a) For the
special case of monotone systems, the hyperrectangle defined by evaluating the update map F at
the extreme points (x, d) and (x, d) contains the set of reachable states from the hyperrectangle
defined by x and x under a disturbance taken from the hyperrectangular set defined by d and
d. (b) An analogous result holds in the general mixed-monotone case when the decomposition
function is evaluated at two extreme points.

36

1

4

52

3

L C R

Figure 8. Example network with three signalized intersections and 5 links, denoted with arrows
and numbered as shown. Links 1, 4, and 5 direct exogenous traffic onto the network, and at
each time step, the exogenous arrivals are assumed to be within the disturbance set D. If the
queues on links 2 and 3 are long, they will block flow from links 1, 4, and 5. At each time step,
the signal in the center actuates link 1 (“green” mode) or actuates links 4 and 5 simultaneously
(“red” mode). The left (resp. right) signal actuates link 2 (resp. link 3) if in “green” mode and
none of the modeled links if in “red” mode. A control strategy is synthesized that satisfies the
linear temporal logic formula in (15).

37

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

N
um

be
r

of
V

eh
ic

le
s

in
Q

ue
ue

Link 1
Link 2

Link 3
Link 4

Link 5

0 5 10 15 20 25 30 35

Time Period

R
L
C

Si
gn

al

(a)

0 5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

N
um

be
r

of
V

eh
ic

le
s

in
Q

ue
ue

Link 1
Link 2

Link 3
Link 4

Link 5

0 5 10 15 20 25 30 35

Time Period

R
L
C

Si
gn

al

(b)

Figure 9. Sample trajectories of the network in Figure 8. (a) The applied control at each time step
is determined by the correct-by-design control strategy obtained using the formal abstraction and
synthesis approach presented in this article. As suggested by the sample trajectory, the closed-
loop behavior of the real system is guaranteed to satisfy the linear temporal logic (LTL) formula
(15). (b) Sample trajectory when a fixed, cyclic control strategy is applied to the network. The
initial condition and disturbance input are the same as in (a). The LTL formula (15) is not
satisfied for this naı̈ve controller as it cannot be guaranteed the state of links 1, 2, and 3 remain
below 30 vehicles.

38

Sidebar 1
Spurious Transitions in Finite Abstractions

If the transition map δ is the smallest satisfying (8) where “smallest” is with respect to set
inclusion, then no spurious one-step transitions exists and (8) holds with the biconditional “if
and only if.” In this case, T is called a quotient-based abstraction of the real system with respect
to the partition P . There are several advantages to stipulating this additional requirement on δ.
First, this requirement implies that, given a partition, the corresponding finite-state abstraction is
unique. Second, by avoiding spurious transitions, we reduce the conservatism inherent in formal
synthesis from finite-state abstractions.

However, there are good reasons to accept spurious one-step transitions in the finite-
state abstraction. In particular, computing the smallest transition map requires exact one-step
reachability computations under the dynamics (7), which is often computationally difficult or
impossible. Yet, for many classes of systems, there exist efficient algorithms for computing
overapproximations of reachable sets that are not overly conservative.

Even in the absence of spurious one-step transitions in the map δ, there may still exist
spurious executions of the finite-state abstraction that, after two or more steps, do not correspond
to any trajectory of the real system.

Example S1. Consider a system for which X ⊆ R2 is a rectangle as in Figure S1, P = {Xq}q∈Q
for Q = {q1, q2, q3, q4} partitions the domain into four polytopes as shown, and U and D are
singleton sets. Equivalently, omit U and D so that (7) becomes x[t + 1] = F (x[t]) and T is a
finite abstraction with transition map δ : Q → 2Q. Let F (Y) = {F (x) | x ∈ Y} for Y ⊆ X .
Suppose F (Xq1) is as in Figure S1 so that {q2, q3} ⊆ δ(q1). Likewise, suppose F (Xq3) is as in
the figure so that {q1, q4} ⊆ δ(q3), and, furthermore, F (F (Xq1)∩Xq3) ⊆ Xq1 as indicated by the
shaded region of F (Xq3). Then, since q3 ∈ δ(q1) and q4 ∈ δ(q3), the sequence q1q3q4 consists of
valid transitions of the finite-state abstraction T . However, there is no trajectory x[·] of the real
system such that x[n] ∈ Xq1 , x[n+ 1] ∈ Xq3 , and x[n+ 2] ∈ Xq4 for some n ≥ 0, that is, q1q3q4
is a spurious sequence.

There are at least three approaches to limiting the existence of spurious executions. The
first is to refine the partition P . A refinement of a partition P = {Xq}q∈Q is a new partition
P ′ = {Xq}q∈Q′ such that, for all q′ ∈ Q′, there exists q ∈ Q with Xq′ ⊆ Xq. For instance,
by partitioning Xq3 in the above example, it is possible to obtain an abstraction that does not
exhibit the particular spurious sequence in this example. Standard iterative partition-refinement

39

algorithms exist for quotient-based abstractions [13].

The second approach, which traces its roots to behavioral systems theory [S1], is to compute
an `-complete abstraction given the fixed partition P that incorporates finite memory to track
past behavior of the system. Here, ` refers to the length of the memory, and increasing `

reduces the conservatism of the abstraction (that is, removes spurious executions) [14], [19].
For example, in an `-complete abstraction with ` = 2, the currently and previously occupied
partitions constitute an expanded state of a finite-state abstraction, and this expanded state is
considered when constructing the transition map. In the above example, such an abstraction
would not allow the spurious sequence q1q3q4 because, for x[0] ∈ Xq1 and x[1] ∈ Xq3 , it has
been concluded that x[2] 6∈ Xq4 and thus there is not a transition from the expanded abstract
state (q1, q3) to the expanded abstract state (q3, q4).

While `-complete abstractions and quotient-based abstractions obtained from partition
refinement are conceptually similiar, they are, in general, not the same. Depending on the
real system, one or the other may produce a tighter abstraction. However, in some cases, the
abstractions are equivalent; see [20] for a detailed comparison of the two approaches.

The third approach constructs progress groups for each finite state under each input that
specifies a set of states in which the system cannot remain indefinitely, resulting in an augmented
finite-transition system [S2], [S3]. It is possible to compute progress groups by certifying that
a set of states is transient under the system dynamics using, for example, barrier functions and
sum-of-squares programming [S2]. These progress groups translate to justice requirements on
executions of the abstraction [S4].

The finite-state abstraction T is deterministic if |δ(q, u)| = 1, for all q ∈ Q and u ∈ U ,
and nondeterministic otherwise. Nondeterminism arises from three sources:

1) The disturbance d implies that x[t+ 1] is not uniquely determined by x[t] and u[t] alone;
2) As discussed above, δ may include spurious one-step transitions;
3) Even when reachable sets are computed exactly, the one-step reachable set from a partition

may intersect multiple partitions, as in the example above.

Despite the nondeterminism and existence of spurious transitions, a controller obtained
from an overapproximating finite-state abstraction guarantees at least the same level of perfor-
mance for the real system [13], [50]. In particular, condition (8) implies that the real system is
an alternating simulation [13] of the finite-state abstraction T and that there exists a feedback
refinement [50] from the real system to the abstraction.

40

References

[S1] J. C. Willems, “Paradigms and puzzles in the theory of dynamical systems,” IEEE
Transactions on Automatic Control, vol. 36, no. 3, pp. 259–294, 1991.

[S2] N. Ozay, J. Liu, P. Prabhakar, and R. M. Murray, “Computing augmented finite transition
systems to synthesize switching protocols for polynomial switched systems,” in American
Control Conference (ACC), pp. 6237–6244, IEEE, 2013.

[S3] F. Sun, N. Ozay, E. M. Wolff, J. Liu, and R. M. Murray, “Efficient control synthesis for
augmented finite transition systems with an application to switching protocols,” in American
Control Conference (ACC), pp. 3273–3280, IEEE, 2014.

[S4] Y. Kesten and A. Pnueli, “Verification by augmented finitary abstraction,” Information and
Computation, vol. 163, no. 1, pp. 203–243, 2000.

41

x1

x2

Xq1

Xq2 Xq3

Xq4

F (Xq1)

F (Xq3)F (F (Xq1) ∩ Xq3)

Figure S1. Spurious executions of finite-state abstractions. Since F (Xq1) intersects Xq2 and Xq3 ,
{q2, q3} ⊆ δ(q1), and, likewise, {q1, q4} ⊆ δ(q3) so that the sequence q1q3q4 consists of valid
transitions of the finite-state abstraction. Yet no trajectory x[·] of the real system is such that there
exists n with x[n] ∈ Xq1 , x[n+ 1] ∈ Xq3 , and x[n+ 2] ∈ Xq4 since F (F (Xq1) ∩Xq3) ∩Xq4 = ∅,
that is, the sequence q1q3q4 is a spurious sequence.

42

Sidebar 2
Linear Temporal Logic Specifications of System Behavior

Linear temporal logic (LTL) is used to describe the temporal behavior of systems [67],
[S6], [S7] and was first suggested for describing the operation of software in [S5]. LTL formulas
are constructed from a set of observations, Boolean operators, and temporal operators, and an
LTL formula expresses a property over an infinite trace of observations made during the infinite
execution of a system. For example, a LTL formula may specify that some observation always
holds (invariance), that some observation eventually holds (reachability), that some observation
holds infinitely often (liveness), or that some particular observation always follows another
observation (sequentiality). The power of LTL comes from its ability to concisely and intuitively
express a wide range of relevant properties for system behavior. It is often straightforward to
convert a plain English statement directly to a LTL formula as demonstrated below.

The standard notation for the Boolean operators is used, including > (true), ¬ (negation), ∧
(conjunction), and the graphical notation for the temporal operators is used, including # (“next”),
U (“until”), ♦ (“eventually”), and � (“always”). For example, the LTL formula ♦�o1 expresses
the property that observation o1 ∈ O eventually holds at some point in the future and continues
to hold, for all future time. This interpretation, and the construction of valid LTL formulas, is
made precise in the following.

Given a finite set of observations O, LTL formulas are interpreted over infinite sequences of
subsets of O, that is, over (2O)Z≥0 where 2O denotes the set of all subsets of O. For example, in a
finite-state abstraction, a fixed set of observations holds for each partition of the continuous state
space, and an execution of the dynamical system generates a sequence of sets of observations.

Consider such a sequence σ = σ[0]σ[1]σ[2] · · · with each σ[t] ⊆ O. Given a LTL formula
ϕ, the sequence σ either satisfies ϕ or it does not (as is typical, LTL formulas are denoted with
the symbol ϕ). The set of all possible LTL formulas and the interpretation of their satisfaction
is defined recursively as:

• For any o ∈ O, o is a LTL formula and σ satisfies o if o ∈ σ[0], that is, if observation o

holds at the first time step.
• For any LTL formulas ϕ1 and ϕ2, ϕ1 ∧ ϕ2 is itself a LTL formula and σ satisfies ϕ1 ∧ ϕ2

if σ satisfies ϕ1 and σ satisfies ϕ2.
• For any LTL formula ϕ, ¬ϕ is a LTL formula and σ satisfies ¬ϕ if it is not the case that
σ satisfies ϕ.

• For any LTL formula ϕ, #ϕ is a LTL formula and σ satisfies #ϕ if σ[1 · · ·] := σ[1]σ[2] · · ·

43

satisfies ϕ.
• For any LTL formulas ϕ1 and ϕ2, ϕ1 Uϕ2 is a LTL formula and σ satisfies ϕ1 Uϕ2 if

there exists j ≥ 0 such that σ[j · · ·] := σ[j]σ[j + 1] · · · satisfies ϕ2 and, for all i < j,
σ[i · · ·] := σ[i]σ[i+ 1] · · · satisfies ϕ1.

The temporal operators ♦ (“eventually”) and � (“always”) are defined using the “until”
temporal operator U:

• For any LTL formula ϕ, ♦ϕ := > Uϕ and thus σ satisfies ♦ϕ if ϕ holds eventually at
some time in the future, that is, there exists i such that σ[i · · ·] = σ[i]σ[i + 1] · · · satisfies
ϕ.

• For any LTL formula ϕ, �ϕ := ¬♦¬ϕ and thus σ satisfies �ϕ if σ[i · · ·] := σ[i]σ[i+1] · · ·
satisfies ϕ, for all i ≥ 0.

Compactly, the syntax for LTL as described above is generated by the grammar

ϕ ::= > | o |ϕ1 ∧ ϕ2 | ¬ϕ | #ϕ | ϕ1 Uϕ2,

where o ∈ O is an observation and ϕ, ϕ1 and ϕ2 are LTL formulas.

It is possible to obtain a wide range of derived operators by combining the above rules.
For example, two common temporal operators are ♦� (“eventually always”) and �♦ (“always
eventually”). Below are informal interpretations of the satisfaction of some frequently used LTL
formulas.

• #ϕ is satisfied at the current step if ϕ is satisfied at the next step.
• ϕ1 Uϕ2 is satisfied if ϕ1 is satisfied “until” ϕ2 becomes satisfied.
• �ϕ is satisfied if ϕ is satisfied at each step (that is, ϕ is “always” satisfied).
• �¬ϕ is satisfied if ¬ϕ is satisfied at each step (that is, ϕ is “never” satisfied).
• ♦ϕ is satisfied if ϕ is satisfied at some future step (that is, ϕ is “eventually” satisfied).
• ♦�ϕ is satisfied if ϕ becomes satisfied at some future step and remains satisfied for all

following steps (i.e. ϕ is satisfied “eventually forever”).
• �♦ϕ is satisfied if ϕ always becomes satisfied at some future step (i.e. ϕ is satisfied

“infinitely often”).

Example. Consider the sequences of subsets of observations generated by the transition diagram
shown in Figure S2 for which O = {o1, o2, o3} (in this example, an element of such a sequence
is a singleton set containing exactly one observation from O). A possible output word is σ =

{o1}{o1}{o2}{o3}({o1})Z≥0 where (·)Z≥0 indicates infinite repetition of the expression in the
parentheses. The sequence σ satisfies LTL formulas ϕ1 = o1, ϕ2 = ♦�o1 and ϕ3 = o1 U o2.

44

A different output word is σ′ = ({o1}{o1}{o2}{o3})Z≥0 , which satisfies formulas ϕ1, ϕ3 and
ϕ4 = �♦o3. However, word σ does not satisfy formula ϕ4 and σ′ does not satisfy ϕ2.

References

[S5] A. Pnueli, “The temporal logic of programs,” in 18th Annual Symposium on Foundations
of Computer Science, pp. 46–57, IEEE, 1977.

[S6] C. Baier and J. Katoen, Principles of Model Checking. MIT Press, 2008.
[S7] E. A. Lee and S. A. Seshia, Introduction to embedded systems: A cyber-physical systems

approach. LeeSeshia.org, 2011.

45

o1

o2o3

Figure S2. Example of linear temporal logic specifications for system behavior. The transition
diagram above represents possible observations from O = {o1, o2, o3} during the execu-
tion of a system. The system is initialized with observation o1 and each edge indicates a
possible next observation. One possible sequence of sets of observations for the system is
σ = {o1}{o1}{o2}{o3}({o1})Z≥0 , and another possible sequence is σ′ = ({o1}{o1}{o2}{o3})Z≥0 .
The sequence σ satisfies ♦�o1 but does not satisfy �♦o3. The opposite holds for sequence σ′.

46

Sidebar 3
Controller Synthesis for LTL Specifications from Rabin Games

Rabin automata connect LTL specifications to executions of finite state abstractions and
provide a mechanism for obtaining finite memory controllers of finite state abstractions.

Definition S1 (Deterministic Rabin automaton). A deterministic Rabin automaton consists of:

• A finite set of modes M , called Rabin modes,
• An initial mode m0 ∈M ,
• A finite set of inputs 2O that is the set of all subsets of O,
• A mode transition map ∆R : M × 2O →M , and
• An acceptance condition F = {(G1, B1), (G2, B2), . . . , Gk, Bk)} where Gi, Bi ⊆M , for all
i ∈ {1, . . . , k}, for some k ≥ 1.

Executions of a deterministic Rabin automaton are defined analogously to executions of a
transition system. The input sequence σ[·] = σ[0]σ[1]σ[2] · · · with σ[t] ⊆ O, for all t, is accepted
by the deterministic Rabin automaton if the unique induced execution m[·] satisfies the following
acceptance condition: There exists a pair (Gi, Bi) ∈ F for which

• m[t] ∈ Gi for infinitely many t ≥ 0, and
• m[t] ∈ Bi for only finitely many t ≥ 0 (equivalently, there exists t∗ for which m[t] 6∈ Bi,

for all t ≥ t∗).

Each (Gi, Bi) ∈ F is an acceptance pair.

The notational congruences between Definition 2 and Definition S1 are intentional, and
the relevance of Rabin automata stems from the following result.

Proposition S1 ([S8], [S9], [S10]). Given an LTL formula ϕ over the set of observations O, let
σ ∈ (2O)Z≥0 . There exists a deterministic Rabin automaton such that

σ satisfies ϕ if and only if σ is accepted by the Rabin automaton.

Because all Rabin automata considered here are deterministic, the “deterministic” modifier
is dropped.

Example S2. Assume O = {a, b} and consider the LTL formula ϕ = �(a → ♦b), which is
satisfied if, whenever a holds, b holds or will hold at some future time. Consider the Rabin

47

automaton with M = {m0,m1}, F = ({m0}, ∅), and, for W ∈ 2O, ∆R is given by

∆R(m0,W) = m1 if and only if a ∈ W and b 6∈ W, (S1)

∆R(m1,W) = m0 if and only if b ∈ W. (S2)

Then a trace σ = σ[0]σ[1]σ[2] · · · ∈ (2O)Z≥0 is accepted by the Rabin automaton if and only if
σ satisfies ϕ; see Figure S3(a). Indeed, F implies that an execution m[t] is accepted if and only
if m[t] = m0 for infinitely many t ≥ 0. Reasoning about ∆R as given in (S1)–(S2), this is the
case if and only if whenever a ∈ σ[t] there exists some time τ ≥ t for which b ∈ σ[t], that is,
if and only if σ satisfies ϕ.

Moreover, there exist algorithms [S9] and readily available software [57] for constructing
a Rabin automaton from a LTL formula.

From the above discussion, the interaction of a finite-state abstraction and a Rabin
automaton generated from a desired LTL specification ϕ is as follows. From an initial
condition q[0], apply an input sequence u[·] to the finite-state abstraction to generate some
nonunique execution q[·] and an associated trace L(q[·]). Nonuniqueness of q[·] follows from
the nondeterminism in the transition map. To check whether q[·] satisfies ϕ, apply L(q[·]) as
the input to the Rabin automaton, which produces a corresponding unique execution m[·] that
is used to determine if L(q[·]) is accepted according to the acceptance condition in Definition
(S1).

The interaction of a finite-state abstraction and a Rabin automaton is envisioned as
occurring in parallel; when the abstraction steps from q[t] to q[t+1], the set L(q[t]) of observations
is passed to the Rabin automaton, which then steps from m[t] to m[t + 1]. Taking this view,
it is possible to envision a controller as in Figure 6 that monitors both the evolution of the
abstraction and the Rabin automaton and, at each time step, chooses a control action with the
goal of satisfying the acceptance condition of the Rabin automaton so that q[·] satisfies ϕ.

Indeed, the synthesis is based on a Rabin game that is played as follows: a controller (also
called the protagonist or scheduler [S6]), which has access to the current state q[t] of the finite-
state abstraction as well as m[t] of the Rabin automaton, seeks a control input u[t] at each time
step so that, regardless of how an adversary chooses from among the set of possible next states
dictated by the set δ(q[t], u[t]), the resulting trajectory trace is accepted by the Rabin automaton.

There exist algorithms for solving Rabin games in time polynomial in |Q|, |M |, and
|δ| =

∑
u∈U ,q∈Q |δ(q, u)| and factorial in k, the number of acceptance pairs [S11], [S12], [S13].

For many LTL specifications of practical significance, k is usually small and often 1. Moreover,

48

solutions of the game are memoryless, meaning that the controller’s decision is only a function
of the current state q and mode m [S14]. That is, the result of these algorithms is a function
g : Q×M → U and a set Q0 such that, if the finite-state abstraction is initialized with q[0] ∈ Q0,
then by choosing u[t] = g(q[t],m[t]) at each time instant, the controller is guaranteed to win the
Rabin game no matter the choice of the adversary, and thus q[·] satisfies ϕ.

Example S2 (continued). Consider the labeled transition system in Figure S3(b) where q2 is
labeled with observation a, q3 is labeled with observation b, and q1 has no observations, and
again consider the LTL formula ϕ = �(a → ♦b) with Rabin automaton in Figure S3(a). The
set of available inputs is U = {u1, u2} and the induced transitions are indicated in the figure,
thus defining the transition map δ with domain {q1, q2, q3} × {u1, u2}. Notice that some of
the transitions are nondeterministic, that is, an input induces more than one transition from a
particular state. For example, δ(q2, u1) = {q1, q2}. The objective is to find a feedback control
policy that selects an input at each time step so that infinite executions of the transition system in
Figure S3(b) satisfy ϕ. It can be verified that any control mapping g : {q1, q2, q3}×{m0,m1} →
{u1, u2} with g(m1, q1) = g(m1, q2) = u1 ensures that ϕ is satisfied when the labeled transition
system is initialized in any state, that is, Q0 = {q1, q2, q3}.

To complete the picture, it is then straightforward to characterize the control strategy γ

having the structure in Definition 2. In particular, the modes M and initial mode m0 are inherited
from the Rabin automaton, ∆(m, q) = ∆R(m,L(q)), and g is obtained via the aforementioned
algorithms. Thus, while the Rabin game solution is a memoryless map from Q×M to U , the
controller itself has finite memory inherited from the modes of the Rabin automaton. In general,
memory is required to accommodate the rich specifications allowed by LTL.

Finally, computational aspects and related approaches to formal synthesis are briefly noted.
Implementation of a Rabin-game solver is provided in the conPAS2 software package [26]. In
the worst case, the number of Rabin modes is doubly exponential in the length of the LTL
formula, that is, the number of operators in the formula [S9]. If (G1, B1) is the only acceptance
pair and B1 = ∅, as is the case in Figure S3(a), then the Rabin automaton is equivalent to a
deterministic Büchi automaton, for which the synthesis algorithm is simpler. There are classes
of LTL specifications, such as the generalized reactivity (1) class that is representable as a
collection of deterministic Büchi automata, that enable even more efficient synthesis algorithms
and software [21], [S15], [S16], [S17].

49

References

[S8] R. McNaughton, “Testing and generating infinite sequences by a finite automaton,”
Information and control, vol. 9, no. 5, pp. 521–530, 1966.

[S9] S. Safra, “On the complexity of ω-automata,” in 29th Annual Symposium on Foundations
of Computer Science, pp. 319–327, 1988.

[S10] W. Thomas, “Automata on infinite objects,” Handbook of theoretical computer science,
vol. 2, 1990.

[S11] O. Kupferman and M. Y. Vardi, “Weak alternating automata and tree automata emptiness,”
in Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, STOC
’98, (New York, NY, USA), pp. 224–233, ACM, 1998.

[S12] F. Horn, “Streett games on finite graphs,” Proc. 2nd Workshop Games in Design
Verification (GDV), 2005.

[S13] N. Piterman and A. Pnueli, “Faster solutions of Rabin and Streett games,” in 21st Annual
IEEE Symposium on Logic in Computer Science, pp. 275–284, 2006.

[S14] E. A. Emerson, “Automata, tableaux, and temporal logics,” in Logics of Programs, pp. 79–
88, Springer, 1985.

[S15] N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis of reactive (1) designs,” in Verification,
Model Checking, and Abstract Interpretation, pp. 364–380, Springer, 2006.

[S16] C. Finucane, G. Jing, and H. Kress-Gazit, “LTLMoP: Experimenting with language,
temporal logic and robot control,” in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ
International Conference on, pp. 1988–1993, IEEE, 2010.

[S17] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and R. M. Murray, “TuLIP: a software tool-
box for receding horizon temporal logic planning,” in Proceedings of the 14th international
conference on Hybrid systems: computation and control, pp. 313–314, ACM, 2011.

50

m0 m1

a ∧ ¬b

¬a ∨ b ¬b

b

q1

q3
b

q2
a

u2

u1

u2
u1

u2

u1

u1, u2

u1, u2

(a) (b)

Figure S3. A Rabin automaton generated for a LTL specification is used to generate a
feedback control strategy for a labeled transition system. (a) Example of a Rabin automaton
that corresponds to the LTL specification ϕ = �(a → ♦b) for O = {a, b}. It holds that
F = {(m0, ∅)}, thus a trace is accepted if and only if m0 is visited infinitely often. The edge
labeled b from m1 to m0 indicates that if m[t] = m1 and the observation σ[t] ∈ 2O is made at
time t, then the Rabin automaton will transition to m0 if and only if b ∈ σ[t], and similarly for the
other edges. (b) A labeled transition system for which the observation made at state q2 is a and the
observation made at q3 is b, and two inputs U = {u1, u2} are available at each state. Any control
selection map g : {q1, q2, q3} × {m0,m1} → {u1, u2} satisfying g(m1, q1) = g(m1, q2) = u1

ensures that the transition system satisfies ϕ when the Rabin mode m[t] is updated according to
the Rabin automaton.

51

Author Information

Samuel Coogan is an assistant professor in the Electrical Engineering Department at the
University of California, Los Angeles (UCLA). He received the B.S. degree in Electrical
Engineering from Georgia Tech (2010), and the M.S. and Ph.D. degrees in Electrical Engineering
from the University of California, Berkeley (2012 and 2015). In 2015, he was a postdoctoral
research engineer at Sensys Networks, Inc., and in 2012 he was a research intern at NASA’s
Jet Propulsion Lab. He received the Leon O. Chua Award from UC Berkeley EECS in 2014
for achievement in nonlinear science, the best student paper award at the 2015 Hybrid Systems:
Computation and Control conference, and the Eli Jury Award from UC Berkeley EECS in
2016 for achievement in systems and control. His research focuses on developing scalable tools
for verification and design of networked systems with particular emphasis on applications to
transportation systems.

Murat Arcak is a professor at U.C. Berkeley in the Electrical Engineering and Computer
Sciences Department. He received the B.S. degree in Electrical Engineering from the Bogazici
University, Istanbul, Turkey (1996) and the M.S. and Ph.D. degrees from the University of
California, Santa Barbara (1997 and 2000). His research is in dynamical systems and control
theory with applications to synthetic biology, multi-agent systems, and transportation. Prior to
joining Berkeley in 2008, he was a faculty member at the Rensselaer Polytechnic Institute.
He received a CAREER Award from the National Science Foundation in 2003, the Donald P.
Eckman Award from the American Automatic Control Council in 2006, the Control and Systems
Theory Prize from the Society for Industrial and Applied Mathematics (SIAM) in 2007, and the
Antonio Ruberti Young Researcher Prize from the IEEE Control Systems Society in 2014. He
is a member of SIAM and a fellow of IEEE.

Calin Belta is a professor in the Department of Mechanical Engineering, Department of Electrical
and Computer Engineering, and the Division of Systems Engineering at Boston University,
where he is also affiliated with the Center for Information and Systems Engineering (CISE)
and the Bioinformatics Program. His research focuses on dynamics and control theory, with
particular emphasis on hybrid and cyber-physical systems, formal synthesis and verification, and
applications in robotics and systems biology. He is a senior member of the IEEE and an associate
editor for the SIAM Journal on Control and Optimization (SICON) and the IEEE Transactions on
Automatic Control. He received the Air Force Office of Scientific Research Young Investigator
Award and the National Science Foundation CAREER Award.

52

